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s University of Zuri
h,CH{8057 Zuri
h, SwitzerlandAbstra
t. In this arti
le the 
osmologi
al 
onstant problems, as well as the astronomi
al eviden
e fora 
osmologi
ally signi�
ant homogeneous exoti
 energy density with negative pressure (quintessen
e),are reviewed for a broad audien
e of physi
ists and mathemati
ians. After a short history of the 
osmo-logi
al term it is explained why the (e�e
tive) 
osmologi
al 
onstant is expe
ted to obtain 
ontributionsfrom short-distan
e physi
s 
orresponding to an energy s
ale at least as large as the Fermi s
ale. Thea
tual tiny value of the 
osmologi
al 
onstant by parti
le physi
s standards represents, therefore, oneof the deepest mysteries of present-day fundamental physi
s. In a se
ond part I shall dis
uss re
entastronomi
al eviden
e for a 
osmologi
ally signi�
ant va
uum energy density or an e�e
tive equivalent,
alled quintessen
e. Cosmologi
al models, whi
h attempt to avoid the disturbing 
osmi
 
oin
iden
eproblem, are also brie
y reviewed.1 Introdu
tionIn re
ent years important observational advan
es have led quite 
onvin
ingly to the astonishing
on
lusion that the present Universe is dominated by an exoti
 homogeneous energy density withnegative pressure. I shall dis
uss the 
urrent eviden
e for this �nding in detail later on, but let mealready indi
ate in this introdu
tion the most relevant astronomi
al data.First, we now have quite a

urate measurements of the anisotropies of the 
osmi
 mi
rowaveba
kground radiation (CMB). In parti
ular, the position of the �rst a
ousti
 peak in the angularpower spe
trum implies that the Universe is, on large s
ales, nearly 
at (Se
t.6).On the other hand, a number of observational results, for instan
e from 
lusters of galaxies,show 
onsistently that the amount of \matter" (baryons and dark matter) whi
h 
lumps in variousstru
tures is signi�
antly under
riti
al. Hen
e, there must exist a homogeneously distributed exoti
energy 
omponent.Important additional 
onstraints 
ome from the Hubble diagram of type Ia supernovas at highredshifts. Although not yet as 
onvin
ing, they support these 
on
lusions (Se
t.5). More re
ently,the 
ombination of CMB data and information provided by large s
ale galaxy redshift surveys havegiven additional 
on�rmation.Some of you may say that all this just shows that we have to keep the 
osmologi
al termin Einstein's �eld equations, a possibility has been 
onsidered during all the history of relativisti

osmology (see Se
t.2). From our present understanding we would indeed expe
t a non-vanishing
osmologi
al 
onstant, mainly on the basis of quantum theory, as will be dis
ussed at length lateron. However, if a 
osmologi
al term des
ribes the astronomi
al observations, then we are 
onfrontedwith two diÆ
ult problems, many of us worry about:The �rst is the old mystery: Sin
e all sorts of va
uum energies 
ontribute to the e�e
tive 
os-mologi
al 
onstant (see Se
t.4), we wonder why the total va
uum energy density is so in
rediblysmall by all parti
le physi
s standards. Theoreti
ians are aware of this profound problem sin
e along time, { at least those who think about the role of gravity among the fundamental intera
tions.
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ar�eMost probably, we will only have a satisfa
tory answer on
e we shall have a theory whi
h su

ess-fully 
ombines the 
on
epts and laws of general relativity about gravity and spa
etime stru
turewith those of quantum theory.Before the new astronomi
al �ndings one 
ould at least hope that we may one day have a basi
understanding for a vanishing 
osmologi
al 
onstant, and there have been interesting attempts inthis dire
tion (see, e.g., Ref. [1℄). But now we are also fa
ing a 
osmi
 
oin
iden
e problem: Sin
ethe va
uum energy density is 
onstant in time { at least after the QCD phase transition {, whilethe matter energy density de
reases as the Universe expands, it is more than surprising that thetwo are 
omparable just at the present time, while their ratio has been tiny in the early Universeand will be
ome very large in the distant future.This led to the idea that the e�e
tive 
osmologi
al 
onstant we observe today is a
tuallya dynami
al quantity, varying with time. I want to emphasize already now that these so-
alledquintessen
e models do, however, not solve the �rst problem. (More on this in Se
t.7.)This paper is organized as follows. Se
tion 2 is devoted to the instru
tive early history ofthe ��term, in
luding some early remarks by Pauli on the quantum aspe
t 
onne
ted with it. InSe
tion 3 we re
all important examples of va
uum energies in quantum ele
trodynami
s and theirphysi
al signi�
an
e under variable external 
onditions. We then shown in Se
tion 4 that simpleand less naive order of magnitude estimates of various 
ontributions to the va
uum energy densityof the Standard Model all lead to expe
tations whi
h are in giganti
 
on
i
t with the fa
ts. I thenturn to the astronomi
al and astrophysi
al aspe
ts of our theme. In Se
tion 5 it be des
ribed whatis known about the luminosity-redshift relation for type Ia supernovas. The remaining systemati
un
ertainties are dis
ussed in some detail. Most spa
e of Se
tion 6 is devoted to the physi
s ofthe CMB, in
luding of how the system of basi
 equations whi
h govern its evolution before andafter re
ombination is obtained. We then summarize the 
urrent observational results, and whathas been learned from them about the 
osmologi
al parameters. We 
on
lude in Se
tion 7 with afew remarks about the goal of quintessen
e models and the main problems this s
enario is fa
ing.2 On the history of the �-termThe 
osmologi
al term was introdu
ed by Einstein when he applied general relativity for the �rsttime to 
osmology. In his paper of 1917 [2℄ he found the �rst 
osmologi
al solution of a 
onsistenttheory of gravity. In spite of its drawba
ks this bold step 
an be regarded as the beginning ofmodern 
osmology. It is still interesting to read this paper about whi
h Einstein says: \I shall
ondu
t the reader over the road that I have myself travelled, rather a rough and winding road,be
ause otherwise I 
annot hope that he will take mu
h interest in the result at the end of thejourney." In a letter to P. Ehrenfest on 4 February 1917 Einstein wrote about his attempt: \I haveagain perpetrated something relating to the theory of gravitation that might endanger me of being
ommitted to a madhouse. (I
h habe wieder etwas verbro
hen in der Gravitationstheorie, was mi
hein wenig in Gefahr bringt, in ein Tollhaus interniert zu werden.)" [3℄.In his attempt Einstein assumed { and this was 
ompletely novel { that spa
e is globally
losed, be
ause he then believed that this was the only way to satisfy Ma
h's prin
iple, in the sensethat the metri
 �eld should be determined uniquely by the energy-momentum tensor. In addition,Einstein assumed that the Universe was stati
. This was not unreasonable at the time, be
ausethe relative velo
ities of the stars as observed were small. (Re
all that astronomers only learnedlater that spiral nebulae are independent star systems outside the Milky Way. This was de�nitelyestablished when in 1924 Hubble found that there were Cepheid variables in Andromeda and alsoin other galaxies. Five years later he announ
ed the re
ession of galaxies.)These two assumptions were, however, not 
ompatible with Einstein's original �eld equations.For this reason, Einstein added the famous �-term, whi
h is 
ompatible with the prin
iples of gen-
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al Constant Problems 5eral relativity, in parti
ular with the energy-momentum law r�T�� = 0 for matter. The modi�ed�eld equations in standard notation (see, e.g., [15℄) and signature (+���) areG�� = 8�GT�� +�g�� : (1)For the stati
 Einstein universe these equations imply the two relations8�G� = 1a2 = �; (2)where � is the mass density of the dust �lled universe (zero pressure) and a is the radius of
urvature. (We remark, in passing, that the Einstein universe is the only stati
 dust solution; onedoes not have to assume isotropy or homogeneity. Its instability was demonstrated by Lemâ�tre in1927.) Einstein was very pleased by this dire
t 
onne
tion between the mass density and geometry,be
ause he thought that this was in a

ord with Ma
h's philosophy. (His enthusiasm for what he
alled Ma
h's prin
iple later de
reased. In a letter to F.Pirani he wrote in 1954: \As a matter offa
t, one should no longer speak of Ma
h's prin
iple at all. (Von dem Ma
hs
hen Prinzip sollteman eigentli
h �uberhaupt ni
ht mehr spre
hen".) [4℄)In the same year, 1917, de Sitter dis
overed a 
ompletely di�erent stati
 
osmologi
al modelwhi
h also in
orporated the 
osmologi
al 
onstant, but was anti-Ma
hian, be
ause it 
ontained nomatter [5℄. The model had one very interesting property: For light sour
es moving along stati
 worldlines there is a gravitational redshift, whi
h be
ame known as the de Sitter e�e
t. This was thoughtto have some bearing on the redshift results obtained by Slipher. Be
ause the fundamental (stati
)worldlines in this model are not geodesi
, a freely- falling parti
le released by any stati
 observer willbe seen by him to a

elerate away, generating also lo
al velo
ity (Doppler) redshifts 
orrespondingto pe
uliar velo
ities. In the se
ond edition of his book [6℄, published in 1924, Eddington writesabout this:\de Sitter's theory gives a double explanation for this motion of re
ession; �rst thereis a general tenden
y to s
atter (...); se
ond there is a general displa
ement of spe
trallines to the red in distant obje
ts owing to the slowing down of atomi
 vibrations (...),whi
h would erroneously be interpreted as a motion of re
ession."I do not want to enter into all the 
onfusion over the de Sitter universe. This has been des
ribedin detail elsewhere (see, e.g., [7℄). An important dis
ussion of the redshift of galaxies in de Sitter'smodel by H. Weyl [8℄ in 1923 should, however, be mentioned. Weyl introdu
ed an expanding versionof the de Sitter model1. For small distan
es his result redu
ed to what later be
ame known as theHubble law.Until about 1930 almost everybody knew that the Universe was stati
, in spite of the twofundamental papers by Friedmann [9℄ in 1922 and 1924 and Lemâ�tre's independent work [10℄ in1927. These path breaking papers were in fa
t largely ignored. The history of this early period has {as is often the 
ase { been distorted by some widely read do
uments. Einstein too a

epted the ideaof an expanding Universe only mu
h later. After the �rst paper of Friedmann, he published a briefnote 
laiming an error in Friedmann's work; when it was pointed out to him that it was his error,Einstein published a retra
tion of his 
omment, with a senten
e that lu
kily was deleted beforepubli
ation: \[Friedmann's paper℄ while mathemati
ally 
orre
t is of no physi
al signi�
an
e". In
omments to Lemâ�tre during the Solvay meeting in 1927, Einstein again reje
ted the expandinguniverse solutions as physi
ally una

eptable. A

ording to Lemâ�tre, Einstein was telling him:\Vos 
al
uls sont 
orre
ts, mais votre physique est abominable". On the other hand, I found in the1I re
all that the de Sitter model has many di�erent interpretations, depending on the 
lass of fundamentalobservers that is singled out.
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ar�ear
hive of the ETH many years ago a post
ard of Einstein to Weyl from 1923 with the followinginteresting senten
e: \If there is no quasi-stati
 world, then away with the 
osmologi
al term". Thisshows on
e more that history is not as simple as it is often presented.It also is not well-known that Hubble interpreted his famous results on the redshift of theradiation emitted by distant `nebulae' in the framework of the de Sitter model. He wrote:\The outstanding feature however is that the velo
ity-distan
e relation may representthe de Sitter e�e
t and hen
e that numeri
al data may be introdu
ed into the dis
ussionof the general 
urvature of spa
e. In the de Sitter 
osmology, displa
ements of the spe
traarise from two sour
es, an apparent slowing down of atomi
 vibrations and a tenden
yto s
atter. The latter involves a separation and hen
e introdu
es the element of time.The relative importan
e of the two e�e
ts should determine the form of the relationbetween distan
es and observed velo
ities."However, Lemâ�tre's su

essful explanation of Hubble's dis
overy �nally 
hanged the viewpointof the majority of workers in the �eld. At this point Einstein reje
ted the 
osmologi
al term assuper
uous and no longer justi�ed [11℄. He published his new view in the Sitzungsberi
hte derPreussis
hen Akademie der Wissens
haften. The 
orre
t 
itation is:Einstein. A. (1931). Sitzungsber. Preuss. Akad. Wiss. 235-37.Many authors have quoted this paper but never read it. As a result, the quotations gradually
hanged in an interesting, quite systemati
 fashion. Some steps are shown in the following sequen
e:- A. Einstein. 1931. Sitzsber. Preuss. Akad. Wiss. ...- A. Einstein. Sitzber. Preuss. Akad. Wiss. ... (1931)- A. Einstein (1931). Sber. preuss. Akad. Wiss. ...- Einstein. A .. 1931. Sb. Preuss. Akad. Wiss. ...- A. Einstein. S.-B. Preuss. Akad. Wis. ...1931- A. Einstein. S.B. Preuss. Akad. Wiss. (1931) ...- Einstein, A., and Preuss, S.B. (1931). Akad. Wiss. 235Presumably, one day some historian of s
ien
e will try to �nd out what happened with theyoung physi
ist S.B. Preuss, who apparently wrote just one important paper and then disappearedfrom the s
ene.Einstein repeated his new standpoint mu
h later [12℄, and this was also adopted by manyother in
uential workers, e.g., by Pauli [13℄. Whether Einstein really 
onsidered the introdu
tionof the �-term as \the biggest blunder of his life" appears doubtful to me. In his published workand letters I never found su
h a strong statement. Einstein dis
arded the 
osmologi
al term justfor simpli
ity reasons. For a minority of 
osmologists (O.He
kmann, for example [14℄), this was notsuÆ
ient reason.After the �-for
e was reje
ted by its inventor, other 
osmologists, like Eddington, retained it.One major reason was that it solved the problem of the age of the Universe when the Hubble times
ale was thought to be only 2 billion years (
orresponding to the value H0 � 500 km s�1Mp
�1of the Hubble 
onstant). This was even shorter than the age of the Earth. In addition, Eddingtonand others overestimated the age of stars and stellar systems.
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al Constant Problems 7For this reason, the �-term was employed again and a model was revived whi
h Lemâ�trehad singled out from the many solutions of the Friedmann-Lemâ�tre equations2. This so-
alledLemâ�tre hesitation universe is 
losed and has a repulsive �-for
e (� > 0), whi
h is slightly greaterthan the value 
hosen by Einstein. It begins with a big bang and has the following two stages ofexpansion. In the �rst the �-for
e is not important, the expansion is de
elerated due to gravityand slowly approa
hes the radius of the Einstein universe. At about the same time, the repulsionbe
omes stronger than gravity and a se
ond stage of expansion begins whi
h eventually in
atesinto a whimper. In this way a positive � was employed to re
on
ile the expansion of the Universewith the age of stars.The repulsive e�e
t of a positive 
osmologi
al 
onstant 
an be seen from the following 
onse-quen
e of Einstein's �eld equations for the time-dependent s
ale fa
tor a(t):�a = �4�G3 (�+ 3p)a+ �3 a; (3)where p is the pressure of all forms of matter.Histori
ally, the Newtonian analog of the 
osmologi
al term was regarded by Einstein, Weyl,Pauli, and others as a Yukawa term. This is not 
orre
t, as I now show.For a better understanding of the a
tion of the �-term it may be helpful to 
onsider a generalstati
 spa
etime with the metri
 (in adapted 
oordinates)ds2 = '2dt2 + gikdxidxk ; (4)where ' and gik depend only on the spatial 
oordinate xi. The 
omponent R00 of the Ri

i tensoris given by R00 = ��'=', where �� is the three-dimensional Lapla
e operator for the spatial metri
�gik in (4) (see,e.g., [15℄). Let us write Eq. (1) in the formG�� = �(T�� + T�)�� (� = 8�G); (5)with T��� = �8�Gg�� : (6)This has the form of the energy-momentum tensor of an ideal 
uid, with energy density �� =�=8�G and pressure p� = ���. For an ideal 
uid at rest Einstein's �eld equation implies1' ��' = 4�Gh(�+ 3p) + (�� + 3p�)| {z }�2�� i: (7)Sin
e the energy density and the pressure appear in the 
ombination � + 3p, we understand thata positive �� leads to a repulsion (as in (3)). In the Newtonian limit we have ' ' 1 + � (� :Newtonian potential) and p� �, hen
e we obtain the modi�ed Poisson equation�� = 4�G(�� 2��): (8)This is the 
orre
t Newtonian limit.As a result of revised values of the Hubble parameter and the development of the moderntheory of stellar evolution in the 1950s, the 
ontroversy over ages was resolved and the �-termbe
ame again unne
essary. (Some tension remained for values of the Hubble parameter at thehigher end of re
ent determinations.)2I re
all that Friedmann in
luded the �-term in his basi
 equations. I �nd it remarkable that for the negatively
urved solutions he pointed out that these may be open or 
ompa
t (but not simply 
onne
ted).
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ar�eHowever, in 1967 it was revived again in order to explain why quasars appeared to have red-shifts that 
on
entrated near the value z = 2. The idea was that quasars were born in the hesitationera [16℄. Then quasars at greatly di�erent distan
es 
an have almost the same redshift, be
ause theuniverse was almost stati
 during that period. Other arguments in favor of this interpretation werebased on the following pe
uliarity. When the redshifts of emission lines in quasar spe
tra ex
eed1.95, then redshifts of absorption lines in the same spe
tra were, as a rule, equal to 1.95. Thiswas then quite understandable, be
ause quasar light would most likely have 
rossed interveninggalaxies during the epo
h of suspended expansion, whi
h would result in almost identi
al redshiftsof the absorption lines. However, with more observational data eviden
e for the �-term dispersedfor the third time.Let me 
on
lude this histori
al review with a few remarks on the quantum aspe
t of the �-problem. Sin
e quantum physi
ists had so many other problems, it is not astonishing that in theearly years they did not worry about this subje
t. An ex
eption was Pauli, who wondered in theearly 1920s whether the zero-point energy of the radiation �eld 
ould be gravitationally e�e
tive.As ba
kground I re
all that Plan
k had introdu
ed the zero-point energy with somewhatstrange arguments in 1911. The physi
al role of the zero-point energy was mu
h dis
ussed in thedays of the old Bohr-Sommerfeld quantum theory. From Charly Enz and Armin Thellung { Pauli'slast two assistants { I have learned that Pauli had dis
ussed this issue extensively with O.Sternin Hamburg. Stern had 
al
ulated, but never published, the vapor pressure di�eren
e between theisotopes 20 and 22 of Neon (using Debye theory). He 
ame to the 
on
lusion that without zero-point energy this di�eren
e would be large enough for easy separation of the isotopes, whi
h is notthe 
ase in reality. These 
onsiderations penetrated into Pauli's le
tures on statisti
al me
hani
s[17℄ (whi
h I attended). The theme was taken up in an arti
le by Enz and Thellung [18℄. This wasoriginally written as a birthday gift for Pauli, but be
ause of Pauli's early death, appeared in amemorial volume of Helv.Phys.A
ta.>From Pauli's dis
ussions with Enz and Thellung we know that Pauli estimated the in
uen
eof the zero-point energy of the radiation �eld { 
ut o� at the 
lassi
al ele
tron radius { on theradius of the universe, and 
ame to the 
on
lusion that it \
ould not even rea
h to the moon".When, as a student, I heard about this, I 
he
ked Pauli's unpublished3 remark by doing thefollowing little 
al
ulation:In units with ~ = 
 = 1 the va
uum energy density of the radiation �eld is< � >va
= 8�(2�)3 Z !max0 !2!2d! = 18�2!4max;with !max = 2��max = 2�me� :The 
orresponding radius of the Einstein universe in Eq.(2) would then be (Mpl � 1=pG)a = �2(2�) 23 Mplme 1me � 31km:This is indeed less than the distan
e to the moon. (It would be more 
onsistent to use the 
urvatureradius of the stati
 de Sitter solution; the result is the same, up to the fa
tor p3.)For de
ades nobody else seems to have worried about 
ontributions of quantum 
u
tuationsto the 
osmologi
al 
onstant. As far as I know, Zel'dovi
h was the �rst who 
ame ba
k to thisissue in two papers [19℄ during the third renaissan
e period of the �-term, but before the advent3A tra
e of this is in Pauli's Handbu
h arti
le [20℄ on wave me
hani
s in the se
tion where he dis
usses themeaning of the zero-point energy of the quantized radiation �eld.
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al Constant Problems 9of spontaneously broken gauge theories. The following remark by him is parti
ularly interesting.Even if one assumes 
ompletely ad ho
 that the zero-point 
ontributions to the va
uum energydensity are exa
tly 
an
elled by a bare term (see eq.(29) below), there still remain higher-ordere�e
ts. In parti
ular, gravitational intera
tions between the parti
les in the va
uum 
u
tuationsare expe
ted on dimensional grounds to lead to a gravitational self-energy density of order G�6,where � is some 
ut-o� s
ale. Even for � as low as 1 GeV (for no good reason) this is about 9orders of magnitude larger than the observational bound (dis
ussed later).3 Va
uum 
u
tuations, va
uum energyWithout gravity, we do not 
are about the absolute energy of the va
uum, be
ause only energydi�eren
es matter. In parti
ular, di�eren
es of va
uum energies are relevant in many instan
es,whenever a system is studied under varying external 
onditions. A beautiful example is the Casimire�e
t [21℄. In this 
ase the presen
e of the 
ondu
ting plates modi�es the va
uum energy density in amanner whi
h depends on the separation of the plates. This implies an attra
tive for
e between theplates. Pre
ision experiments have re
ently 
on�rmed the theoreti
al predi
tion to high a

ura
y(for a re
ent review, see [22℄). We shall 
onsider other important examples, but begin with a verysimple one whi
h illustrates the main point.3.1 A simpli�ed model for the van der Waals for
eRe
all �rst how the zero-point energy of the harmoni
 os
illator 
an be understood on the basisof the 
anoni
al 
ommutation relations [q; p℄ = i. These prevent the simultaneous vanishing of thetwo terms in the Hamiltonian H = 12mp2 + 12m!2q2: (9)The lowest energy state results from a 
ompromise between the potential and kineti
 energies,whi
h vary oppositely as fun
tions of the width of the wave fun
tion. One understands in this waywhy the ground state has an absolute energy whi
h is not zero (zero-point-energy !=2).Next, we 
onsider two identi
al harmoni
 os
illators separated by a distan
e R, whi
h areharmoni
ally 
oupled by the dipole-dipole intera
tion energy e2R3 q1q2. With a simple 
anoni
altransformation we 
an de
ouple the two harmoni
 os
illators and �nd for the frequen
ies of thede
oupled ones !2i = !2 � e2m 1R3 , and thus for the ground state energyE0(R) = 12(!1 + !2) � ! � e48!3R6 :The se
ond term on the right depends on R and gives the van der Waals for
e (whi
h vanishes for~! 0).3.2 Va
uum 
u
tuations for the free radiation �eldSimilar phenomena arise for quantized �elds. We 
onsider, as a simple example, the free quantizedele
tromagneti
 �eld F��(x). For this we have for the equal times 
ommutators the followingnontrivial one (Jordan and Pauli [23℄):hEi(x); Bjk(x0)i = i�Æij ��xk � Æik ��xj �Æ(3)(x� x0) (10)(all other equal time 
ommutators vanish); here B12 = B3, and 
y
li
. This basi
 
ommutationrelation prevents the simultaneous vanishing of the ele
tri
 and magneti
 energies. It follows that



10 N. Straumann S�eminaire Poin
ar�ethe ground state of the quantum �eld (the va
uum) has a non-zero absolute energy, and that thevarian
es of E and B in this state are nonzero. This is, of 
ourse, a quantum e�e
t.In the S
hr�odinger pi
ture the ele
tri
 �eld operator has the expansionE(x) = 1(2�)3=2 Z d3kp2!(k)X� hi!(k)a(k; �)�(k; �) exp(ik � x) + h:
:i: (11)(We use Heaviside units and always set ~ = 
 = 1.)Clearly, < E(x) >va
= 0:The expression < E2(x) >va
 is not meaningful. We smear E(x) with a real test fun
tion f :Ef (x) = Z E(x+ x0)f(x0)d3x0= 1(2�)3=2 Z d3kp2!(k)X� hi!(k)a(k; �)�(k; �) exp(ik � x)f̂(k) + h:
:i;where f̂(k) = Z f(x) exp(ik � x) d3x:It follows immediately that < E2f (x) >= 2 Z d3k(2�)3 !2 jf̂(k)j2:For a sharp momentum 
uto� f̂(k) = �(K � jkj), we have< E2f (x) >va
= 12�2 Z K0 !3d! = K48�2 : (12)The va
uum energy density for jkj � K is�va
 = 12 < E2 +B2 >va
=< E2 >va
= K48�2 : (13)Again, without gravity we do not 
are, but as in the example above, this va
uum energy den-sity be
omes interesting when we 
onsider varying external 
onditions. This leads us to the nextexample.3.3 The Casimir e�e
tThis well-known instru
tive example has already been mentioned. Let us 
onsider the simple 
on�g-uration of two large parallel perfe
tly 
ondu
ting plates, separated by the distan
e d. The va
uumenergy per unit surfa
e of the 
ondu
tor is, of 
ourse, divergent and we have to introdu
e someintermediate regularization. Then we must subtra
t the free value (without the plates) for the samevolume. Removing the regularization afterwards, we end up with a �nite d-dependent result.Let me give for this simple example the details for two di�erent regularization s
hemes. If theplates are parallel to the (x1; x2)-plane, the va
uum energy per unit surfa
e is (formally):Eva
 = 1Xl=0 ZR2hk21 + k22 + ( l�d )2i1=2 d2k(2�)2 : (14)
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al Constant Problems 11In the �rst regularization we repla
e the frequen
ies ! of the allowed modes (the square roots inEq.(13)) by ! exp(���!), with a parameter �. A polar integration 
an immediately be done, andwe obtain (leaving out the l = 0 term, whi
h does not 
ontribute after subtra
tion of the free 
ase):Eregva
 = �24 1Xl=1( ld )3 Z 10 exp(�� ldp1 + z)p1 + zdz= �24 �3��3 1Xl=1 Z 10 exp(�� ldp1 + z) dz1 + z :In the last expression the sum is just a geometri
al series. After 
arrying out one di�erentiationthe integral 
an easily been done, with the resultEregva
 = �22d �2��2 d=�e�=d � 1 : (15)Here we use the well-known formula xex � 1 = 1Xn=0 Bnn! xn; (16)where the Bn are the Bernoulli numbers. It is then easy to perform the renormalization (subtra
tionof the free 
ase). Removing afterwards the regularization (�! 0) gives the renormalized result:Erenva
 = ��2d3 B44! = � �2720 1d3 : (17)The 
orresponding for
e per unit area isF = � �2240 1d4 = � 0:013(d(�m))4 dyn=
m2: (18)Next, I des
ribe the �-fun
tion regularization. This method has found many appli
ations inquantum �eld theory, and is parti
ularly simple in the present example.Let me �rst re
all the de�nition of the �-fun
tion belonging to a selfadjoint operator A witha purely dis
rete spe
trum, A =Pn �nPn, where the �n are the eigenvalues and Pn the proje
torson their eigenspa
es with dimension gn. By de�nition�A(s) =Xn gn�sn : (19)Assume that A is positive and that the tra
e of A 12 exists, thenTrA 12 = �A(�1=2): (20)Formally, the sum (13) is { up to a fa
tor 2 { the tra
e (19) for A = ��, where � is the Lapla
eoperator for the region between the two plates with the boundary 
onditions imposed by the ideally
ondu
ting plates. (Re
all that the term with l = 0 is irrelevant.) Sin
e this tra
e does not exist,we pro
eed as follows (�- fun
tion regularization): Use that �A(s) is well-de�ned for <s > 2 andthat it 
an analyti
ally be 
ontinued to some region with <s < 2 in
luding s = �1=2 (see below),we 
an de�ne the regularized tra
e by Eq.(19).
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ar�eThe short 
al
ulation involves the following steps. For s > 2 we have���(s) = 2 1Xl=1 ZR2 1hk21 + k22 + ( l�d )2is d2k(2�)2 (21)= 12� �(s� 1)�(s) �R(2s� 2)(�d )2(1�s); (22)where �R(s) is the �-fun
tion of Riemann. For the analyti
 
ontinuation we make use of the well-known formula �R(1� s) = 1(2�)s 2�(s) 
os(�s2 )�R(s) (23)and �nd ���(�1=2) = � �2360 1d3 : (24)This gives the result (16).For a mathemati
ian this must look like bla
k magi
, but that's the kind of things physi
istsare doing to extra
t physi
ally relevant results from mathemati
ally ill-de�ned formalisms.One 
an similarly work out the other 
omponents of the energy-momentum tensor, with theresult < T�� >va
= �2720 1d4 diag(�1; 1; 1;�3): (25)This 
an a
tually be obtained without doing additional 
al
ulations, by using obvious symmetriesand general properties of the energy-momentum tensor.By now the literature related to the Casimir e�e
t is enormous. For further information werefer to the re
ent book [24℄.3.4 Radiative 
orre
tions to Maxwell's equationsAnother very interesting example of a va
uum energy e�e
t was �st dis
ussed by Heisenberg andEuler [25℄ , and later by Weisskopf [26℄.When quantizing the ele
tron-positron �eld one also en
ounters an in�nite va
uum energy (the energy of the Dira
 sea): E0 = �Xp;� "(�)p;� ;where �"(�)p;� are the negative frequen
ies of the solutions the Dira
 equation. Note that E0 isnegative, whi
h already early gave rise to the hope that perhaps fermioni
 and bosoni
 
ontribu-tions might 
ompensate. Later, we learned that this indeed happens in theories with unbrokensupersymmetries. The 
onstant Eo itself again has no physi
al meaning. However, if an externalele
tromagneti
 �eld is present, the energy levels "(�)p;� will 
hange. These 
hanges are �nite andphysi
ally signi�
ant, in that they alter the equations for the ele
tromagneti
 �eld in va
uum.The main steps whi
h lead to the 
orre
tion L0 of Maxwell's Lagrangian Lo = � 14F��F�� arethe following ones (for details see [27℄):First one shows (Weisskopf) thatL0 = �hE0 � E0jE=B=0i:
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al Constant Problems 13After a 
harge renormalization, whi
h ensures that L0 has no quadrati
 terms, one arrives at a�nite 
orre
tion. For almost homogeneous �elds it is a fun
tion of the invariantsF = 14F��F�� = 12(B2 �E2); (26)G2 = �14F ���F���2 = (E �B)2: (27)In [27℄ this fun
tion is given in terms of a 1-dimensional integral. For weak �elds one �ndsL0 = 2�245m4 h(E2 �B2)2 + 7(E � B)2i+ � � �: (28)An alternative eÆ
ient method to derive this result again makes use of the �-fun
tion regu-larization (see, e.g., [28℄).For other 
u
tuation-indu
ed for
es, in parti
ular in 
ondensed matter physi
s, I refer to thereview arti
le [29℄.4 Va
uum energy and gravityWhen we 
onsider the 
oupling to gravity, the va
uum energy density a
ts like a 
osmologi
al
onstant. In order to see this, �rst 
onsider the va
uum expe
tation value of the energy-momentumtensor in Minkowski spa
etime. Sin
e the va
uum state is Lorentz invariant, this expe
tation valueis an invariant symmetri
 tensor, hen
e proportional to the metri
 tensor. For a 
urved metri
 thisis still the 
ase, up to higher 
urvature terms:< T�� >va
= g���va
 + higher 
urvature terms: (29)The e�e
tive 
osmologi
al 
onstant, whi
h 
ontrols the large s
ale behavior of the Universe, is givenby � = 8�G�va
 +�0; (30)where �0 is a bare 
osmologi
al 
onstant in Einstein's �eld equations.We know from astronomi
al observations dis
ussed later in Se
t. 5 and 6 that �� � �=8�G
an not be larger than about the 
riti
al density:�
rit = 3H208�G= 1:88� 10�29h20g
m�3 (31)= 8� 10�47h20GeV4;where h0 is the redu
ed Hubble parameterh0 = H0=(100kms�1Mp
�1) (32)and is 
lose to 0.6 [30℄.It is a 
omplete mystery as to why the two terms in (29) should almost exa
tly 
an
el. Thisis { more pre
isely stated { the famous �-problem. It is true that we are unable to 
al
ulate theva
uum energy density in quantum �eld theories, like the Standard Model of parti
le physi
s. Butwe 
an attempt to make what appear to be reasonable order-of-magnitude estimates for the various
ontributions. This I shall des
ribe in the remainder of this se
tion. The expe
tations will turn outto be in giganti
 
on
i
t with the fa
ts.
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ar�eSimple estimates of va
uum energy 
ontributionsIf we take into a

ount the 
ontributions to the va
uum energy from va
uum 
u
tuations in the�elds of the Standard Model up to the 
urrently explored energy, i.e., about the ele
troweak s
aleMF = G�1=2F � 300GeV (GF : Fermi 
oupling 
onstant), we 
annot expe
t an almost 
omplete
an
ellation, be
ause there is no symmetry prin
iple in this energy range that 
ould require this.The only symmetry prin
iple whi
h would imply this is supersymmetry, but supersymmetry isbroken (if it is realized in nature). Hen
e we 
an at best expe
t a very imperfe
t 
an
ellation belowthe ele
troweak s
ale, leaving a 
ontribution of the order of M4F . (The 
ontributions at higherenergies may largely 
an
el if supersymmetry holds in the real world.)We would reasonably expe
t that the va
uum energy density is at least as large as the 
on-densation energy density of the QCD phase transition to the broken phase of 
hiral symmetry.Already this is far too large: � �4QCD=16�2 � 10�4GeV4; this is more than 40 orders of magnitudelarger than �
rit. Beside the formation of quark 
ondensates < �qq > in the QCD va
uum whi
hbreak 
hirality, one also expe
ts a gluon 
ondensate < G��a Ga�� >� �4QCD: This produ
es a signi�
ant va
uum energy density as a result of a dilatation anomaly:If ��� denotes the \
lassi
al" tra
e of the energy-momentum tensor, we have [31℄T�� = ��� + �(g3)2g3 G��a Ga�� ; (33)where the se
ond term is the QCD pie
e of the tra
e anomaly (�(g3) is the �-fun
tion of QCD thatdetermines the running of the strong 
oupling 
onstant). I re
all that this arises be
ause a s
aletransformation is no more a symmetry if quantum 
orre
tions are in
luded. Taking the va
uumexpe
tation value of (32), we would again naively expe
t that < ��� > is of the order M4F . Even ifthis should vanish for some unknown reason, the anomalous pie
e is 
osmologi
ally giganti
. Theexpe
tation value < G��a Ga�� > 
an be estimated with QCD sum rules [32℄, and gives< T�� >anom� (350MeV )4; (34)about 45 orders of magnitude larger than �
rit. This reasoning should show 
onvin
ingly that the
osmologi
al 
onstant problem is indeed a profound one. (Note that there is some analogy withthe (mu
h milder) strong CP problem of QCD. However, in 
ontrast to the �-problem, Pe

ei andQuinn [33℄ have shown that in this 
ase there is a way to resolve the 
onundrum.)Let us also have a look at the Higgs 
ondensate of the ele
troweak theory. Re
all that in theStandard Model we have for the Higgs doublet � in the broken phase for < ��� >� 12�2 thepotential V (�) = �12m2�2 + �8�4: (35)Setting as usual � = v +H , where v is the value of � where V has its minimum,v =r2m2� = 2�1=4G�1=2F � 246GeV; (36)we �nd that the Higgs mass is related to � by � =M2H=v2. For � = v we obtain the energy densityof the Higgs 
ondensate V (� = v) = �m42� = � 18p2M2FM2H = O(M4F ): (37)We 
an, of 
ourse, add a 
onstant V0 to the potential (34) su
h that it 
an
els the Higgs va
uumenergy in the broken phase { in
luding higher order 
orre
tions. This again requires an extreme
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al Constant Problems 15�ne tuning. A remainder of only O(m4e), say, would be 
atastrophi
. This remark is also highlyrelevant for models of in
ation and quintessen
e.In attempts beyond the Standard Model the va
uum energy problem so far remains, andoften be
omes even worse. For instan
e, in supergravity theories with spontaneously broken super-symmetry there is the following simple relation between the gravitino mass mg and the va
uumenergy density �va
 = 38�Gm2g :Comparing this with eq.(30) we �nd �va
�
rit ' 10122� mgmPl �2:Even for mg � 1 eV this ratio be
omes 1066. (mg is related to the parameter F 
hara
terizingthe strength of the supersymmetry breaking by mg = (4�G=3)1=2F , so mg � 1 eV 
orresponds toF 1=2 � 100 TeV .)Also string theory has not yet o�ered 
onvin
ing 
lues why the 
osmologi
al 
onstant is soextremely small. The main reason is that a low energy me
hanism is required, and sin
e super-symmetry is broken, one again expe
ts a magnitude of order M4F , whi
h is at least 50 orders ofmagnitude too large (see also [34℄). However, non-supersymmetri
 physi
s in string theory is at thevery beginning and workers in the �eld hope that further progress might eventually lead to anunderstanding of the 
osmologi
al 
onstant problem.I hope I have 
onvin
ed you, that there is something profound that we do not understand atall, 
ertainly not in quantum �eld theory, but so far also not in string theory. ( For other re
entreviews, see also [35℄, [36℄, and [37℄. These 
ontain more extended lists of referen
es.)This is the moment to turn to the astronomi
al and astrophysi
al aspe
ts of our theme. Here,ex
iting progress 
an be reported.5 Luminosity-redshift relation for type Ia supernovasA few years ago the Hubble diagram for type Ia supernovas gave the �rst serious eviden
e foran a

elerating Universe. Before presenting and dis
ussing these ex
iting results we re
all sometheoreti
al ba
kground.5.1 Theoreti
al redshift-luminosity relationIn 
osmology several di�erent distan
e measures are in use. They are all related by simple redshiftfa
tors. The one whi
h is relevant in this Se
tion is the luminosity distan
e DL, de�ned byDL = (L=4�F)1=2; (38)where L is the intrinsi
 luminosity of the sour
e and F the observed 
ux.We want to express this in terms of the redshift z of the sour
e and some of the 
osmologi
alparameters. If the 
omoving radial 
oordinate r is 
hosen su
h that the Friedmann- Lemâ�tre metri
takes the form g = dt2 � a2(t)h dr21� kr2 + r2d
2i; k = 0;�1; (39)then we have Fdt0 = Ldte � 11 + z � 14�(rea(t0))2 :
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ar�eThe se
ond fa
tor on the right is due to the redshift of the photon energy; the indi
es 0; erefer to the present and emission times, respe
tively. Using also 1 + z = a(t0)=a(te), we �nd in a�rst step: DL(z) = a0(1 + z)r(z) (a0 � a(t0)): (40)We need the fun
tion r(z). Fromdz = �a0a _aadt; dt = �a(t) drp1� kr2for light rays, we see that drp1� kr2 = 1a0 dzH(z) (H(z) = _aa): (41)Now, we make use of the Friedmann equationH2 + ka2 = 8�G3 �: (42)Let us de
ompose the total energy-mass density � into nonrelativisti
 (NR), relativisti
 (R), �,quintessen
e (Q), and possibly other 
ontributions� = �NR + �R + �� + �Q + � � � : (43)For the relevant 
osmi
 period we 
an assume that the \energy equation"dda (�a3) = �3pa2 (44)also holds for the individual 
omponents X = NR;R;�; Q; � � � . If wX � pX=�X is 
onstant,thisimplies that �Xa3(1+wX ) = 
onst: (45)Therefore, � =XX (�Xa3(1+wX ))0 1a3(1+wX ) =XX (�X)0(1 + z)3(1+wX): (46)Hen
e the Friedmann equation (41) 
an be written asH2(z)H20 + kH20a20 (1 + z)2 =XX 
X(1 + z)3(1+wX); (47)where 
X is the dimensionless density parameter for the spe
ies X ,
X = (�X)0�
rit : (48)Using also the 
urvature parameter 
K � �k=H20a20, we obtain the useful formH2(z) = H20E2(z; 
K ;
X); (49)with E2(z; 
K ;
X) = 
K(1 + z)2 +XX 
X(1 + z)3(1+wX): (50)
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al Constant Problems 17Espe
ially for z = 0 this gives 
K +
0 = 1; 
0 �XX 
X : (51)If we use (48) in (40), we get Z r(z)0 drp1� r2 = 1H0a0 Z z0 dz0E(z0) (52)and thus r(z) = S(�(z)); (53)where �(z) = j
K j1=2 Z z0 dz0E(z0) (54)and S = 8<: sin� : k = 1� : k = 0sinh� : k = 1: (55)Inserting this in (39) gives �nally the relation we were looking forDL(z) = 1H0DL(z; 
K ;
X); (56)with DL(z; 
K ;
X) = (1 + z) 1j
K j1=2S(j
K j1=2 Z z0 dz0E(z0) ): (57)Note that for a 
at universe, 
K = 0 or equivalently 
0 = 1, the \Hubble-
onstant-free"luminositydistan
e is DL(z) = (1 + z) Z z0 dz0E(z0) : (58)Astronomers use as logarithmi
 measures of L and F the absolute and apparent magnitudes4, denoted by M and m, respe
tively. The 
onventions are 
hosen su
h that the distan
e modulusm�M is related to DL as followsm�M = 5 log� DL1Mp
�+ 25: (59)Inserting the representation (55), we obtain the following relation between the apparent magnitudem and the redshift z: m =M+ 5 logDL(z; 
K ;
X); (60)where, for our purpose,M =M � 5 logH0� 25 is an uninteresting �t parameter. The 
omparisonof this theoreti
al magnitude redshift relation with data will lead to interesting restri
tions for the
osmologi
al 
-parameters. In pra
ti
e often only 
M and 
� are kept as independent parameters,where from now on the subs
ript M denotes (as in most papers) nonrelativisti
 matter.The following remark about degenera
y 
urves in the 
-plane is important in this 
ontext. Fora �xed z in the presently explored interval, the 
ontours de�ned by the equations DL(z; 
M ;
�) =
onst have little 
urvature, and thus we 
an asso
iate an approximate slope to them. For z = 0:44Beside the (bolometri
) magnitudes m;M , astronomers also use magnitudes mB ;mV ; : : : referring to 
ertainwavelength bands B (blue), V (visual), and so on.
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ar�ethe slope is about 1 and in
reases to 1.5-2 by z = 0:8 over the interesting range of 
M and 
�.Hen
e even quite a

urate data 
an at best sele
t a strip in the 
-plane, with a slope in the rangejust dis
ussed. This is the reason behind the shape of the likelihood regions shown later (Fig.2).In this 
ontext it is also interesting to determine the dependen
e of the de
eleration parameterq0 = ��a�a_a2 �0 (61)on 
M and 
�. At an any 
osmi
 time we obtain from (3) and (45)��aa_a2 = 12 1E2(z)XX 
X(1 + z)3(1+wX)(1 + 3wX ): (62)For z = 0 this gives q0 = 12XX 
X(1 + 3wX) = 12(
M � 2
� + � � � ): (63)The line q0 = 0 (
� = 
M=2) separates de
elerating from a

elerating universes at the presenttime. For given values of 
M ;
�, et
, (61) vanishes for z determined by
M (1 + z)3 � 2
� + � � � = 0: (64)This equation gives the redshift at whi
h the de
eleration period ends (
oasting redshift).5.2 Type Ia supernovas as standard 
andlesIt has long been re
ognized that supernovas of type Ia are ex
ellent standard 
andles and arevisible to 
osmi
 distan
es [38℄ (the re
ord is at present at a redshift of about 1.7). At relatively
losed distan
es they 
an be used to measure the Hubble 
onstant, by 
alibrating the absolutemagnitude of nearby supernovas with various distan
e determinations (e.g., Cepheids). There isstill some dispute over these 
alibration resulting in di�eren
es of about 10% for H0. (For a reviewsee, e.g., [30℄.)In 1979 Tammann [39℄and Colgate [40℄ independently suggested that at higher redshifts thissub
lass of supernovas 
an be used to determine also the de
eleration parameter. In re
ent years thisprogram be
ame feasible thanks to the development of new te
hnologies whi
h made it possibleto obtain digital images of faint obje
ts over sizable angular s
ales, and by making use of bigteles
opes su
h as Hubble and Ke
k.There are two major teams investigating high-redshift SNe Ia, namely the `Supernova Cos-mology Proje
t' (SCP) and the `High-Z Supernova sear
h Team' (HZT). Ea
h team has found alarge number of SNe, and both groups have published almost identi
al results. (For up-to-dateinformation, see the home pages [41℄ and [42℄.)Before dis
ussing these, a few remarks about the nature and properties of type Ia SNe shouldbe made. Observationally, they are 
hara
terized by the absen
e of hydrogen in their spe
tra,and the presen
e of some strong sili
on lines near maximum. The immediate progenitors are mostprobably 
arbon-oxygen white dwarfs in 
lose binary systems, but it must be said that these havenot yet been 
learly identi�ed. 5In the standard s
enario a white dwarf a

retes matter from a nondegenerate 
ompanionuntil it approa
hes the 
riti
al Chandrasekhar mass and ignites 
arbon burning deep in its interiorof highly degenerate matter. This is followed by an outward-propagating nu
lear 
ame leadingto a total disruption of the white dwarf. Within a few se
onds the star is 
onverted largely into5This is perhaps not so astonishing, be
ause the progenitors are presumably faint 
ompa
t dwarf stars.



Vol. 1, 2002 On the Cosmologi
al Constant Problems 19ni
kel and iron. The dispersed ni
kel radioa
tively de
ays to 
obalt and then to iron in a fewhundred days. A lot of e�ort has been invested to simulate these 
ompli
ated pro
esses. Clearly,the physi
s of thermonu
lear runaway burning in degenerate matter is 
omplex. In parti
ular, sin
ethe thermonu
lear 
ombustion is highly turbulent, multidimensional simulations are required. Thisis an important subje
t of 
urrent resear
h. (One gets a good impression of the present status fromseveral arti
les in [43℄. See also the re
ent review [44℄.) The theoreti
al un
ertainties are su
h that,for instan
e, predi
tions for possible evolutionary 
hanges are not reliable.It is 
on
eivable that in some 
ases a type Ia supernova is the result of a merging of two 
arbon-oxygen-ri
h white dwarfs with a 
ombined mass surpassing the Chandrasekhar limit. Theoreti
almodelling indi
ates, however, that su
h a merging would lead to a 
ollapse, rather than a SN Iaexplosion. But this issue is still debated.In view of the 
omplex physi
s involved, it is not astonishing that type Ia supernovas arenot perfe
t standard 
andles. Their peak absolute magnitudes have a dispersion of 0.3-0.5 mag,depending on the sample. Astronomers have, however learned in re
ent years to redu
e this disper-sion by making use of empiri
al 
orrelations between the absolute peak luminosity and light 
urveshapes. Examination of nearby SNe showed that the peak brightness is 
orrelated with the times
ale of their brightening and fading: slow de
liners tend to be brighter than rapid ones. Thereare also some 
orrelations with spe
tral properties. Using these 
orrelations it be
ame possibleto redu
e the remaining intrinsi
 dispersion to ' 0:17mag. (For the various methods in use, andhow they 
ompare, see [45℄, and referen
es therein.) Other 
orre
tions, su
h as Gala
ti
 extin
tion,have been applied, resulting for ea
h supernova in a 
orre
ted (rest-frame) magnitude. The redshiftdependen
e of this quantity is 
ompared with the theoreti
al expe
tation given by Eqs.(59) and(56).5.3 ResultsIn Fig.1 the Hubble diagram for the high-redshift supernovas, published by the SCP and HZTteams [46℄, [47℄, [48℄ is shown. All data have been normalized by the same (�m15) method [49℄. Inboth panels the magnitude di�eren
es relative to an empty universe are plotted. The upper panelshows the data for both teams separately. These 
an roughly be summarized by the statement thatdistant supernovas are in the average about 0.20 magnitudes fainter than in an empty Friedmannuniverse. In the lower panel the data are redshift binned, and the result for the very distant SN1999� at z ' 1:7 is also shown.The main result of the analysis is presented in Fig.2. Keeping only 
M and 
� in Eq.(56)( when
e 
K = 1 � 
M � 
�) in the �t to the data of 79 SNe Ia, and adopting the sameluminosity width 
orre
tion method ( �m15) for all of them, it shows the resulting 
on�den
eregions 
orresponding to 68.3%, 95.4%, and 99.7% probability in the (
M ;
�)-plane. Taken at fa
evalue, this result ex
ludes 
� = 0 for values of 
M whi
h are 
onsistent with other observations(e.g., of 
lusters of galaxies). This is 
ertainly the 
ase if a 
at universe is assumed. The probabilityregions are in
lined along 
� � 1:3
M+(0:3�0:2). It will turn out that this information is largely
omplementary to the restri
tions we shall obtain in Se
t.6 from the CMB anisotropies.5.4 Systemati
 un
ertaintiesPossible systemati
 un
ertainties due to astrophysi
al e�e
ts have been dis
ussed extensively inthe literature. The most serious ones are (i) dimming by intergala
ti
 dust, and (ii) evolution ofSNe Ia over 
osmi
 time, due to 
hanges in progenitor mass, metalli
ity, and C/O ratio. I dis
ussthese 
on
erns only brie
y (see also [49℄, [50℄).Con
erning extin
tion, detailed studies show that high-redshift SN Ia su�er little reddening;their B-V 
olors at maximum brightness are normal. However, it 
an a priori not be ex
luded
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Figure 1: Hubble diagram of Type Ia Supernovas minus an empty (
0) Universe 
ompared to
osmologi
al models. All data in the upper panel have been normalized with the same (�m15)method (Leibundgut [49℄). The �lled squares are the data from HZT [47℄, and those of SCP [46℄are shown as open squares. The parameters (
M ;
�) of the 
osmologi
al models are: (1,0) (longdashes), (0,1) (dashed line), (0.3,0.7) (dotted line). In the lower panel the points are redshift-binneddata from both teams [51℄. A typi
al 
urve for grey dust evolution is also shown. In spite of thelarge un
ertainties of SN 1999� at z ' 1:7, simple grey dust evolution seems to be ex
luded.



Vol. 1, 2002 On the Cosmologi
al Constant Problems 21

1.5

1.0

0.5

0

0 0.5 1.0 1.5

2.0

ΩM

Ω
Λ

Figure 2: Likelihood regions in the 
M �
� plane for the data in Fig.1. Contours give the 68.3%,95.4%, and 99.7% statisti
al 
on�den
e regions (adapted from [49℄).
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ar�ethat we see distant SNe through a grey dust with grain sizes large enough as to not imprint thereddening signature of typi
al interstellar extin
tion. One argument against this hypothesis is thatthis would also imply a larger dispersion than is observed. The dis
overy [51℄ of SN 1997� withthe very high redshift z � 1:7 led to the 
on
lusion that its redshift and distan
e estimates arein
onsistent with grey dust. Perhaps this statement is too strong, be
ause a pair of galaxies in theforeground of SN 1997� at z = 0:56 may indu
e a magni�
ation due to gravitational lensing of� 0:3mag [52℄. With more examples of this type the issue 
ould be settled. Eq.(63) shows thatat redshifts z � (2
�=
M )1=3 � 1 ' 1:2 the Universe is de
elerating, and this provides an almostunambiguous signature for �, or some e�e
tive equivalent.The same SN has provided also some eviden
e against a simple luminosity evolution that 
ouldmimi
 an a

elerating Universe. Other empiri
al 
onstraints are obtained by 
omparing subsamplesof low-redshift SN Ia believed to arise from old and young progenitors. It turns out that there isno di�eren
e within the measuring errors, after the 
orre
tion based on the light-
urve shape hasbeen applied. Moreover, spe
tra of high-redshift SNe appear remarkably similar to those at lowredshift. This is very reassuring. On the other hand, there seems to be a trend that more distantsupernovas are bluer. It would, of 
ourse, be helpful if evolution 
ould be predi
ted theoreti
ally,but in view of what has been said earlier, this is not (yet) possible.In 
on
lusion, none of the investigated systemati
 errors appear to re
on
ile the data with
� = 0 and q0 � 0. But further work is ne
essary before we 
an de
lare this as a really establishedfa
t. To improve the observational situation a satellite mission 
alled SNAP (\Supernovas A

el-eration Probe") has been proposed [53℄. A

ording to the plans this satellite would observe about2000 SNe within a year and mu
h more detailed studies 
ould then be performed. For the timebeing some s
epti
ism with regard to the results that have been obtained is not out of pla
e.Finally, I mention a more theoreti
al 
ompli
ation. In the analysis of the data the luminositydistan
e for an ideal Friedmann universe was always used. But the data were taken in the realinhomogeneous Universe. This may not be good enough, espe
ially for high-redshift standard 
an-dles. The simplest way to take this into a

ount is to introdu
e a �lling parameter whi
h, roughlyspeaking, represents matter that exists in galaxies but not in the intergala
ti
 medium. For a
onstant �lling parameter one 
an determine the luminosity distan
e by solving the Dyer-Roederequation. But now one has an additional parameter in �tting the data. For a 
at universe this wasre
ently investigated in [54℄.6 Mi
rowave ba
kground anisotropiesBy observing the 
osmi
 mi
rowave ba
kground (CMB) we 
an dire
tly infer how the Universelooked at the time of re
ombination. Beside its spe
trum, whi
h is Plan
kian to an in
redibledegree [55℄, we also 
an study the temperature 
u
tuations over the \
osmi
 photosphere" at aredshift z � 1100. Through these we get a

ess to 
ru
ial 
osmologi
al information (primordialdensity spe
trum, 
osmologi
al parameters, et
). A major reason for why this is possible relies onthe fortunate 
ir
umstan
e that the 
u
tuations are tiny (� 10�5 ) at the time of re
ombination.This allows us to treat the deviations from homogeneity and isotropy for an extended period oftime perturbatively, i.e., by linearizing the Einstein and matter equations about solutions of theidealized Friedmann-Lemâ�tre models. Sin
e the physi
s is e�e
tively linear, we 
an a

uratelywork out the evolution of the perturbations during the early phases of the Universe, given a setof 
osmologi
al parameters. Confronting this with observations, tells us a lot about the initial
onditions, and thus about the physi
s of the very early Universe. Through this window to theearliest phases of 
osmi
 evolution we 
an, for instan
e, test general ideas and spe
i�
 models ofin
ation.
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al Constant Problems 236.1 On the physi
s of CMBLong before re
ombination (at temperatures T > 6000K, say) photons, ele
trons and baryonswere so strongly 
oupled that these 
omponents may be treated together as a single 
uid. Inaddition to this there is also a dark matter 
omponent. For all pra
ti
al purposes the two intera
tonly gravitationally. The investigation of su
h a two-
omponent 
uid for small deviations froman idealized Friedmann behavior is a well-studied appli
ation of 
osmologi
al perturbation theory.(For the basi
 equations and a detailed analyti
al study, see [56℄ and [57℄.)At a later stage, when de
oupling is approa
hed, this approximate treatment breaks downbe
ause the mean free path of the photons be
omes longer (and �nally `in�nite' after re
ombi-nation). While the ele
trons and baryons 
an still be treated as a single 
uid, the photons andtheir 
oupling to the ele
trons have to be des
ribed by the general relativisti
 Boltzmann equation.The latter is, of 
ourse, again linearized about the idealized Friedmann solution. Together withthe linearized 
uid equations (for baryons and 
old dark matter, say), and the linearized Einsteinequations one arrives at a 
omplete system of equations for the various perturbation amplitudesof the metri
 and matter variables. There exist widely used 
odes [58℄, [59℄ that provide the CMBanisotropies { for given initial 
onditions { to a pre
ision of about 1%.A lot of qualitative and semi-quantitative insight into the relevant physi
s 
an be gained bylooking at various approximations of the `exa
t' dynami
al system. Below I shall dis
uss some ofthe main points. (For well-written papers on this aspe
t I re
ommend [60℄, [61℄.)For readers who want to skip this somewhat te
hni
al dis
ussion and pro
eed dire
tly to theobservational results (Se
t.6.2), the following qualitative remarks may be useful. A 
hara
teristi
s
ale, whi
h is re
e
ted in the observed CMB anisotropies, is the sound horizon at last s
attering,i.e., the distan
e over whi
h a pressure wave 
an propagate until �de
. This 
an be 
omputed withinthe unperturbed model and subtends about one degree on the sky for typi
al 
osmologi
al param-eters. For s
ales larger than this sound horizon the 
u
tuations have been laid down in the veryearly Universe. These have been dete
ted by the COBE satellite. The (brightness) temperatureperturbation � = �T=T (de�ned pre
isely in Eq.(88) below) is dominated by the 
ombinationof the intrinsi
 temperature 
u
tuations and gravitational redshift or blueshift e�e
ts. For exam-ple, photons that have to 
limb out of potential wells for high-density regions are redshifted. InSe
t.6.1.5 it is shown that these e�e
ts 
ombine for adiabati
 initial 
onditions to 13	, where 	is the gravitational Bardeen potential (see Eq.(73)). The latter, in turn, is dire
tly related to thedensity perturbations. For s
ale-free initial perturbations the 
orresponding angular power spe
-trum of the temperature 
u
tuations turns out to be nearly 
at (Sa
hs-Wolfe plateau in Fig.3).The Cl plotted in Fig.3 are de�ned in (109) as the expansion 
oeÆ
ients of the angular 
orrelationfun
tion in terms of Legendre polynomials.On the other hand, inside the sound horizon (for � � �de
), a
ousti
, Doppler, gravitationalredshift, and photon di�usion e�e
ts 
ombine to the spe
trum of small angle anisotropies shownin Fig.3. These result from gravitationally driven a
ousti
 os
illations of the photon-baryon 
uid,whi
h are damped by photon di�usion (Se
t.6.1.4).6.1.1 Cosmologi
al perturbation theoryUnavoidably, the detailed implementation of what has just been outlined is somewhat 
ompli
ated,be
ause we are dealing with quite a large number of dynami
al variables. This is not the pla
e todevelop 
osmologi
al perturbation theory in any detail 6, but I have to introdu
e some of it.6There is by now an extended literature on 
osmologi
al perturbation theory. Beside the re
ent book [62℄, thereview arti
les [63℄, [64℄, and [65℄ are re
ommended. Espe
ially [63℄ is still useful for the general (gauge invari-ant) formalism for multi-
omponent systems. Unpublished le
ture notes by the author [66℄ are planned to be
omeavailable.
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ar�eMode de
ompositionBe
ause we are dealing with slightly perturbed Friedmann spa
etimes we may regard the variousperturbation amplitudes as time dependent fun
tions on a three-dimensional Riemannian spa
e(�; 
) of 
onstant 
urvature K. Sin
e su
h a spa
e is highly symmetri
al we are invited to performtwo types of de
ompositions.In a �rst step we split the perturbations into s
alar, ve
tor, and tensor 
ontributions. This isbased on the following de
ompositions of ve
tor and symmetri
 tensor �elds on � : A ve
tor �eld� is a unique sum of a gradient and a ve
tor �eld �� with vanishing divergen
e,� = �� +rf; r � �� = 0: (65)(If � is non
ompa
t we have to impose some fall-o� 
onditions.) The �rst pie
e �� is the `ve
tor'part, and rf is the `s
alar' part of �. This is a spe
ial 
ase of the Hodge de
omposition fordi�erential forms. For a symmetri
 tensor �eld Sij we have 
orrespondingly :Sij = S(s
alar)ij + S(ve
tor)ij + S(tensor)ij ; (66)with S(s
alar)ij = 
ijSkk + (rirj � 13
ij�)f; (67)S(ve
tor)ij = ri�j +rj�i; (68)with rk�k = 0, and where S(tensor)ij is a symmetri
 tensor �eld with vanishing tra
e and zerodivergen
e.The main point is that these de
ompositions respe
t the 
ovariant derivative r on (�; 
). Forexample, if we apply the Lapla
ian on (64) we readily obtain�� = ��� +r(�f + 2Kf);and here the �rst term has vanishing divergen
e. For this reason the di�erent 
omponents in theperturbation equations do not mix.In a se
ond step we 
an perform a harmoni
 de
omposition, in expanding all amplitudes interms of generalized spheri
al harmoni
s on (�; 
). For K = 0 this is just Fourier analysis. Againthe various modes do not mix, and very importantly, the perturbation equations be
ome for ea
hmode ordinary di�erential equations. (From the Boltzmann equation we get an in�nite hierar
hy;see below.)Gauge transformations, gauge invariant amplitudesIn general relativity the di�eomorphism group of spa
etime is an invarian
e group. This meansthat the physi
s is not 
hanged if we repla
e the metri
 g and all the matter variables simultane-ously by their di�eomorphi
ally transformed obje
ts. For small amplitude departures from someunperturbed situation, g = g(0) + Æg, et
., this implies that we have the gauge freedomÆg �! Æg + L�g(0); et
:; (69)where L� is the Lie derivative with respe
t to any ve
tor �eld �. Sets of metri
 and matter pertur-bations whi
h di�er by Lie derivatives of their unperturbed values are physi
ally equivalent. Su
hgauge transformations indu
e 
hanges in the various perturbation amplitudes. It is 
learly desirableto write all independent perturbation equations in a manifestly gauge invariant manner. Then onegets rid of uninteresting gauge modes, and misinterpretations of the formalism are avoided.
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al Constant Problems 25Let me show how this works for the metri
. The most general s
alar perturbation Æg of theFriedmann metri
 g(0) = dt2 � a2(t)
 = a2(t)hd�2 � 
i (70)
an be parameterized as followsÆg = 2a2(�)hAd�2 +B;idxid� � (D
ij +Ejij)dxidxji: (71)The fun
tions A(�; xi); B;D;E are the s
alar perturbation amplitudes; Ejij denotes the se
ond
ovariant derivative rirjE on (�; 
). It is easy to work out how A;B;D;E 
hange under a gaugetransformation (68) for a ve
tor �eld � of `s
alar' type: � = �0�0+ �i�i; with �i = 
ij�jj . From theresult one 
an see that the following Bardeen potentials [63℄	 = A� 1aha(B +E0)i0; (72)� = D �H(B +E0) (73)are gauge invariant. Here, a prime denotes the derivative with respe
t to the 
onformal time �, andH = a0=a. The potentials 	 and � are the only independent gauge invariant metri
 perturbationsof s
alar type. One 
an always 
hose the gauge su
h that only the A and D terms in (70) arepresent. In this so-
alled longitudinal or 
onformal Newtonian gauge we have 	 = A;� = D, hen
ethe metri
 be
omes g = a2(�)h(1 + 2	)d�2 � (1 + 2�)
ijdxidxji: (74)Boltzmann hierar
hyBoltzmann's des
ription of kineti
 theory in terms of a one parti
le distribution fun
tion �nds anatural setting in general relativity. The metri
 indu
es a di�eomorphism between the tangentbundle TM and the 
otangent bundle T �M over the spa
etime manifold M . With this the stan-dard symple
ti
 form on T �M 
an be pulled ba
k to TM . In natural bundle 
oordinates thedi�eomorphism is: (x�; p�) 7! (x�; p� = g��p�) , hen
e the symple
ti
 form on TM is given by!g = dx� ^ d(g��p�): (75)The geodesi
 spray is the Hamiltonian ve
tor �eld Xg on (TM;!g) belonging to the \Hamiltonianfun
tion" L = 12g��p�p� . Thus, in standard notation,i(Xg) !g = dL: (76)In bundle 
oordinates Xg = p� ��x� � ����p�p� ��p� : (77)The integral 
urves of this ve
tor �eld satisfy the 
anoni
al equationsdx�d� = p�; (78)dp�d� = �����p�p�: (79)The geodesi
 
ow is the 
ow of Xg. The Liouville volume form 
g is proportional to thefourfold wedge produ
t of !g, and has the bundle 
oordinate expression
g = (�g)dx0123 ^ dp0123; (80)



26 N. Straumann S�eminaire Poin
ar�ewhere dx0123 � dx0 ^ dx1 ^ dx2 ^ dx3, et
. .The one-parti
le phase spa
e for parti
les of mass m is the submanifold �m = fv 2 TM jg(v; v) = m2g of TM . This is invariant under the geodesi
 
ow. The restri
tion of Xg to �m willalso be denoted by Xg . 
g indu
es a volume form 
m on �m, whi
h is remains invariant under Xg,thus LXg
m = 0. A simple 
al
ulation shows that 
m = � ^ �m, where � is the standard volumeform of (M; g), � = p�gdx0123, and �m = p�gdp123=p0; p0 being determined by g��p�p� = m2.Let f be a distribution fun
tion on �m. The parti
le number 
urrent density isn�(x) = ZPm(x) fp��m; (81)where Pm(x) is the �ber over x in �m (all momenta with g(p; p) = m2). Similarly, the energy-momentum tensor is T�� = Z fp�p��m: (82)One 
an show that r�n� = ZPm(LXgf)�m; (83)and r�T�� = ZPm p�(LXgf)�m: (84)The Boltzmann equation has the formLXgf = C[f ℄; (85)where C[f ℄ is the 
ollision term. If this is (for instan
e) inserted into (83), we get an expressionfor the divergen
e of T�� in terms of a 
ollision integral. For 
ollisionless parti
les (neutrinos) thisvanishes, of 
ourse.Turning to perturbation theory, we set again f = f (0) + Æf , where f (0) is the unperturbeddistribution fun
tion of the Friedmann model. For the perturbation Æf we 
hoose as independentvariables �; xi; q; 
j , where q is the magnitude and the 
j the dire
tional 
osines of the momentumve
tor relative to an orthonormal triad �eld êi(i = 1; 2; 3) of the unperturbed spatial metri
 
 on�. >From now on we 
onsider always the massless 
ase (photons). By investigating the gaugetransformation behavior of Æf [67℄ one 
an de�ne a gauge invariant perturbation F whi
h redu
esin the longitudinal gauge to Æf (there are other 
hoi
es possible [67℄), and derive with some e�ortthe following linearized Boltzmann equation for photons:(�� + 
iêi)F � �̂ijk
j
k �F�
i � qh�0 + 
iêi	i�f (0)�q =axene�T h< F > �F � q �f (0)�q 
iêiVb + 34Qij
i
ji: (86)On the left, the �̂ijk denote the Christo�el symbols of (�; 
) relative to the triad êi. On the right,xene is the unperturbed free ele
tron density (xe = ionization fra
tion), �T the Thomson 
rossse
tion, and Vb the gauge invariant s
alar velo
ity perturbation of the baryons. Furthermore, wehave introdu
ed the spheri
al averages< F > = 14� ZS2 Fd

 ; (87)Qij = 14� ZS2 [
i
j � 13Æij ℄Fd

 : (88)
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al Constant Problems 27In our appli
ations to the CMB we work with the gauge invariant brightness temperatureperturbation �(�; xi; 
j) = Z Fq3dq . 4 Z f (0)q3dq: (89)(The fa
tor 4 is 
hosen be
ause of the Stephan-Boltzmann law, a

ording to whi
h Æ�=� = 4ÆT=T:)It is simple to translate (85) to the following equation for �(� +	)0 + 
iêi(� +	)� �̂ijk
j
k ��
i (� +	) =(	0 � �0) + _� (�0 ��+ 
iêiVb + 116
i
j�ij); (90)with _� = xene�T a=a0; �0 =< � > (spheri
al average),112�ij = 14� Z [
i
j � 13Æij ℄� d

 : (91)Let me from now on spe
ialize to the spatially 
at 
ase (K = 0). In a mode de
omposition(Fourier analysis of the xi-dependen
e), and introdu
ing the brightness moments �l(�) by�(�; ki; 
j) = 1Xl=0(�i)l�l(�; k)Pl(�); � = k̂ � 
; (92)we obtain �0 + ik�(� +	) = ��0 + _� [�0 ��� i�Vb � 110�2P2(�)℄: (93)It is now straightforward to derive from the last two equations the following hierar
hy of ordinarydi�erential equations for the brightness moments7 �l(�):�00 = �13k�1 � �0; (94)�01 = k��0 +	� 25�2�� _� (�1 � Vb); (95)�02 = k�23�1 � 37�3�� _� 910�2; (96)�0l = k� l2l� 1�l�1 � l + 12l + 3�l+1�; l > 2: (97)The 
omplete system of perturbation equationsWithout further ado I 
olle
t below the 
omplete system of perturbation equations. For this someadditional notation has to be �xed.Unperturbed ba
kground quantities: ��; p� denote the densities and pressures for the spe
ies� = b (baryon and ele
trons), 
 (photons), 
 (
old dark matter); the total density is the sum� = P� ��, and the same holds for the total pressure p. We also use w� = p�=��; w = p=�. Thesound speed of the baryon-ele
tron 
uid is denoted by 
b, and R is the ratio 3�b=4�
.Here is the list of gauge invariant s
alar perturbation amplitudes (for further explanations see[64℄):� Æ�; Æ : density perturbations (Æ��=��; Æ�=� in the longitudinal gauge); 
learly: � Æ =P ��Æ�.7In the literature the normalization of the �l is sometimes 
hosen di�erently: �l ! (2l + 1)�l.
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ar�e� V�; V : velo
ity perturbations; �(1 + w)V =P� ��(1 + w�)V�:� �l; Nl : brightness moments for photons and neutrinos.� ��;� : anisotropi
 pressures; � = �
 +�� . For the lowest moments the following relationshold: Æ
 = 4�0; V
 = �1; �
 = 125 �2; (98)and similarly for the neutrinos.� 	;�: Bardeen potentials for the metri
 perturbation.As independent amplitudes we 
an 
hoose: Æb; Æ
; Vb; V
;�;	; �l; Nl. The basi
 evolution equa-tions 
onsist of three groups.� Fluid equations: Æ0
 = �kV
 � 3�0; (99)V 0
 = �aHV
 + k	; (100)Æ0b = �kVb � 3�0; (101)V 0b = �aHVb + k
2bÆb + k	+ _� (�1 � Vb)=R: (102)� Boltzmann hierar
hies for photons (Eqs. (93)-(96)) and the 
ollisionless neutrinos.� Einstein equations : We only need the following algebrai
 ones for ea
h mode:k2� = 4�Ga2�hÆ + 3aHk (1 + w)V i; (103)k2(� + 	) = �8�Ga2p �: (104)In arriving at these equations some approximations have been made whi
h are harmless8, ex
ept for one: We have ignored polarization e�e
ts in Thomson s
attering. For quantitative
al
ulations these have to be in
luded. Moreover, polarization e�e
ts are highly interesting, as Ishall explain later.6.1.2 Angular 
orrelations of temperature 
u
tuationsThe system of evolution equations has to be supplemented by initial 
onditions. We 
an not hopeto be able to predi
t these, but at best their statisti
al properties (as, for instan
e, in in
ationarymodels). Theoreti
ally, we should thus regard the brightness temperature perturbation �(�; xi; 
j)as a random �eld. Of spe
ial interest is its angular 
orrelation fun
tion at the present time �0.Observers measure only one realization of this, whi
h brings unavoidable 
osmi
 varian
es.For further elaboration we insert (91) into the Fourier expansion of �, obtaining�(�;x;
) = (2�)� 32 Z d3kXl �l(�; k)Gl(x;
;k); (105)where Gl(x;
;k) = (�i)lPl(k̂ � 
) exp(ik � x): (106)8In the notation of [64℄ we have set q� = �� = 0, and are thus ignoring 
ertain intrinsi
 entropy perturbationswithin individual 
omponents.
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al Constant Problems 29Hen
e we have �(�;x;
) =Xlm a�lmYlm(
); (107)with alm = (2�)� 32 Z d3k �l(�; k) il 4�2l+ 1Ylm(k̂) exp(�ik � x): (108)We expe
t on the basis of rotation invarian
e that the two-point 
orrelation of the random variablesalm has the form < alma�l0m0 >= ClÆll0Æmm0 : (109)From (106) and (108) we see that the angular 
orrelation fun
tion of � in x-spa
e is< �(
)�(
0) >=Xl 2l+ 14� ClPl(
 � 
0): (110)If di�erent modes in k-spa
e are un
orrelated, we obtain from (107)2l+ 14� Cl = 12�2 Z 10 dkk k3j�l(k)j22l + 1 : (111)Cosmi
 varian
eThe Cl are the expe
tation values of the sto
hasti
 variableZ = 12l + 1Xm alma�lm:If the alm are Gaussian random variables, as in simple in
ationary models, then the varian
e ofZ, and thus of Cl, is easily found to be given by�(Cl) =r 22l + 1 : (112)This is a serious limitation for low multipoles that 
annot be over
ome. For large l the measuredCl should be a

urately des
ribed by (110), taken at the present time.6.1.3 Brightness moments in sudden de
ouplingThe linearized Boltzmann equation in the form (92) as an inhomogeneous linear di�erential for the�-dependen
e has the `solution'(� +	)(�0; �; k) =Z �00 d�h _�(�0 +	� i�Vb � 110�2P2) + 	0 � �0ie��(�;�0)eik�(���0); (113)where �(�; �0) = Z �0� _�d� (114)is the opti
al depth. The 
ombination _�e�� is the (
onformal) time visibility fun
tion. It has asimple interpretation: Let p(�; �0) be the probability that a photon did not s
atter between � andtoday (�0). Clearly, p(� � d�; �0) = p(�; �0)(1 � _�d�). Thus p(�; �0) = e��(�;�0), and the visibilityfun
tion times d� is the probability that a photon last s
attered between � and �+d�. The visibility
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ar�efun
tion is therefore strongly peaked near de
oupling. This is very useful, both for analyti
al andnumeri
al purposes.In order to obtain an integral representation for the multipole moments �l, we insert in (112)for the �-dependent fa
tors standard expansions in terms of Legendre polynomials. For l � 2 we�nd the following useful formula:�l(�0)2l + 1 = Z �00 d�e��(�)h( _��0 + _�	+	0 � �0)jl(k(�0 � �)) + _�Vbj0l + _� 120�2(3j00l + jl)i: (115)In a reasonably good approximation we 
an repla
e the visibility fun
tion by a Æ-fun
tion,and obtain (with �� � �0 � �de
; Vb(�de
) ' �1(�de
):�l(�0; k)2l + 1 ' [�0 +	℄(�de
; k)jl(k��) + �1(�de
; k)j0l(k��) + ISW +Quad: (116)Here, the quadrupole 
ontribution (last term) is not important. ISW denotes the integrated Sa
hs-Wolfe e�e
t: ISW = Z �0�de
 d�(	0 � �0)jl(k��); (117)whi
h only depends on the time variations of the Bardeen potentials between re
ombination andthe present time.The interpretation of the �rst two terms in (115) is quite obvious: The �rst des
ribes the
u
tuations of the e�e
tive temperature �0 +	 on the 
osmi
 photosphere, as we would see themfor free streaming between there and us, { if the gravitational potentials would not 
hange intime. (	 in
ludes blue- and redshift e�e
ts.) The dipole term has to be interpreted, of 
ourse, asa Doppler e�e
t due to the velo
ity of the baryon-photon 
uid.In this approximate treatment we only have to know the e�e
tive temperature �0+	 and thevelo
ity moment �1 at de
oupling. The main point is that eq.(115) provides a good understandingof the physi
s of the CMB anisotropies. Note that the individual terms are all gauge invariant. Ingauge dependent methods interpretations would be ambiguous.6.1.4 A
ousti
 os
illationsIn this subse
tion we derive from the Boltzmann hierar
hy (93)-(96) an approximate equation forthe e�e
tive temperature 
u
tuation �T � �0 +	, whi
h will tea
h us a lot.As long as the mean free path of photons is mu
h shorter than the wavelength of the 
u
tu-ation, the opti
al depth through a wavelength � _�=k is large. Thus the evolution equations maybe expanded in k= _� .In lowest order we obtain �1 = Vb; �l = 0 for l � 2, thus Æ0b = 3�00. Going to the �rst order,we 
an repla
e on the right of the following form of eq.(94),�1 � Vb = R_� [V 0b + a0a Vb � k	℄; (118)Vb by �1: �1 � Vb = R_� [�01 + a0a �1 � k	℄: (119)We insert this in (94), and set in �rst order �2 = 0. Using also a0=a = R0=R we get�01 = 11 +Rk�0 + k	� R01 +R�1: (120)
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al Constant Problems 31Together with (93) we �nd the driven os
illator equation�000 + R01 +R a0a �00 + 
2sk2�0 = F (�); (121)where 
2s = 13(1 +R) ; F (�) = �k23 	� R1 +R a0a �0 � �00: (122)The damping term is due to expansion. In se
ond order one �nds an additional damping termproportional to �00: 13 k2_� h( R1 + R )2 + 89 11 +Ri�00: (123)This des
ribes the damping due to photon di�usion (Silk damping).We dis
uss here only the �rst order equation, whi
h we rewrite in the more suggestive form(meff � 1 +R) (meff�00)0 + k23 (�0 +meff	) = �(meff�0)0: (124)This equation may be interpreted as follows: The 
hange in momentum of the photon-baryon
uid is determined by a 
ompetition between pressure restoring and gravitational driving for
es.Let us, in a �rst step, ignore the time dependen
e of meff (i.e., of the baryon-photon ratioR), then we get a for
ed harmoni
 os
illator equationmeff�000 + k23 �0 = �k23 meff	� (meff�0)0: (125)The e�e
tive mass meff = 1 + R a

ounts for the inertia of baryons. Baryons also 
ontributegravitational mass to the system, as is evident from the right hand side of the last equation. Their
ontribution to the pressure restoring for
e is, however, negligible.We now ignore in (124) also the time dependen
e of the gravitational potentials �;	. With(121) this then redu
es to �000 + k2
2s�0 = �13k2	: (126)This simple harmoni
 os
illator under 
onstant a

eleration provided by gravitational infall 
animmediately be solved:�0(�) = [�0(0) + (1 +R)	℄ 
os(krs) + 1k
s _�0(0) sin(krs)� (1 +R)	; (127)where rs(�) is the 
omoving sound horizon R 
sd�.One 
an show that for adiabati
 initial 
onditions there is only a 
osine term. In this 
ase weobtain for �T : �T (�; k) = [�T (0; k) +R	℄ 
os(krs(�)) �R	: (128)Dis
ussionIn the radiation dominated phase (R = 0) this redu
es to �T (�) / 
os krs(�), whi
h shows thatthe os
illation of �0 is displa
ed by gravity. The zero point 
orresponds to the state at whi
h gravityand pressure are balan
ed. The displa
ement �	 > 0 yields hotter photons in the potential wellsin
e gravitational infall not only in
reases the number density of the photons, but also theirenergy through gravitational blue shift. However, well after last s
attering the photons also su�era redshift when 
limbing out of the potential well, whi
h pre
isely 
an
els the blue shift. Thus the
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tive temperature perturbation we see in the CMB anisotropies is { as remarked in 
onne
tionwith eq. (115) { indeed �T = �0 +	.It is 
lear from (127) that a 
hara
teristi
 wave-number is k = �=rs(�de
) ' �=
s�de
. Aspe
trum of k-modes will produ
e a sequen
e of peaks with wave numberskm = m�=rs(�de
); m = 1; 2; ::: (129)Odd peaks 
orrespond to the 
ompression phase (temperature 
rests), whereas even peaks 
orre-spond to the rarefa
tion phase (temperature troughs) inside the potential wells. Note also that the
hara
teristi
 length s
ale rs(�de
), whi
h is re
e
ted in the peak stru
ture, is determined by theunderlying unperturbed Friedmann model. This 
omoving sound horizon at de
oupling dependson 
osmologi
al parameters, but not on 
�. Its role will further be dis
ussed in Se
t.6.2.In
lusion of baryons not only 
hanges the sound speed, but gravitational infall leads to greater
ompression of the 
uid in a potential well, and thus to a further displa
ement of the os
illationzero point (last term in(127). This is not 
ompensated by the redshift after last s
attering, sin
e thelatter is not a�e
ted by the baryon 
ontent. As a result all peaks from 
ompression are enhan
edover those from rarefa
tion. Hen
e, the relative heights of the �rst and se
ond peak is a sensitivemeasure of the baryon 
ontent. We shall see that the inferred baryon abundan
e from the presentobservations is in 
omplete agreement with the results from big bang nu
leosynthesis.What is the in
uen
e of the slow evolution of the e�e
tive mass meff = 1 + R? Well, fromthe adiabati
 theorem we know that for a slowly varying meff the ratio energy/frequen
y isan adiabati
 invariant. If A denotes the amplitude of the os
illation, the energy is 12meff!2A2.A

ording to (121) the frequen
y ! = k
s is proportional to m�1=2eff . Hen
e A / !�1=2 / m1=4eff /(1 +R)�1=4.6.1.5 Angular power spe
trum for large s
alesThe angular power spe
trum is de�ned as l(l+1)Cl versus l. For large s
ales, i.e., small l, observedwith COBE, the �rst term in eq.(115) dominates. Let us have a 
loser look at this so-
alled Sa
hs-Wolfe 
ontribution.For large s
ales (small k) we 
an negle
t in the �rst equation (93) of the Boltzmann hierar
hythe term proportional to k: �00 � ��0 � 	0, negle
ting also � (i.e., �2) on large s
ales. Thus�0(�) � �0(0) + 	(�)�	(0): (130)To pro
eed, we need a relation between �0(0) and 	(0). This 
an be obtained by looking atsuperhorizon s
ales in the tight 
oupling limit. (Alternatively, one 
an investigate the Boltzmannhierar
hy in the radiation dominated era.) For adiabati
 initial perturbations one easily �nds�0(0) = � 12	(0), while for the iso
urvature 
ase one gets �0(0) = 	(0) = 0. Using this in (129),and also that 	(�) = 910	(0) in the matter dominated era, we �nd for the e�e
tive temperature
u
tuations at de
oupling (�0 +	)(�de
) = 13	(�de
) (131)for the adiabati
 
ase. For initial iso
urvature 
u
tuations the result is six times larger. Eq.(130) isdue to Sa
hs and Wolfe. It allows us to express the angular CMB power spe
trum on large s
alesin terms of the power spe
trum of density 
u
tuations at de
oupling. If the latter has evolved froma s
ale free primordial spe
trum, it turns out that l(l+ 1)Cl is 
onstant for small l0s. It should beemphasized that on these large s
ales the power spe
trum remains 
lose to the primordial one.Having dis
ussed the main qualitative aspe
ts, we show in Fig.3 a typi
al theoreti
al CMBpower spe
trum for s
ale free adiabati
 initial 
onditions.
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Figure 3: Theoreti
al angular power spe
trum for adiabati
 initial perturbations and typi
al 
os-mologi
al parameters. The s
alar and tensor 
ontributions to the anisotropies are also shown.6.2 Observational resultsCMB anisotropies had been looked for ever sin
e Penzias and Wilson's dis
overy of the CMB, buthad eluded all dete
tion until the Cosmi
 Ba
kground Explorer (COBE) satellite dis
overed themon large angular s
ales in 1992 [68℄. It is not at all astonishing that it took so long in view of thefa
t that the temperature perturbations are only one part in 10�5 (after subtra
tion of the obviousdipole anisotropy). There are great experimental diÆ
ulties to isolate the 
osmologi
ally interestingsignal from foreground 
ontamination. The most important of these are: (i) gala
ti
 dust emission;(ii) gala
ti
 thermal and syn
hrotron emission; (iii) dis
rete sour
es; (iv) atmospheri
 emission, inparti
ular at frequen
ies higher than �10 GHz.After 1992 a large number of ground and balloon-borne experiments were set up to measurethe anisotropies on smaller s
ales. Until quite re
ently the measuring errors were large and thedata had a 
onsiderable s
atter, but sin
e early 2001 the situation looks mu
h better. Thanks tothe experiments BOOMERanG [69℄, MAXIMA [70℄ and DASI [71℄ we now have 
lear eviden
e formultiple peaks in the angular power spe
trum at positions and relative heights that were expe
tedon the basis of the simplest in
ationary models and big bang nu
leosynthesis.Wang et al. [72℄ have 
ompressed all available data into a single band-averaged set of esti-mates of the CMB power spe
trum. Their result, together with the �1� errors, is reprodu
ed inFig.4. These data provide tight 
onstraints for the 
osmologi
al parameters. However, the CMBanisotropies alone do not �x them all be
ause there are unavoidable degenera
ies, espe
ially whentensor modes (gravity waves) are in
luded. This degenera
y is illustrated in Fig.9 of Ref.[70℄ bythree best �ts that are obtained by �xing 
bh20 in a reasonable range.Su
h degenera
ies 
an only be lifted if other 
osmologi
al information is used. Beside thesupernova results, dis
ussed in Se
t.5, use has been made, for instan
e, of the available informationfor the galaxy power spe
trum. In [73℄ the CMB data have been 
ombined with the power spe
trum
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Figure 4: Band-averaged CMB power spe
trum, together with the �1� errors (Fig.2 of Ref. [70℄).
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al Constant Problems 35of the 2dF (2-degree-Field) Galaxy Redshift Survey (2dFGRS). The authors summarize theirresults of the 
ombined likelihood analysis in Table 1 of their paper. Here, I quote only part of it.The Table below shows the �2� parameter ranges for some of the 
osmologi
al parameters, for twotypes of �ts. In the �rst only the CMB data are used (but tensor modes are in
luded), while in these
ond these data are 
ombined with the 2dFGRS power spe
trum (assuming adiabati
, Gaussianinitial 
onditions des
ribed by power laws).Table 1Parameter CMB alone CMB and 2dFGRS
bh20 0.016-0.045 0.018-0.034

h20 0.03-0.18 0.07-0.13
K -0.68-0.06 -0.05-0.04
� <0.88 0.65-0.85Note that 
K is not strongly 
onstraint by CMB alone. However, if h0 is assumed a priori tobe within a reasonable range, then 
K has to be 
lose to zero (
at universe). It is very satisfyingthat the 
ombination of the CMB and 2dFGRS data 
onstrain 
� in the range 0:65 � 
� � 0:85.This is independent of { but 
onsistent with { the supernova results.Another beautiful result has to be stressed. For the baryon parameter 
bh20 there is now fullagreement between the CMB results and the BBN predi
tion. Earlier spe
ulations in 
onne
tionwith possible 
ontradi
tions now have evaporated. The signi�
an
e of this 
onsisten
y 
annot beoveremphasized.All this looks very impressive. It is, however, not forbidden to still worry about possible
ompli
ations lo
ated in the initial 
onditions, for whi
h we have no established theory. For exam-ple, an iso
urvature admixture 
annot be ex
luded and the primordial power spe
trum may haveunexpe
ted features.Temperature measurements will not allow us to isolate the 
ontribution of gravitational waves.This 
an only be a
hieved with future sensitive polarization experiments. Polarization informationwill provide 
ru
ial 
lues about the physi
s of the very early Universe. It 
an, for instan
e, beused to dis
riminate between models of in
ation. With the Plan
k satellite, 
urrently s
heduled forlaun
h in February 2007, it will be possible to dete
t gravitational waves even if they 
ontributeonly 10 per
ent to the anisotropy signal.7 Quintessen
eFor the time being, we have to live with the mystery of the in
redible smallness of a gravitationallye�e
tive va
uum energy density. For most physi
ists it is too mu
h to believe that the va
uumenergy 
onstitutes the missing two thirds of the average energy density of the present Universe.This would really be bizarre. The goal of quintessen
e models is to avoid su
h an extreme �ne-tuning. In many ways people thereby repeat what has been done in in
ationary 
osmology. Themain motivation there was, as is well-known, to avoid ex
essive �ne tunings of standard big bang
osmology (horizon and 
atness problems).In 
on
rete models the exoti
 missing energy with negative pressure is again des
ribed by as
alar �eld, whose potential is 
hosen su
h that the energy density of the homogeneous s
alar �eldadjusts itself to be 
omparable to the matter density today for quite generi
 initial 
onditions, andis dominated by the potential energy. This ensures that the pressure be
omes suÆ
iently negative.
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ar�eIt is not simple to implement this general idea su
h that the model is phenomenologi
ally viable.For instan
e, the su

ess of BBN should not be spoiled. CMB and large s
ale stru
ture imposeother 
onstraints. One also would like to understand why 
osmologi
al a

eleration started at aboutz � 1, and not mu
h earlier or in the far future. There have been attempts to 
onne
t this withsome 
hara
teristi
 events in the post-re
ombination Universe. On a fundamental level, the originof a quintessen
e �eld that must be extremely weakly 
oupled to ordinary matter, remains in thedark.There is already an extended literature on the subje
t. Refs. [74℄ - [80℄ give a small sele
tionof important early papers and some re
ent reviews. I 
on
lude by emphasizing again that on thebasis of the va
uum energy problem we would expe
t a huge additive 
onstant for the quintessen
epotential that would destroy the hole pi
ture. Thus, assuming for instan
e that the potentialapproa
hes zero as the s
alar �eld goes to in�nity, has (so far) no basis. Fortunately, future morepre
ise observations will allow us to de
ide whether the presently dominating exoti
 energy densitysatis�es p=� = �1 or whether this ratio is somewhere between �1 and �1=3. Re
ent studies (see[81℄, [82℄, and referen
es therein) whi
h make use of existing CMB data, SN Ia observations andother information do not yet support quintessen
e with wQ > �1.However, even if 
onvin
ing eviden
e for this should be established, we will not be able topredi
t the distant future of the Universe. Eventually, the quintessen
e energy density may perhapsbe
ome negative. This illustrates that we may never be able to predi
t the asymptoti
 behaviorof the most grandiose of all dynami
al systems. Other 
on
lusions are left to the reader.Referen
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