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1 Introduction

The question “What is Quantum Chaos ?” seems to be best replied by an opera-
tional answer : The research in Quantum Chaos attempts to uncover the finger-prints
of classical chaotic dynamics in the corresponding quantum description. In particu-
lar, since many attributes of classical (Hamiltonian) chaos are universal, quantum
chaos attempts to focus on analogous, but not necessarily the same universal fea-
tures. One of the most fruitful approaches in the development of classical chaos was
to focus on toy models, which are simple enough to allow detailed analysis, without
losing the essential dynamical complexity which marks chaotic systems. This same
route was followed in Quantum Chaos - some of the toy models were constructed by
quantizing the classical toy models. Other models went further and devised leaner
and leaner problems which allowed deeper penetration into the essential ingredients
of Quantum Chaos. In the present talk I shall describe a recent model - the Laplacian
on d-regular graphs - which would seem at first sight as pushing the strife for simpli-
city ad absurdum. However, this is not the case, and by presenting the model, I shall
explain by analogy the corresponding concepts which prevail in quantum chaos. It
will also give me a chance to comment on the fruitful interaction of quantum chaos
research with other fields of Mathematical Physics.

This review is based on the work performed during the past three years by
Yehonatan Elon, Amit Godel, Idan Oren and the author. The original papers and
thesis [1, 2, 3, 4, 5, 6, 7, 8] contain much more data, results and proofs, and the
interested reader is referred there for the information which is lacking here. Our
attention to d-regular graphs was brought by the pioneering work of Jakobson et.
al. [9] which will be discussed at length in the sequel. Previous attempts to relate
quantum chaos to combinatorial graphs (not necessarily d-regular) are described in
[10].

1.1 The Model : d-regular graphs

Deferring formal definitions to a later stage, the objects of this study are the
d-regular graphs on V vertices. These are graphs where each vertex is connected to
precisely d other vertices (no loops and no parallel edges). They have very attractive
properties which made them very popular in various fields, ranging from computer
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science to number theory (see [11] for a review). Their most prominent feature is that
they are expanders - a concept which can be explained through their geometrical
and dynamical properties.

From the geometrical point of view, an expanding graph has the property that
the volume of any ball is proportional to that of its boundary. Thus, when V in-
creases, the growing rate of the graph is exponential, hence the name ’expander’.

From the dynamical point of view, a random walker on the graph would visit the
vertices with uniform probability exponentially fast. The mixing rate is completely
determined by the spectrum of the graph Laplacian to be defined below. It can be
easily shown that for connected (non bipartite) d-regular graphs the equilibrium
state is reached exponentially fast and at a rate which is independent of V .

The spectral theory of graphs shows that both features can be traced to the
same root - namely, the expansion parameter and the mixing rate are related through
an inequality attributed to Cheeger [12, 13, 14]. This will not be discussed here any
further.

Besides of being expanders, d-regular graphs have another important property
of a more local nature :
The local tree structure : Inside a ball of radius logd−1 V about most of its vertices,

the local structure of a d-regular graph is identical to that of a d-regular tree. Stated
differently, loops of lengths shorter than logd−1 V are rare on the graph.

The spectrum of the d-regular graphs and the corresponding eigenvectors in
the limit V →∞ share many properties with their counterparts in quantum chaos.
To introduce them systematically a few concepts and facts should be defined and
stated.

1.2 Definitions and facts

A graph G is a set V of vertices connected by a set E of edges. The number
of vertices is denoted by V = |V| and the number of edges is E = |E|. A simple
graph is a graph where an edge cannot connects a vertex to itself, nor can it connect
already connected vertices. The connectivity of the graph is specified by the V × V
adjacency (connectivity) matrix A,

Ai,j =

{
1 (i, j) connected
0 (i, j) not connected

(1)

We shall deal with d-regular graphs where each vertex is connected to exactly d
vertices, d stands for the degree.

The ensemble of all simple, d-regular graphs with V vertices will be denoted by
GV,d. The cardinality of GV,d increases faster than exponentially in V . Therefore the
density of disconnected graphs in GV,d vanishes in the limit of large V . Averaging
over GV,d will be carried out with uniform probability and will be denoted by 〈· · · 〉.

While the vertices can be considered as a discrete version of classical configu-
ration space for the dynamics on the graph, the directed edges, e = (i, j) provide a
description of the graph which is the discrete analogue of phase-space. It is conve-
nient to associate with each directed edge e = (j, i) its origin o(e) = i and terminus
t(e) = j so that e points from the vertex i to the vertex j. The edge e′ follows e if
t(e) = o(e′). The reverse edge of e will be denoted by ê = (i, j). The phase-space
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connectivity of the graph can be specified by the 2E × 2E matrix B :

Be′,e =

{
1 o(e′) = t(e)
0 o(e′) 6= t(e)

(2)

Classical trajectories are replaced here by walks on the graph. A walk of length t
from the vertex x to the vertex y on the graph is a sequence of successively connected
vertices x = v1, v2, · · · , vt = y. Alternatively, it is a sequence of t− 1 directed edges
e1, · · · , et−1 with o(ei) = vi, t(ei) = vi+1, o(e1) = x, t(ev−1) = y. A closed walk is a
walk with x = y. The number of walks of length t between x and y equals (At)y,x,
or equivalently

∑
e,e′(B

t−1)e′,eδo(e),xδt(e′)=y.
In the sequel walks without back-scatter in which ei+1 6= êi, , 1 ≤ i ≤ t − 2

will play an important rôle. We shall refer to them as nb-walks for short. To study
nb-walks it is useful to define

Je,e′ = δê,e′ . (3)

which singles out edges connected by backscatter. The matrix

Y = B − J (4)

connects bonds which are not reversed. Thus, e.g., the number of t-periodic nb walks
is trYt.

The probability that a long random walk visits any given vertex is completely
controlled by the spectrum of the discrete Laplacian on the graph which is defined
as

∆ ≡ −A+ dI(V ), (5)

where I(V ) is the unit matrix in V dimensions. It is convenient to study the spectrum
of A which differs from the Laplacian by a change of sign and a constant shift. The
highest eigenvalue of A is d corresponding to a uniform distribution on the graph
vertices. This implies that for d-regular graphs the limit distribution for a random
walker is uniform (if the graph is connected and not bipartite). The distance between
d and the next eigenvalue (the spectral gap s(G)) determines the speed at which a
random walker covers the graph uniformly. For (V, d) regular graphs it is known [15]
that the spectral gap is given asymptotically by

s(G) = d− 2
√
d− 1 + o

(
d

log V

)
(6)

with probability which converges to 1 exponentially fast in V . (Here and in the
sequel, logarithms are calculated in base d−1). This result complements a previously
established bound, [16]

s(G) < d− 2
√
d− 1 +

2

log V
, (7)

which implies that in the limit V →∞, the spectral gap cannot exceed d−2
√
d− 1.

Hence, the limiting maximal mixing rate for regular graphs is attained asymptoti-
cally for almost any (V, d) graph. In other words, the d-regular graphs are optimal
mixers. This strong mixing property is typical of hard classical chaos and it justifies
the use of this model as a paradigm of quantum chaos as defined in the introduction.
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Adjacency matrices of random d-regular graphs, have some remarkable spectral
properties, which can be studied using the spectral density ρ(µ) and the spectral
counting function N(µ) defined as :

ρ(µ) ≡ 1

V

∑
µa∈σ(A)

δ(µ− µa) ; N(µ) = V

∫ µ

dρ(µ) =
∑

µa∈σ(A)

Θ(µ− µa) . (8)

Here, µa are the adjacency eigenvalues corresponding to eigenvectors f (a) ∈ RV .
An important discovery which marked the starting point of the study of spectral

statistics for d-regular graphs was the derivation of the mean (in G(n, d)) of the
spectral density by Kesten [17] and McKay [18] :

ρKM(µ) = lim
V→∞
〈ρ(µ)〉 =


d

2π

√
4(d−1)−µ2

d2−µ2 for |µ| ≤ 2
√
d− 1

0 for |µ| > 2
√
d− 1

. (9)

The proof of this result relies on the local tree property of random d-regular graphs,
namely, that almost surely every subgraph of diameter less than log V is a tree.
Counting periodic orbits on the tree can be done explicitly, and using the close
relations between these numbers and the spectrum, one obtains (17). Note that the
Kesten-Mckay density approaches Wigner’s semi-circle law for large d.

A finite number of eigenvalues outside the support of ρKM cannot be excluded.
Graphs for which the entire spectrum of A (except from the largest eigenvalue) lies
within the support [−2

√
d− 1, 2

√
d− 1], are called Ramanujan (For a review, see

e.g., [19] and references cited therein). They are known to exist for some particular
values of d, but much of their properties and their distribution are not known.

Finally, we shall consider the spectral properties of the “magnetic” Laplacian
[20] which is defined in terms of the magnetic adjacency matrix

Mi,j = Ai,je
iφi,j . (10)

where the phases φi,j attached to the edges (i, j) play the rôle of “magnetic fluxes”.
The magnetic ensemble G(M)(V, d) consists of G(V, d) augmented with independently
and uniformly distributed phases φi,j. In the following we shall use the superscript M
consistently when referring to the magnetic ensemble. M is complex hermitian, and
therefore the evolution it induces breaks time reversal symmetry. The largest eigen-
value of M may be different than d, but the asymptotic spectral density approaches
the Kesten-Mackay distribution.

2 Spectral statistics and Trace formulae

One of the central themes in quantum chaos was the study of the statistics
of spectral fluctuations. Analyzing the numerically computed spectral sequences of
quantum billiards, led Bohigas, Giannoni and Schmit [21] to propose their conjec-
ture : The spectral fluctuations for quantum chaotic systems follow the predictions
of the Gaussian ensembles of Random Matrix Theory (RMT), while for integrable
systems, they are Poissonian [22]. In the next paragraphs we shall review the numeri-
cal evidence which illustrates the excellent agreement between the spectral statistics
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of the adjacency matrices of d-regular graphs (and their magnetic analogues) and
the predictions of RMT [9, 6]. While describing these results a few concepts from
RMT will be introduced [23].

2.1 Some numerical evidence and a few more definitions

For reasons which will become clear as the theory unfolds, it is advantageous
to map the spectrum from the real line to the unit circle,

φj = arccos
µj

2
√
d− 1

; 0 ≤ φj ≤ π . (11)

This change of variables is allowed since in the limit of large V , only a fraction of
order 1/V of the spectrum is outside the support of the Kesten McKay distribution
[−2
√
d− 1, 2

√
d− 1] [25].

The mean (Kesten McKay) spectral density on the circle is not uniform,

ρKM(φ) =
2(d− 1)

πd

sin2 φ

1− 4(d−1)
d2

cos2 φ

NKM(φ) = V
d

2π

(
φ− d− 2

d
arctan

(
d

d− 2
tanφ

))
. (12)

Following the standard methods of spectral statistics, one introduces a new variable
θ, which is uniformly distributed on the unit circle. This “unfolding” procedure is
explicitly given by

θj =
2π

V
NKM(φj) (13)

The nearest spacing distribution defined as

P (s) = lim
V→∞

1

V

〈
V∑
j=1

δ

(
s− V

2π
(θj − θj−1)

)〉
, (14)

is often used to test the agreement with the predictions of RMT (This was also
the test conducted in ([9]). In this definition of the nearest spacing distribution, θ0

coincides with θV , since the phases lie on the unit circle. In Fig. 1 we show numerical
simulations obtained by averaging over 1000 randomly generated 3-regular graphs
on 1000 vertices and their “magnetic” counterparts, together with the predictions
of RMT for the COE and the CUE ensembles [24], respectively. The agreement is
quite impressive.

Another quantity which is often used for the same purpose is the spectral form-
factor,

KV (t) =
1

V

〈∣∣∣∣∣
V∑
j=1

eitθj

∣∣∣∣∣
2 〉

. (15)

The form-factor is the Fourier transform of the spectral two point correlation func-
tion and it plays a very important rôle in the understanding of the relation between
RMT and the quantum spectra of classically chaotic systems [23, 28].
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Fig. 1 – Nearest level spacings for : (a.) Graphs possessing time reversal symmetry. (b.) Magnetic
graphs. Both figures are accompanied with the RMT predictions : Solid line - COE, Dashed line -
CUE.

In RMT the form factor displays scaling : lim
V→∞

KV (t = τV ) = K(τ). The

explicit limiting expressions for the COE and CUE ensembles are [24] :

KCOE(τ) =

 2τ − τ log (2τ + 1), for τ < 1

2− τ log 2τ+1
2τ−1

, for τ > 1
. (16)

KCUE(τ) =

 τ, for τ < 1

1, for τ > 1
. (17)

The numerical data used to compute the nearest neighbor spacing distribution
P (s), was used to calculate the corresponding form factors for the non-magnetic
and the magnetic graphs, as shown in Fig. 2. The agreement between the numerical
results and the RMT predictions is apparent.

The above comparisons between the predictions of RMT and the spectral statis-
tics of the eigenvalues of d-regular graphs was based on the unfolding of the phases
φj into the uniformly distributed phases θj. As will become clear in the next sec-
tions, it is more natural to study here the fluctuations in the original spectrum and
in particular the form factor

K̃V (t) =
1

V

〈∣∣∣∣∣
V∑
j=1

eitφj

∣∣∣∣∣
2 〉

. (18)

The transformation between the two spectra was effected by (13) which is one-to-one
and its inverse is defined :

φ = S(θ)
.
= N−1

KM

(
V
θ

2π

)
. (19)
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Fig. 2 – The form factor K(τ) (unfolded spectrum) for (a.) 3-regular graphs numerical vs. the
COE prediction. (b.) 3-regular magnetic graphs vs. the CUE prediction.

This relationship enables us to express K̃V (t) in terms of KV (t). In particular, if
KV (t) scales by introducing τ = t

V
then,

K̃(τ =
t

V
) =

1

π

∫ π

0

dθK
(
τS
′
(θ)
)
. (20)

The derivation of this identity is straightforward. In the limit τ → 0, (20) reduces
to

K̃(τ =
t

V
) ≈ 1

2
K (τ) . (21)

Fig. 3 shows K̃(τ = t
V

) = K̃V (t) computed by assuming that its unfolded analogue
takes the RMT form (16) or (17), and it is compared with the numerical data for
graphs with d = 10. It is not a surprise that this way of comparing between the
predictions of RMT and the data, shows the same agreement as the one observed
previously.

2.2 Trace formulae

The theoretical attempts to justify the Bohigas-Gianonni-Schmit conjecture
were all based on trace formulae which establish a link between the quantum, spec-
tral information, and the periodic manifolds in the phase-space of the underlying
classical dynamics. The dichotomy observed in the quantum spectra is due to the
intrinsic difference between the periodic manifolds in the corresponding classical
dynamics : In chaotic systems the manifolds are discrete, unstable periodic orbits,
while for integrable dynamics they correspond to periodic tori were the dynamics is
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Fig. 3 – The form factor K̃(τ) (original spectrum) for 10-regular graphs. The numerical results
are presented vs. the expression (20) assuming RMT in the dashed line, and K(τ) (16), (17) in the
solid line.

marginally stable. Trace formulae take the general form [27] :

ρ(E) ≈ ρsmooth(E) + =

{∑
p

Ape
i(Sp(E)/~+π

2
νp)

}
, (22)

where E is the spectral parameter (Energy). ρsmooth is a smooth function of E which
provides the asymptotic behavior of ρ(E). The sum is responsible to the oscillatory or
fluctuating part of the spectral density. It goes over contributions from the periodic
classical manifolds. The leading terms in the amplitudes Ap depend on the stability
of the periodic orbits for chaotic billiards and on the phase space volume occupied by
the corresponding torus for integrable cases. Sp(E) are the action integrals along the
periodic orbits and νp are the Maslov index which have a clear geometric meaning
related to the orbit. The function which was most frequently studied in quantum
chaos is the spectral 2-points correlation function :

R(ε) =
1

∆

∫ E0+∆/2

E0−∆/2

ρ̃(E + ε/2)ρ̃((E − ε/2)dE , ρ̃(E) = ρ(E)− ρsmooth(E) , (23)

or the form-factor which is its Fourier transform. Substituting the trace formula
(22) in (23), one could express the spectral correlations in terms of correlations
between classical actions [29]. The short time limit of the form factor predicted by
RMT can be recovered by assuming that the actions of different periodic orbits are
not correlated. (the ”diagonal” approximation [28]). Further work elucidated the
dynamical origin of the periodic orbit correlations [30]. This opened the way for a
complete reconstruction of the RMT expression for the form factor based on the
classical information and general symmetry considerations [31].

Following the quantum chaos example, the connection between spectral sta-
tistics and periodic orbit theory will be demonstrated by using trace formulae for
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d-regular graphs.
We shall start by considering the spectrum of the adjacency matrices A. The

trace formula can be obtained by making use of a well known identity [32, 33] which
relates the characteristic polynomials and the spectra of the vertex adjacency matrix
A and the edge nb-adjacency matrix Y (4) :

det(I(2E) − sY ) = (1− s2)E−V det(I(V )(1 + (d− 1)s2)− sA) . (24)

For Ramanujan graphs, the spectrum consists of d and |µk| ≤ 2
√
d− 1, k =

1, · · · (V − 1). Transforming the µk to the unit circle as in (11), the spectrum of
Y reads

σ(Y ) = {(d− 1), 1, +1× (E − V ), −1× (E − V ),

(
√
d− 1 eiφk ,

√
d− 1 e−iφk , k = 1, · · · (V − 1))

}
. (25)

(The restriction to Ramanujan graphs can be removed [5] but this will not be discus-
sed here). For large t, the number of t-periodic nb-walks given by trY t is dominated
by the largest eigenvalue, so that asymptotically trY t ∼ (d− 1)t. It is advantageous
to introduce

y
(A)
t =

1

V

trY t − (d− 1)t

(
√
d− 1)t

(26)

which is the properly regularized number of t-periodic nb-walks. (The superscript
(A) indicates reference to the spectrum of the adjacency matrix A) The explicit
expressions for the eigenvalues of Y are used now to write,

y
(A)
t =

1

V

(
1

d− 1

) t
2

+
d− 2

2

(
1

d− 1

) t
2

(1 + (−1)t) +
2

V

V−1∑
k=1

cos(tφk) . (27)

Multiplying by eitφ and summing one gets,

ρ(φ) =
2(d− 1)

πd

sin2 φ

1− 4(d−1)
d2

cos2 φ
+

1

π
Re

∞∑
t=3

y
(A)
t eitφ +O

(
1

V

)
. (28)

The first term is the smooth part, which is just the Kesten-McKay density. It is
known from combinatorial graph theory that the counting statistics of t-periodic
nb-walks with t < log V is Poissonian, with 〈trY t〉 = (d− 1)t. Thus, the mean value
of yt vanishes as O

(
1
V

)
. Hence, as expected,

lim
V→∞

〈ρ(µ)〉 = ρKM(µ). (29)

The O
(

1
V

)
correction to the smooth part is known explicitly but will not be quoted

here. The trace formula (28) was derived previously by P. Mnëv, ([35]) in an entirely
different way.

Equation (28) is the desired form of the trace formula. The summation extends
over the contribution of t-periodic nb periodic walks, and the only information re-

quired for the spectral density are the y
(A)
t - the normalized number of the periodic

nb-walks. Note in passing that nb-walks appear in various contexts in combinatorial
graph theory as in e.g.,[34]. Further comments on the trace formula are deferred to
the last paragraphs in this chapter.
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The trace formula for the spectrum of M has the same form. The only difference

comes by replacing y
(A)
t by :

y
(M)
t =

1

V

∑
α eiχα

(
√

(d− 1))t
, (30)

where the sum above is over all the nb t-periodic walks, and χα is the total phase

(net magnetic flux) accumulated along the t-periodic walk. For finite V ,
〈
y

(M)
t

〉
6= 0

since χα = 0 for nb periodic walks where each bond is traversed equal number of
times in the two directions. However, in the limit of large V , the number of such

walks is small and therefore
〈
y

(M)
t

〉
→ 0.

2.3 A periodic orbit expression for the spectral form-factor

Here and in the sequel, whenever the expression applies to both the A and M
spectra, the superscripts (A) or (M) are deleted. Writing ρ̃(φ) = ρ(φ)− ρKM(φ) we
get from the trace formula (28)

yt = 2

∫ π

0

cos (tφ)ρ̃(φ)dφ . (31)

Thus, 〈
y2
t

〉
= 4

∫ π

0

∫ π

0

cos (tφ) cos (tψ) 〈ρ̃(φ)ρ̃(ψ)〉 dφdψ . (32)

Recalling (33)

K̃V (s) ≡ 2V

∫ π

0

∫ π

0

cos(sφ) cos(sψ)〈ρ̃(φ)ρ̃(ψ)〉dφdψ , (33)

and comparing (32) and (33) we get :

K̃V (t) =
V

2

〈
y2
t

〉
. (34)

So far the treatment of the two ensembles was carried on the same formal footing.
We shall now address each ensemble separately.

2.3.1 The form factor for the GV,d ensemble

In graph theory it is customary to discuss the number of nb t-cycles on the
graph Ct = Yt

2t
(in this definition, one does not distinguish between cycles which are

conjugate to each other by time reversal). From combinatorial graph theory it is

known that on average 〈Ct〉 = (d−1)t

2t
[36, 37, 38, 39]. Hence K̃ can also be written

as :

K̃
(A)
V (t) =

t

V
·
〈
(Ct − 〈Ct〉)2〉
〈Ct〉

. (35)

The expression of the spectral form factor K̃
(A)
V (t) in terms of combinatorial quan-

tities is the main result of the present work. In particular, it shows that the form
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factor is the ratio between the variance of Ct - the number of nb t-cycles - and its
mean. This relation is valid for all t in the limit V →∞.

For t satisfying t < logV , it is known that asymptotically, for large V , the Ct’s
are distributed as independent Poisson variables. For a Poisson variable, the variance
and mean are equal. Using (21) we get that for τ � 1

K(A)(τ) = 2τ . (36)

This result coincides with the COE prediction (16). It provides the first rigorous
support of the connection, established so far numerically, between RMT and the
spectral statistics of graphs . It is analogous to Berry’s “diagonal approximation”
[28] in quantum chaos.

2.3.2 The form factor for the GMV,d ensemble

In the magnetic ensemble the matrices (10) are complex valued and Hermi-
tian, which is tantamount to breaking time reversal symmetry. The relevant RMT
ensemble in this case is the CUE.

In the ensuing derivation we shall take advantage of the statistical independence
assumed for the magnetic phases which are uniformly distributed on the circle.
Ensemble averaging will imply averaging over both the magnetic phases and the
graphs.

Recall that y
(M)
t , in the case of magnetic graphs, was defined, by (30) :

y
(M)
t =

1

V

∑
α eiχα

(
√

(d− 1))t
.

y
(M)
t is the sum of interfering phase factors contributed by the individual nb t-

periodic walks on the graph. The phase factors of periodic walks which are related
by time reversal are complex conjugated. Periodic walks which are self tracing (mea-
ning that every bond on the cycle is traversed the same number of times in both
directions), have no phase : χα = 0. Using standard arguments from combinatorial
graph theory one can show that for t < logd−1 V , self tracing nb t-periodic walks
are rare. Moreover, the number of t-periodic walks which are repetitions of shorter
periodic walks can also be neglected. Hence

y
(M)
t ≈ 1

V

2t
∑′

α cos(χα)

(
√

(d− 1))t
. (37)

where
∑′

includes summation over the nb t-cycles excluding self tracing and non-
primitive cycles. The number of t-cycles on the graph is Ct, hence (37) has ap-

proximately Ct terms. From (37) and the definition of y
(M)
t , it is easily seen that

〈(y(M)
t )2〉 = 1

V 2(d−1)t
4t2〈

(∑′
cos(χα)

)2

〉. Averaging over the independent magnetic

phases we get that

K̃
(M)
V (t) =

V

2
〈(y(M)

t )2〉 ≈ t

2V
≡ τ

2
. (38)

For τ → 0, and using (21) we get

K(M)(τ) = τ , (39)

which agrees with the CUE prediction.
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2.4 From RMT to combinatorial graph theory

We have shown above that by making use of the known asymptotic statistics
of Yt one can derive the leading term in the expansion of KV (t). It behaves as gτ
where g = 1, 2 for the two graph ensembles, which is consistent with the predictions
of RMT. Had we known more about the counting statistics, we could make further
predictions and compare them to RMT results. However, to the best of our know-
ledge we have exhausted what is known from combinatorial graph theory, and the
only way to proceed would be to take the reverse approach, and assume that the
form factor for graphs is given by the predictions of RMT, and see what this implies
for the counting statistics. Checking these predictions from the combinatorial point
of view is beyond our scope. However, we shall show that they are accurately sup-
ported by the numerical simulations. In a way, this approach is similar to that of
Keating and Snaith [40] who deduced the asymptotic behavior of the high moments
of the Riemann ζ function on the critical line, by assuming that the Riemann zeros
statistics follow the RMT predictions for the GUE ensemble.

The starting points for the discussion are the relations (34) and (20) which can
be combined to give〈

(yt)
2
〉

=
2

V
K̃V (t) =

2

V π

∫ π

0

dθK
(
τS
′
(θ)
)
. (40)

Our strategy here will be to use for the unfolded form factor the known expressions
from RMT (16) and (17) and compute 〈(yt)2〉. This will provide an expression for
the combinatorial quantities defined for each of the graph ensembles, and expanding
in τ we shall compute the leading correction to their known asymptotic values.
The actual computations are somewhat cumbersome and will not be repeated here.
Starting with the simpler CUE form we get for the GM(V, d) assemblage,

K̃(M)(τ) =
τ

2
+ f1(d)τ

3
2 +O

(
τ 2
)

(41)

where

f1(d) = − 1

3π
√
D

; D ≡ d(d− 1)

(d− 2)2
. (42)

Thus, the difference (K̃(M)(τ)− τ
2
)/f1(d), should scale for small τ as τ

3
2 for all values

of d. This data collapse is shown in Fig. 4.
For the G(V, d) assemblage :

K̃(A)(τ) = τ + f2(d)τ
3
2 + . . . (43)

where

f2(d) =
1√
2D

(
2

π
· arccoth(

√
2)− 2

√
2

3π
− 1

)
. (44)

Thus, the difference (K̃(A)(τ)−τ)/f2(d), at small τ , should scale as τ
3
2 independently

of d. This data collapse is shown in Fig. 5.
Using the above and (35) we can write,〈

(Ct − 〈Ct〉)2〉
〈Ct〉

=
1

τπ

∫ π

0

dθKCOE

(
τS
′
(θ)
)
−→
τ→0

1 + f2(d)
√
τ + . . . (45)
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Fig. 4 – (K̃(M)(τ)− τ
2 )/f1(d) for various values of d vs. the curve τ

3
2 .

If the Ct’s were Poissonian random variables, the expansion above would terminate
at 1. Since it does not, we must conclude that the Ct’s are not Poissonian. The
highest order deviation comes from the next order term in the expansion which is
proportional to τ

1
2 . The coefficient, f2(d), is explicitly calculated above.

We can examine the behavior at another domain of τ , namely τ > 1.

It can easily be shown that S
′
(θ) ≥ d

4(d−1)
. Consequently, for τ > 4(d−1)

d
, the argu-

ment of K in (20) is larger than one, and so

lim
τ→∞

K̃(A)(τ) = 1. (46)

Combining this result with (35), provides the asymptotic of the variance-to-mean
ratio :

lim
τ→∞

τ
var(Ct)

〈Ct〉
= 1, for V, t→∞;

t

V
= τ (47)

This is a new interesting combinatorial result, since very little is known about the
counting statistics of periodic orbits in the regime of τ > 1.

2.5 Some comments on trace formulae

The trace formula quoted in (28) is but a single expression taken from a
continuum of formulae, all of them are exact, pertain to the same spectral den-
sity, but make use of a different class of periodic orbits. For every real parameter
w ∈ [1, d−1

2
], and d ≥ 3 one can write a trace formula for the spectrum of the ad-

jacency matrix. Writing the spectral density in terms of the spectral parameter µ
the trace assumes the standard separation between the smooth and the oscillatory
part :

ρ(µ) = ρsmooth(µ;w) + ρ̃(µ;w) +O
(

1

V

)
. (48)
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Fig. 5 – (K̃(A)(τ)− τ)/f2(d) for various values of d vs. the curve τ
3
2 .

Here, however, the expression for the smooth part

ρsmooth(µ;w) =

d/(2π)√
4w(d− w)− µ2

(
1− (d− 2w)(d− 2)

d2 − µ2
+

(w − 1)2(µ2 − 2w(d− w))

w2(d− w)2

)
(49)

differs from the Kesten-McKay expression. In other words, when both sides of (48)
are averaged over the ensemble, 〈ρ̃(µ,w)〉 6= 0 ! The oscillatory part takes the form,

ρ̃(µ;w) =
1

π
Re

(
∞∑
t=3

yt(w)√
4w(d− w)− µ2

exp
it µ

2
√
w(d−w)

)
. (50)

The information about the periodic walks is stored in yt(w) (the analogue of yt
above (26)). Here, all the t-periodic walks are contributing, and every backscatter is
endowed with a weight (1− w). Denting by N(t; g) the number of t-periodic walks
which backscatter exactly g times, yt(w) is

yt(w) =
1

V

∑
gN(t; g)(1− w)g − (d− w)t

(
√
w(d− w))t

. (51)

Each of the two terms which contribute to ρ(µ) depend on w yet, their sum does
not. The dependence of ρ̃(µ;w) on w comes from two sources - the weights of the
backscattered orbits and the phase factor. Hence, the re-summation required to
obtain (28) which corresponds to w = 1 from (50) with w 6= 1 is far from being
trivial. Exploratory studies [5] show how combinatorial expressions for counting
certain families of periodic walks can be derived by studying the w dependence of
the trace formula. Reviewing this study exceeds the scope of the present review,
and it is mentioned only to indicate the potential wealth stored in this and other
parametric dependent trace formulae. Another family of trace formula was written
down in [4], but will not be discussed here.
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3 Eigenfunctions

There are several interesting properties which mark the eigenfunctions of the
Schrödinger operator in quantum chaotic systems. The most frequently studied mo-
dels are quantum chaotic billiard domains Ω ∈ R2, and their properties will serve as
a bench-mark for the comparison with the properties of eigenvectors of the adjacency
matrices A corresponding to d-regular graphs.

The most important features displayed by wave-functions of quantum chaotic
billiards are :

– Almost all eigenfunctions ψn (ordered by increasing value of the spectral
parameter and square normalized) for sufficiently large n, are distributed
uniformly in the sense that given any smooth ”observable” A(x), x ∈ Ω∫

Ω

ψ2
n(x)A(x)d2x→

∫
Ω

A(x)d2x (52)

when n→∞ on all integer sequences from which sequences of zero measure
might be excluded. [41]

– On the atypical sequences, the eigenfunction might show high concentration
near classically periodic orbits - a phenomenon known as scarring [42].

– In the limit of large n, the wave functions are conjectured to behave in pro-
bability as uniformly distributed Gaussian variables with the covariance

〈ψn(x)ψn(y)〉 = J0(kn|x− y|) . (53)

Here, the triangular brackets stand for an average over a properly defined
spectral interval about the mean eigenvalue k2

n. The points x, y are in the
billiard domain and sufficiently remoted from the boundaries, and J0(x) is
the Bessel function of order 0. While the statement that the distribution is
Gaussian is not proven rigorously, it is supported by numerical simulations,
the correlation function can be justified in the semi-classical limit. This pro-
perty is sometimes refer to as the random wave model [43].

– The nodal domains (defined as the connected domains where ψn(x) have a
constant sign) in quantum chaotic billiards display two features - their nor-
malized count νn

n
narrowly distribute around a universal number. Moreover,

they cover Ω in patterns typical to critical percolation. [21, 46]

Back to d-regular graphs : The local tree property of d-regular graphs is at the
basis of our present understanding of the statistical properties of the adjacency
eigenvectors. Considering the infinite d-regular tree, Y. Elon [2] was recently able
to properly construct a ”random wave” model on the infinite d-regular tree whose
Gaussian distribution can be rigorously assessed. The covariance for the Gaussian
field is

φ(λ)(s)
.
= 〈fifj〉 = (d− 1)−s/2

(
d− 1

d
Us

(
λ

2
√
d−1

)
− 1

d
Us−2

(
λ

2
√
d−1

))
s = |i− j| . (54)

Here, fi(λ) stands for the component of the adjacency eigenvector at the vertex
i, with the normalization 〈f 2

i 〉 = 1. The distance s = |i − j| on the graph is the
length of the minimal walk between the vertices i, j, Uk(x) are the Chebyshev po-
lynomials of the second kind, and the triangular brackets denote averaging over the
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Fig. 6 – A comparison between (54)(marked by lines), and the numerical covariance, for a single realization of
G(4000, 3) (denoted by different symbols), where logd−1(n) = 11.97, for k = 4, 5, 6 (the local tree regime).

Fig. 7 – A comparison between (54) (marked by lines), and and the numerical covariance, for G(4000, 3) and
k = 11, 12 (beyond the tree regime).

random wave ensemble. Taking into account the asymptotic behavior of the Cheby-
shev polynomials, one can recognize (54) as the analogue of the correlation function
of random waves for planar random waves (53).

Due to the local tree property, it is natural to expect, (but not yet rigorously
proved), that in the limit V → ∞ the properties derived for the tree graph, will
also hold for G(V, d), for distances within the range s ≤ log V . This was tested
numerically, and the (multivariate) Gaussian distribution for the components of the
adjacency eigenvectors was checked within the numerical accuracy. Figs. 6. and 7.
summarize the numerical tests.

As in billiards, one can define nodal domains of the adjacency vectors as the
connected sub-graphs where the eigenvector components have a constant sign. The
number of nodal domains obeys the analogue of Courant theorem [44]. There is no
known way to count nodal domains in billiards or even in arbitrary graphs. Y. Elon
[1] proposed recently a method to compute the expected number of nodal domains
in d-regular graphs as a function of the corresponding eignevalue. His argument will
be sketched here.

For a graph G and an adjacency eigenvector f(λ), the induced nodal graph G̃f
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is obtained by the deletion of edges, which connect vertices that possess opposite
signs in f

G̃f = (V, Ẽf ) , Ẽf = {(vi, vj) ∈ E|fifj > 0} (55)

We also define
pe(f(λ)) = P(e ∈ Ẽf ) (56)

to denote the probability that a random edge e ∈ E survives the nodal trimming.
According to the random waves hypothesis, pe(f(λ)) should typically converge as
V →∞ into

pe(λ) = 2

∫ ∞
0

∫ ∞
0

df
1

2π
√
|Cλ|

exp

(
−1

2
〈f , C−1

λ f〉
)

(57)

=
1

2
+

1

π
arcsin

(
λ

d

)
where f = (f1, f2) and the covariance operator elements are (Cλ)11 = (Cλ)22 =
φ(λ)(0) = 1, (Cλ)12 = (Cλ)21 = φ(λ)(1) = λ/d. (φ(λ)(s) is the covariance defined in
(54)). This results which follows from the random waves conjecture was checked
numerically and found to reproduce the simulations in a perfect way.

Since on average, the induced nodal graph G̃f posses pe(λ) · |E| = nd
2
pe(λ) edges

and V vertices, the expected nodal count may be bounded from below (for all of the
eigenvectors but the first) by neglecting the cycles in G̃ :

E
(
ν(λ)

V

)
≥ max

{
2

V
,

(
1− d

2
pe(λ)

)}
(58)

While (58) lose its efficiency as d increases1, for low values of d, this crude bound
matches surprisingly well the observed nodal count as shown in Fig. 8. By taking

Fig. 8 – A comparison between the theoretical estimate for the nodal count and the observed count for a single
realization of G(4000, 3). The inset is a magnification of the spectral window near the bound’s flexion - the only
part of the spectrum, in which the observed count deviates considerably from the bound.

1In fact, for d > 7, ∀λ, 1− dpe(λ)/2 < 0. Therefore tn that case the bound becomes trivial.
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into account more correlations, Elon was able to improve the crude bound above [1].
Due to space limitation this will not be discussed here any further.

Percolation is an important topic of research in probabilistic graph theory [47].
This subject was recently extended [3] by defining percolation of level sets of the
adjacency eigenvectors as explained below. The α level set of an eigenvector is defined
as the subgraph where G̃α = {vi ∈ G : fi > α} (the normalization 1

V

∑
i f

2
i = 1 is

assumed). Given an adjacency eigenvector (corresponding to an eigenvalue λ) one
can study the α dependence of the ratio

|G̃max
α |
|G̃α|

(59)

where G̃max
α is the maximal connected component in G̃α. The α level set will be

called percolating once G̃max
α ∼ V . A percolation transition occurs at αc(λ) if, in the

limit V → ∞ and for almost all graphs in G(V, d), the ratio (59) is discontinuous
at α = αc(λ). The transition for a single large graph is shown in Fig. (9) for a few
values of λ. Assuming the validity of the random wave conjecture, Y. Elon was able

Fig. 9 – The ratio between the magnitude of the largest level set to the size of the induced graph G̃α for a single
realization of a (4000, 3) graph. each curve corresponds to one eigenvector, while α is varied along the curve.

to compute the dependence of the critical level on both λ and d, and found a very
good agreement with the numerical results, as shown in Fig. 10

The applicability of the random wave conjecture of the adjacency vectors is
supported very robustly by the numerical and theoretical considerations. A rigorous
validation is still lacking.

4 Scattering

Chaos is usually associated with bounded dynamical systems. However, clas-
sical chaos can be defined and studied also in open (scattering) systems, and its
quantum analogue provided many interesting theoretical problems and practical ap-
plications [48, 49, 50]. In this section, it will be shown how a bound finite graph
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Fig. 10 – A comparison between the theoretical estimates of αc(λ, d) based on the random wave model (lines) to
the numerically computed αc(λ, d) for (V, d) graphs (markers).

can be converted to a scattering system by attaching “leads” to infinity [7, 51]. An
expression for the scattering matrix will be provided, which can be further studied
in various contexts such as e.g., resonance distribution and conductance fluctuations
and correlations.

Consider a finite (not necessarily d-regular) graph G(0). In what follows, all
quantities belonging to G(0) will be denoted by a superscript (0). In particular,

D
(0)
i stands for the degree of the vertex i in G(0). Scattering is defined by atta-

ching to any subset of the vertices lead graphs which are defined as follows : A
lead graph l is a semi-infinite set of vertices (l, 1), (l, 2), · · · which are connected
linearly. A vertex is identified by a double index (l, i), l denotes the lead, and i enu-
merates the vertex position on the lead. The lead connectivity (adjacency) matrix

is A
(Lead)
(l,n),(l′,n′) = wδl,l′δ|n−n′|,1 , n, n

′ ∈ N+, where w stands for the number of parallel

bonds which connect successive vertices. (All quantities related to the leads will be

denoted by the superscript (Lead)). The spectrum of the lead Laplacian ∆
(Lead)
l and

the corresponding eigenfunctions f =
(
f(l,1), f(l,2), · · ·

)>
satisfy

(∆
(Lead)
l f)(l,n) = −w(f(l,n+1) + f(l,n−1)) + 2wf(l,n) = λf(l,n) for n > 1 ,

= −wf(l,2) + wf(l,1) = λf(l,1) for n = 1 . (60)

The spectrum is continuous and supported on the spectral band λ ∈ [0, 4w] (the
conduction band). For any λ in the conduction band, there correspond two eigen-
functions which can be written as linear combinations of counter-propagating waves :

f
(±)
(l,n) = ξn−1

± where ξ± = 1− λ

2w
±

√(
1− λ

2w

)2

− 1 = e±iα(λ) . (61)
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For λ > 4w, |ξ−| > |ξ+|. The reason for constructing the leads with w parallel
bonds is because the conduction band can be made arbitrarily broad. In the present
application, an appropriate choice of w would be of the order of the mean valency
in the interior graph, so the spectrum of G(0) falls well within the conduction band.

A function which satisfies the boundary condition at n = 1 (second line of (60))
is,

f(l,n) = f
(−)
(l,n) + sl(λ)f

(+)
(l,n) , (62)

where

sl(λ) = −1− ξ+

1− ξ−
= ξ+ , |sl(λ)| = 1 for λ ∈ [0, 4w] . (63)

The lead scattering amplitude sl(λ) provides the phase gained by scattering at the
end of the lead (as long as λ is in the conduction band).

Returning now to the interior graph G(0) it is converted into a scattering graph
by attaching to its vertices semi-infinite leads. At most one lead can be attached
to a vertex, but not all vertices should be connected to leads. Let L denote the set
of leads, and L = |L|. The connection of the leads to G(0) is given by the V (0) × L
“wiring” matrix

Wj,(l,1) =

{
1 if j ∈ V(0) is connected to l ∈ L
0 otherwise

. (64)

The number of leads which emanate from the vertex i is either 0 or 1, and is denoted
by di = Wi,(l,1). Define also the diagonal matrix D̃ = diag(di) so that

WW> = D̃ ; W>W = I(L) , (65)

where I(L) is the L× L unit matrix.
The scattering graph G is the union of G(0) and the set of leads L. Its vertex set

is denoted by V and its adjacency matrix A for G is given by,

∀i, j ∈ V , : Ai,j =


A

(0)
i,j if i, j ∈ V(0)

A
(Lead)
i=(l,i),j=(l,j) if l ∈ L

wWi,j=(l,1) if i ∈ V(0) and l ∈ L
. (66)

As is usually done in scattering theory, one attempts to find eigenfunctions f of the
discrete Laplacian of the scattering graph, subject to the condition that on the leads
l = 1, · · · , L the wave function consists of counter propagating waves :

f(l,n) = alξ
n−1
− + blξ

n−1
+ , n ≥ 1 . (67)

where al and bl are the incoming and outgoing amplitudes. They are to be determined
from the requirement that f is an eigenfunction of the scattering graph Laplacian.
It will be shown below that this requirement suffices to provide a linear relation-
ship between the incoming and outgoing amplitude. The L × L scattering matrix
S(Lead)(λ) is defined as the mapping from the incoming to the outgoing amplitudes :

b = S(Lead)(λ)a . (68)
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To compute S(Lead)(λ), consider the action of the Laplacian on an eigenvector f .

∀i ∈ V(0) : (∆f)i = −
∑
j∈V(0)

A
(0)
i,j fj − w

∑
l∈L

Wi,(l,1)f(l,1) + (D
(0)
i + wdi)fi = λfi.

∀l ∈ L : (∆f)(l,1) = −w
∑
i∈V(0)

W>
(l,1),ifi − wf(l,2) + 2wf(l,1) = λf(l,1) .

(∆f)(l,n) = −wf(l,n+1) − wf(l,n−1) + 2wf(l,n) = λf(l,n). (69)

The equations for i ∈ V(0) (first line in (69) above), can be put in a concise form :(
∆(0) + wD̃ − λI(V (0))

)
f (V (0)) = wW f

(L)
1 . (70)

where I(V (0)) is the unit matrix in V (0) dimension, f (V (0)) is the restrictions of f to

the vertices of the interior graph G(0) and f
(L)
1 is the L dimensional vector with

components f(l,1), l = 1, · · · , L. For λ away from the eigenvalues of ∆(0) + wD̃ the

V (0) × V (0) matrix R(0)(λ) is defined as,

R(0)(λ) =
(

∆(0) + wD̃ − λI(V (0))
)−1

. (71)

Thus,

f (V (0)) = wR(0)W f
(L)
1 . (72)

Substituting in the second set of equations in (69) and using (67),(
−w2W>R(0)(λ)W + (2w − λ)I(L)

)
(a + b) = w(a ξ− + b ξ+). (73)

This can be easily brought into the form (68). Using the fact that 2−λ/w = ξ−+ξ+

we get,

S(Lead)(λ) = −
(
wW>R(0)(λ)W − ξ− I(L)

)−1 (
wW>R(0)(λ)W − ξ+ I(L)

)
. (74)

This is the desired form of the scattering matrix. It has a few important properties.
i. As long as λ is in the conduction band, ξ− and ξ+ are complex conjugate and
unitary. Since W>R(0)(λ)W is a symmetric real matrix, S(Lead)(λ)> = S(Lead)(λ) and
S(Lead)(λ)S(Lead)(λ)† = I(L), that is, S(Lead)(λ) is a symmetric and unitary matrix.

ii. Once λ is outside of the conduction band, the f
(±)
(l,n) are exponentially increa-

sing or decreasing solutions - they are the analogues of the evanescent waves en-
countered in the study of wave-guides. One of the reason for the introduction of
the w parallel bonds in the leads was to broaden the conduction band and avoid
the spectral domain of evanescent waves. However, for the sake of completeness
one observes that the scattering matrix as defined above can be analytically conti-
nued outside of the conduction band by using (61) which is valid for any λ. The
S(Lead)(λ) matrix outside the conduction band loses its physical interpretation, and
it remains symmetric but is not any more unitary. However, it is a well defined ob-
ject, and can be used in the sequel for any real or complex λ. In the limit λ → ∞,

S(Lead)(λ)→ ξ+W
>R(0)(λ)W ≈

(
w
λ

)2
I(L).

iii. At the edges of the conduction band ξ±(λ = 0) = 1 ; ξ±(λ = 4w) = −1 .
Substituting in (74) one finds that at the band edges, S(Lead) = −I(L).
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iv. The matrix R(0)(λ) is well defined for λ away from the spectrum of ∆(0) + wD̃.
Approaching these values does not cause any problem in the definition of S(Lead)(λ)
since there S(Lead) = −I(L). However, for sufficiently large w the singularities of
R(0)(λ) can be separated away from the domain where the spectrum of G(0) is sup-
ported.
v. The resonances are defined as the poles of the scattering matrix in the complex
λ plane. They are the solution of the equation

zres(λ) = det
(
wW>R(0)(λ)W − ξ− I(L)

)
= 0 . (75)

The point λ = 0 is not a pole since S(Lead)(λ = 0) = −I(L).
vi. Finally, it might be instructive to note that the matrix R(0)(λ) is closely related
to the discrete analogue of the Dirichlet to Neumann map. This can be deduced
from the following construction : add to each vertex i ∈ V(0) a new auxiliary vertex
ĩ connected exclusively to i. (Here we use w = 1 to make the analogy clearer). Write

the discrete Laplacian for the new graph, and solve (∆ − λI )̃f = 0, where f̃ is a
2V (0) dimensional vector, the first V entries correspond to the original vertices, and
the last V entries correspond to the auxiliary vertices : f̃ = (f ,g)>. Assuming that
the values gĩ on the auxiliary vertices are given, the entries in f can be expressed
as f = R(λ)g, where R(λ) as defined in (71). To emphasize the connection to the
Dirichlet to Neumann map, define ψ = 1

2
(g + f) (the “boundary function”) and

∂ψ = (g − f) (the “normal derivative”) then,

∂ψ = M(λ)ψ ; M(λ) = 2(I(V (0)) +R(λ))−1(I(V (0)) −R(λ)) . (76)

The Dirichlet to Neumann map is defined also in other applications of graph theory,
see e.g., [52].

The general setup displayed above can be easily converted to the case of d-
regular graphs, and the information accumulated for their spectral and eigenfunc-
tions properties could be used in the scattering context. This program is now under
study.

5 Summary and prospects

The three topics covered in the preceding sections are at the center of the re-
search in quantum chaos, and the close conceptual and technical links with quantum
chaos substantiate the claim expressed by the title of the present article - indeed,
d-regular graphs are a paradigm model for quantum chaos. This model is as rich
as the “quantum graphs” which where introduced a while ago, and turned out to
be a very fertile domain in its own right, and provided several new insights to pro-
blems which are commonly addressed in “quantum chaos”. [53, 54, 55] As much of
the research reported here is the result of work done in the past three years only,
much remains to be done, and a few routes should be opened to explore further the
potential stored in the d-regular graphs model.
i. The connection between graph combinatorics and spectral statistics should go
much more deeply than what is known today. As was shown above, this research at
the interface of the two fields stores potential advantages in both directions.
ii. Isospectral d-regular graphs are known to exist [56], and methods to build them
systematically were proposed by several authors. It was suggested some time ago that
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the nodal domain counts can be used to distinguish between isospectral domains.
Some analytical results on small and simple graphs, and numerical simulations per-
taining for large graphs support the validity of this conjecture. Further research is
needed to substantiate these claims in a rigorous way.
iii. The range of the graph model can be extended in a major way by assigning
weights to the edges, and / or potentials to the vertices. The graph Laplacian would
then read :

(∆f)j = −
∑
i

Tj,iAj,ifi + tjfj + Vjfj (77)

Where the positive weights are denoted by Tj,i = Ti,j and tj =
∑

i Ti,j. The ver-
tex potentials are Vi. Choosing the weights and potentials at random one could
investigate the rôles of diagonal and off diagonal disorder on the spectrum and ei-
genfunctions, in the limit V → ∞. The question whether a localization transition
occurs is open.
iv. The spectra of quantum graphs with equal (or rationally related) edge lengths, are
intimately related to the spectra of the underlying discrete graphs. In particular, the
spectral properties of discrete d-regular graphs induce interesting features in their
quantum analogues, which call for further research [4].
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