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Abstract. String theory was originally developed in an attempt to describe the strong nuclear force.
However, it turned out to work better as a unified theory of gravity and the other forces. This
manuscript gives a pedagogical introduction to the basic mathematical structure of string theory
that led to this conclusion. It also describes the extension to include fermions, which results in the
inclusion of supersymmetry and the construction of superstring theory. Following that, it gives a more
qualitative discussion of recent developments as well as some of the most important unsolved problems.

1 Introduction

String theory arose in the late 1960s in an attempt to understand the strong nuclear force. This
is the force that is responsible for holding protons and neutrons together inside the nucleus of an
atom. In the 1970s it was also recognized to be the force that is responsible for holding quarks
together inside the protons and neutrons, as well as various other (unstable) strongly interacting
particles. A theory based on one-dimensional extended structures, called strings, rather than point-
like particles, can account qualitatively for various features of the strong nuclear force and the
strongly interacting particles (called hadrons). The basic idea in the string description of the
strong interactions is that the various specific particles correspond to specific oscillation modes
(or quantum states) of the string. This proposal gives a very satisfying unified picture in that it
postulates a single fundamental object (namely, the string) that explains the myriad of different
observed hadrons.

This program was not fully successful. Moreover, in the early 1970s another theory of the
strong nuclear force — called quantum chromodynamics (or QCD) — was developed. As a result of
this, as well as various technical problems in the string theory approach, string theory fell out of
favor. The modern viewpoint is that this program made good sense, but that it failed because the
correct string theory that gives an alternative (or “dual”) description of QCD was not identified. In
fact, such a string theory is still not known. The specific string theories that were considered at the
time had problems, which we will describe later. However, as will also be discussed in more detail,
they were suitable for a completely different and seemingly more ambitious purpose: a quantum
theory that unifies the description of gravity and the other fundamental forces.

Even though string theory [1, 2] is not yet fully formulated, and we cannot yet give a detailed
description of how the standard model of elementary particles should emerge at low energies,
there are some general features of the theory that can be identified. These are features that seem
to be quite generic irrespective of how various details are resolved. The first, and perhaps most
important, is that general relativity is necessarily incorporated in the theory. It gets modified at
very short distances/high energies but at ordinary distances and energies it is present in exactly
the form proposed by Einstein. This is significant, because it is arising within the framework
of a consistent quantum theory. Ordinary quantum field theory does not allow gravity to exist;
string theory requires it! The second general fact is that Yang—Mills gauge theories of the sort
that comprise the standard model naturally arise in string theory. We do not understand why
the specific SU(3) x SU(2) x U(1) gauge theory of the standard model should be preferred, but
theories of this general type do arise naturally at ordinary energies. The third general feature of
string theory is supersymmetry. The mathematical consistency of string theory depends crucially
on supersymmetry, and it is very hard to find consistent solutions (or quantum vacua) that do not
preserve at least a portion of this supersymmetry. This prediction of string theory differs from the
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other two (general relativity and gauge theories) in that it really is a prediction. It is a generic
feature of string theory that has not yet been discovered experimentally.

In conventional quantum field theory the elementary particles are mathematical points,
whereas in perturbative string theory the fundamental objects are one-dimensional loops (of zero
thickness). Strings have a characteristic length scale, which can be estimated by dimensional anal-
ysis. Since string theory is a relativistic quantum theory that includes gravity it must involve the
fundamental constants ¢ (the speed of light), / (Planck’s constant divided by 27), and G (Newton’s
gravitational constant). From these one can form a length, known as the Planck length

3/2
0, = (E) =1.6 x 107*3 cm. (1.1)
C
Similarly, the Planck mass is’
hc 1/2
mp = (5> =1.2 x 10" GeV /> (1.2)

Experiments at energies far below the Planck energy cannot resolve distances as short as the Planck
length. Thus, at such energies, strings can be accurately approximated by point particles. From
the viewpoint of someone who believes in string theory, this explains why quantum field theory
has been so successful.

As a string evolves in time it sweeps out a two-dimensional surface in spacetime, which is
called the world sheet of the string. This is the string counterpart of the world line for a point
particle. In quantum field theory, analyzed in perturbation theory, contributions to amplitudes are
associated to Feynman diagrams, which depict possible configurations of world lines. In particular,
interactions correspond to junctions of world lines. Similarly, string theory perturbation theory
involves string world sheets of various topologies. A particularly significant fact is that these world
sheets are generically smooth. The existence of interaction is a consequence of world-sheet topology
rather than a local singularity on the world sheet. This difference from point-particle theories
has two important implications. First, in string theory the structure of interactions is uniquely
determined by the free theory. There are no arbitrary interactions to be chosen. Second, the
ultraviolet divergences of point-particle theories can be traced to the fact that interactions are
associated to world-line junctions at specific spacetime points. Because the string world sheet is
smooth, string theory amplitudes have no ultraviolet divergences.

2 Basic String Theory

2.1 World-Volume Actions

In order to set the stage for strings, let me start with a quick review of the world-line description of
a relativistic point particle. A point particle sweeps out a trajectory (or world line) in spacetime.
This can be described by functions z#(7) that describe how the world line, parameterized by 7, is
embedded in the spacetime, whose coordinates are denoted z*. For simplicity, let us assume that
the spacetime is flat Minkowski space with a Lorentz invariant line element is given by

ds® = —Npodztde” = Adt? — dzidxt. (2.1)
In units A = ¢ = 1, the action for a particle of mass m is given by

S = —m/ds. (2.2)

This could be generalized to a curved spacetime by replacing 7, by a metric g, (), but we will
not do so here. This action is stationary for geodesics, which are spacetime trajectories whose

LA GeV is 10° electron volts and a TeV is 1012 electron volts.
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invariant length is extremal. As a result, standard relativistic kinematics of point particles follows
from the Euler-Lagrange equations of this action.
In terms of the embedding functions, z#(t), the action can be rewritten in the form

S = —m/dn/—nuy:bl‘.ic”, (2.3)

where dots represent 7 derivatives. An important property of this action is invariance under local
reparametrizations. This is a kind of gauge invariance, whose meaning is that the form of S is
unchanged under an arbitrary reparametrization of the world line 7 — 7(7). This reparametrization
invariance is a one-dimensional analog of the four-dimensional general coordinate invariance of
general relativity. Mathematicians refer to this kind of symmetry as diffeomorphism invariance.

We can now generalize the analysis of the massive point particle to a p-brane (an object with p
spatial dimensions) of tension T}. The action in this case involves the invariant (p+ 1)-dimensional
world-volume and is given by

Sp = _Tp/dﬂpﬂa (2.4)
where the invariant volume element is

dppr1 = \/— det(—n,, 0az"5z") dP 0. (2.5)
Here the embedding of the p-brane into d-dimensional spacetime is given by functions z#(c®). The
index @ = 0,...,p labels the p + 1 coordinates ¢* of the p-brane world-volume and the index

p#=0,...,d—1labels the d coordinates z* of the d-dimensional spacetime. We have defined

Ox*

6a.'l]'u = &7. (26)

The determinant operation acts on the (p+1) x (p+ 1) matrix whose rows and columns are labeled
by o and 8. The tension T}, is interpreted as the mass per unit volume of the p-brane. For a 0-brane,
it is just the mass. S, is reparametrization invariant.

Let us now specialize to the case of a string, which has p = 1. Evaluating the determinant

gives
Slz] = —T/daah'\/z"?a:’2 —(z-2")2, (2.7

1

where we have defined ¢° = 7, ¢! = o, and

ozt ozt
=, = 2.8
v ar’ ° Oo (28)
This action is called the Nambu—Goto action [3, 4]. It is proportional to the invariant area of the
world-sheet, which is extremal for a classical trajectory. This is the string analog of a geodesic.

The Nambu—Goto action is equivalent to the action
T
Sz, h] = —5/dZU\/—hhaan@ax“a@’x”, (2.9)

where h,s(0,7) is the world-sheet metric, h = det hng, and h*? is the inverse of h,z. The Euler—
Lagrange equation obtained by varying h®? gives the vanishing of the two-dimensional stress-energy
tensor

1
Top = O - Oz — 5ha5h7687$ - 95z = 0. (2.10)

This equation can be used to eliminate the world-sheet metric from the action, and when this is
done one recovers the Nambu—Goto action.

In addition to reparametrization invariance, the action S[z, k] has another local symmetry,
conformal invariance. Specifically, it is invariant under the transformation

hap = Ao, T)hag (2.11)

¢ = k.
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This local symmetry is special to the p = 1 case (strings).

The two reparametrization invariance symmetries of S[z,h] allow us to choose a gauge in
which the three functions heg (this is a symmetric 2 x 2 matrix) are expressed in terms of just one
function. A convenient choice is the “conformally flat gauge”

hag = Nage? @), (2.12)

Here, 1,3 denoted the two-dimensional Minkowski metric of a flat world sheet. However, because
of the factor e?, hyp is only “conformally flat.” Classically, substitution of this gauge choice into
Sz, h] leaves the gauge-fixed action

Sz—%/ﬁmw%w%$ (2.13)

Quantum mechanically, the story is more subtle. Instead of eliminating h via its classical field
equations, one should perform a Feynman path integral, using standard machinery to deal with the
local symmetries and gauge fixing. When this is done correctly, one finds that in general ¢ does not
decouple from the answer. Only for the special case d = 26 does the quantum analysis reproduce
the formula we have given based on classical reasoning. Otherwise, there are correction terms
whose presence can be traced to a conformal anomaly (i.e., a quantum-mechanical breakdown of
the conformal invariance) [5].

The gauge-fixed action is quadratic in the z’s. Mathematically, it is the same as a theory of
d free scalar fields in two dimensions. The equations of motion obtained by varying z# are simply
free two-dimensional wave equations: # — x"# = 0. This is not the whole story, however, because
we must also take account of the constraints T3 = 0. Evaluated in the conformally flat gauge,
these constraints are

T01 = T10 =z .’El =0 (214)
1
TOO = T11 = §($2 + .Z’I2) = 0.

Adding and subtracting gives (¢ & z')? = 0.

2.2 Boundary Conditions

To go further, one needs to choose boundary conditions. For a closed string, which is topologically
a circle, one should impose periodicity in the spatial parameter o. Choosing its range to be 7 (as
is conventional) z#(o, 1) = z#(0 + 7, 7).

For an open string, which is topologically a line interval, each end can be required to satisfy
either Neumann or Dirichlet boundary conditions (for each value of u).

Ox*
Neumann : e = 0 ato=0orm (2.15)
o
. ozt
Dirichlet : 5 = 0 ato=0orm. (2.16)
T

The Dirichlet condition can be integrated, and then it specifies a spacetime location on which the
string ends. The only way this makes sense is if the open string ends on a physical object, which is
called a D-brane. (D stands for Dirichlet.) If all the open-string boundary conditions are Neumann,
then the ends of the string can be anywhere in the spacetime. The modern interpretation is that
this means that spacetime-filling D-branes are present.

Let us now consider the closed-string case in more detail. The general solution of the 2d wave
equation is given by a sum of “right-movers” and “left-movers”:

zt(o,7) = ahy(r — o) + 25 (1 + o). (2.17)
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The requirement that z*(o,7) is real and periodic can be solved explicitly in terms of Fourier
series:

1 ) 1 .
zhy = 5:1:” + C2pt (T — o) + ﬁﬁs Z Ea’,;e_zmﬁ_”) (2.18)
n#0
1 ) 1 ]
L 5:17” + Cpt (T +0) + %Es Z E&Ze_z’"(TJr"),
n#0

where the expansion parameters o, ¥ satisfy o, = (a#)!, and &*,, = (&*)', and the center-of-
mass coordinate z# and momentum p* are real. The fundamental string length scale 4, is related
to the tension T' by

T=-—, o=~ (2.19)

The parameter o is called the Regge slope.

2.3 Quantization

The analysis of closed-string left-moving modes, closed-string right-moving modes, and open-string
modes are all very similar. Therefore, to avoid repetition, we will focus on the closed-string right-
movers. Starting with the gauge-fixed action in eq. (2.13), the canonical momentum of the string
is

0S
o - — Tk
pt(o, 1) = 5o Ti*. (2.20)
Canonical quantization gives (setting i = 1)
[p*(o,7),2" (o', 7)] = —in" (0 — o). (2.21)

This is the string generalization of [p#,z"] = —in*”, which encodes the Heisenberg uncertainty
principle. In the terms of the Fourier components, this implies that

[ab,ar] = MOminon™” and [&%,&1] = MOpmyn,on™”. (2.22)

Recall that a quantum-mechanical harmonic oscillator can be described in terms of raising
and lowering operators, usually called a! and a, which satisfy [a,a!] = 1. We see that, aside
from a normalization factor, the expansion coefficients o, and o, are raising and lowering
operators. There is just one problem. Because 7°° = —1, the time components are proportional to
oscillators with the wrong sign ([a,a!] = —1). This is potentially very bad, because such oscillators
create states of negative norm, which could lead to an inconsistent quantum theory (with negative
probabilities, etc.). Fortunately, in 26 dimensions, the Virasoro constraints Tos = 0 eliminate the
negative-norm states from the physical spectrum.

The classical constraint for the right-moving closed-string modes, (z'z)? = 0, has Fourier
components

T [ _, 1 o

n=—oo

yldobsame tatladnWite svith epépatdxs nSadsetabe normal-

o0
504% + Z O_p - Oy (2.24)
n=1

Here af = £,p"/+/2, where p* is the momentum.
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2.4 The Free String Spectrum

Recall that the Hilbert space of a harmonic oscillator is spanned by states |n),n = 0,1,2,...,
where the ground state, |0), is annihilated by the lowering operator, a|0) = 0, and

(ah)"
n!

In) =

|0). (2.25)

Then, for a normalized ground-state ({0|0) = 1), one can use [a,a'] = 1 repeatedly to prove that
(m|n) = 8m.n and ata|n) = n|n). The string spectrum (of right-movers) is given by the product
of an infinite number of harmonic-oscillator Fock spaces, one for each a¥, subject to the Virasoro
constraints

(Lo—q)l¢) = 0 (2.26)
Ln|¢) = 0, n>0

Here |¢) denotes a physical state, and ¢ is a constant to be determined. It accounts for the arbi-
trariness introduced by the normal-ordering prescription used to define Lg. The Ly equation is a
generalization of the Klein-Gordon equation. It contains p? = —0 - 0 plus oscillator terms whose
eigenvalue determines the mass of the state.

It is interesting to work out the algebra of the Virasoro operators L,,,, which follows from the
oscillator algebra. The result, called the Virasoro algebra, is

C
[Lm, Ln] = (m - ’I’L)Lm+n + E(’I’I’L3 - m)5m+n,0. (227)

The second term on the right-hand side is called the “conformal anomaly term” and the constant
c is called the “central charge.” In the case at hand, ¢ = d = 26.

There are more sophisticated ways to describe the string spectrum (in terms of BRST coho-
mology), but they are equivalent to the more elementary approach presented here. In the BRST
approach, gauge-fixing to the conformal gauge in the quantum theory requires the addition of
world-sheet Faddeev-Popov ghosts, which turn out to contribute ¢ = —26. Thus the total anomaly
of the z* and the ghosts cancels for the choice d = 26. It is also necessary to set the parameter
g = 1, so that mass-shell condition becomes (Lg — 1)|¢) = 0.

Since the mathematics of the open-string spectrum is the same as that of closed-string right
movers, let us now use the equations we have obtained to study the open string spectrum. (Here
we are assuming that the open-string boundary conditions are all Neumann, corresponding to
spacetime-filling D-branes.) The mass-shell condition is

. . 1
M2=—p*=——qa2=_—_(N-1), (2.28)
20270 g2

where

N = i A_p Oy = i nall ‘. (2.29)
n=1 n=1

The a!’s and a’s are properly normalized raising and lowering operators. Since each ata has eigen-
values 0,1,2,..., the possible values of N are also 0,1,2,.... The unique way to realize N = 0
is for all the oscillators to be in the ground state, which we denote simply by |0; p*), where p*
is the momentum of the state. This state has M? = —1, which is a tachyon (p* is spacelike).
Such a faster-than-light particle is certainly not possible in a consistent quantum theory, because
the vacuum would be unstable. However, for free strings (or even in perturbation theory) this
instability is not visible. Since the 26-dimensional bosonic string theory is only supposed to be
a warm-up exercise before considering tachyon-free superstring theories, let us proceed without
worrying about tachyons.

The first excited state, with N = 1, corresponds to M? = 0. The only way to achieve N =1
is to excite the first oscillator once:

|¢) = (ua 1[0; p). (2.30)
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Here (,, denotes the polarization vector of a massless spin-one particle. The Virasoro constraint
condition L; |¢) = 0 implies that ¢, must satisfy p#¢,, = 0. This ensures that the spin is transversely
polarized, so there are d — 2 independent polarization states. This agrees with what one finds for
a massless Maxwell or Yang-Mills field.

Let us now turn to the closed-string spectrum. A closed-string state is described as a tensor
product of a left-moving state and a right-moving state, subject to the condition that the N value
of the left-moving and the right-moving state is the same. The reason for this “level-matching”
condition is that we have (Lo —1)|¢) = (Lo —1)|¢) = 0. The sum (Lo + Lo — 2)|#) is interpreted as
the mass-shell condition, while the difference (Lo — Lo)|#) = (N — N)|¢) = 0 is the level-matching
condition.

Using this rule, the closed-string ground state is just |0) ® |0), which represents a spin 0
tachyon with M2 = —2. (The notation no longer displays the momentum p of the state.) Again,
this signals an unstable vacuum, but we will not worry about it here. Much more significant is the
first excited state

|6) = Cuv(a”4]0) ® @2, 0)), (2.31)

which has M? = 0. The Virasoro constraints Li|¢) = L1|¢) = 0 imply that p*C,, = p*(uw = 0.
Such a polarization tensor encodes three distinct spin states, each of which plays a fundamental
role in string theory. The symmetric part of (., encodes a spacetime metric field g,, (massless
spin two) and a scalar dilaton field ¢ (massless spin zero). The g, field is the graviton field, and
its presence (with the correct gauge invariances) accounts for the fact that the theory contains
general relativity, which is a good approximation for E < 1/£,. Its vacuum value determines the
spacetime geometry. Similarly, the value of ¢ determines the string coupling constant. With the
usual conventions, it is given by gs = (e?).

The polarization tensor (,, also has an antisymmetric part, which corresponds to a massless
antisymmetric tensor gauge field B,, = —B,,. This field has a gauge transformation of the form

6B, = OuMy — 0, A, (2.32)

which is analogous to the gauge transformation rule for the Maxwell field: §A,, = 8, A. The gauge-
invariant field strength, analogous to F,, = 0,4, — 0, A, is

H;u/p = 8u-Byp + 81/Bpu + 6pB;u/. (233)

The importance of the B,,, field resides in the fact that the fundamental string is a source for B,
just as a charged particle is a source for the vector potential A,. Mathematically, this is expressed
by a coupling to the string world sheet [ By, dz* Adz”, which generalizes the coupling of a Maxwell
field to the world line of a charged point particle f Apdx®.

The number of physical states grows rapidly as a function of mass. This can be analyzed
quantitatively. For the open string, let us denote the number of physical states with o/ M2 = n —1
by d,,. These numbers are encoded in the generating function

G(w) = Z dpw™ = H (1—w™)24, (2.34)

The exponent 24 reflects the fact that in 26 dimensions, once the Virasoro conditions are taken into
account, the spectrum is exactly what one would get from 24 transversely polarized oscillators. It
is easy to deduce from this generating function the asymptotic number of states for large n, as a
function of n

dp ~ n 2TtV (2.35)

This asymptotic degeneracy implies that the finite-temperature partition function

tr (e PH) = Z dne PEn (2.36)
n=0
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diverges for 8~ =T > Ty, where Ty is the Hagedorn temperature

1

Ty = .
H Al

(2.37)

Depending on various technicalities, Ty might be the maximum possible temperature or else a
critical temperature at which there is a phase transition.

2.5 Perturbation Theory

Perturbation theory is useful in a quantum theory that has a small dimensionless coupling constant,
such as quantum electrodynamics (QED), since it allows one to compute physical quantities as
power series expansions in the small parameter. In QED the small parameter is the fine-structure
constant a ~ 1/137. Since this is quite small, perturbation theory works very well for QED. For a
physical quantity T'(«), one computes (using Feynman diagrams)

T(Oé) = TO + OéTl + O£2T2 + ..., (238)

It is the case generically in quantum field theory that expansions of this type are divergent. More
specifically, they are asymptotic expansions with zero radius convergence. Nonetheless, they can be
numerically useful if the expansion parameter is small. Typically there are various non-perturbative
contributions (such as instantons) that have the structure

Txp ~ e (const-/a), (2.39)

In a theory such as QCD, the couplings are small and perturbation theory is useful for large
momentum processes, but for low-momentum (or “soft”) processes, the coupling is large and per-
turbation theory is not useful. For problems of the latter type, such as computing the hadron
spectrum, nonperturbative methods of computation, such as lattice gauge theory, are required.

In the case of string theory there is no particular reason why the coupling constant gs should
be small. So it is unlikely that a realistic vacuum could be analyzed accurately using perturbation
theory. Until 1995 it was only understood how to analyze string theories in terms of perturbation
expansions. As we will discuss later, understanding nonperturbative phenomena turned out to be
very enlightening.

3 Supersymmetry and Superstrings

3.1 The RNS Model and World-Sheet Supersymmetry

Among the deficiencies of the bosonic string theory is the fact that there are no fermions. As we
will see, the addition of fermions leads quite naturally to supersymmetry and hence superstrings.
There are two alternative formalisms that are used to study superstrings. The original one, which
grew out of the 1971 papers by Ramond [6] and by Neveu and me [7], is called the RNS formalism.
In this approach, the supersymmetry of the two-dimensional world-sheet theory plays a central
role.

In the RNS formalism, the world-sheet theory is based on the d functions z*(c,7) that
describe the embedding of the world sheet in the spacetime, just as before. However, in order
to supersymmetrize the world-sheet theory, we also introduce d fermionic partner fields ¥* (o, 7).
Note that z* transforms as a vector from the spacetime viewpoint, but as d scalar fields from
the two-dimensional world-sheet viewpoint. The ¢# also transform as a spacetime vector, but as
world-sheet spinors. Altogether, z# and " described d supersymmetry multiplets, one for each
value of p.

The reparametrization invariant world-sheet action discussed earlier can be generalized to
have local supersymmetry on the world sheet, as well. (The details will not be described here.)
When one chooses the conformal gauge, hos = €%1,3, together with an appropriate fermionic gauge
condition, one ends up with a world-sheet theory that has global supersymmetry supplemented
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by constraints. The constraints form a super-Virasoro algebra. This means that in addition to the
Virasoro constraints of the bosonic string theory, there are fermionic constraints, as well.

The globally supersymmetric world-sheet action that arises in the conformal gauge takes the
form [8]

S = —g /d%(@ax”aawu — ipH p@Opthy)- (3.1)

The first term is exactly the same as in eq. (2.13) of the bosonic string theory. Recall that it has the
structure of d free scalar fields. The second term that has now been added is just d free massless
spinor fields, with Dirac-type actions. The notation is that p* are two 2 x 2 Dirac matrices and
Y = (t) is a two-component Majorana spinor. The Majorana condition simply means that 1
and v _ are real in a suitable representation of Dirac algebra. In fact, a convenient choice is one
for which

Dp®Bath = Y04t + 1101y, (3.2)

where 04 represent derivatives with respect to 6* = 7 £ ¢. In this basis, the equations of motion
are simply

Byt =yt = 0. (3.3)

Thus " describes right-movers and % describes left-movers.
Concentrating on the right-movers ¢* | an infinitesimal global supersymmetry transformation,
which is a symmetry of the gauge-fixed action, is given by

dzt = de” (3.4)
SYp* = —20_zxte,

where € is an infinitesimal Majorana spinor. (There is an analogous symmetry for the left-movers.)
Continuing to focus on the right-movers, the Virasoro constraint is

(0_x)* + %¢ﬁa_¢u_ =0. (3.5)

The first term is what we found in the bosonic string theory, and the second term is an additional
fermionic contribution. There is also an associated fermionic constraint

Yro_x, =0. (3.6)

The Fourier modes of these constraints satisfy the super-Virasoro algebra. There is a second iden-
tical super-Virasoro algebra for the left-movers.

As in the bosonic string theory, the Virasoro algebra has conformal anomaly terms propor-
tional to a central charge c¢. As in that theory, each component of z# contributes +1 to the central
charge, for a total of d, while (in the BRST quantization approach) the reparametrization sym-
metry ghosts contribute —26. But now there are additional contributions. Each component of y#
gives +1/2, for a total of d/2, and the local supersymmetry ghosts contribute +11. Adding all of
this up, gives a grand total of ¢ = 37‘1 —15. Thus, we see that the conformal anomaly cancels for the
specific choice d = 10. This is the preferred critical dimension for superstrings, just as d = 26 is the
critical dimension for bosonic strings. For other values the theory has a variety of inconsistencies.

Let us now consider boundary conditions for ¢*(o, 7). (The story for z* is exactly as before.)
First, let us consider open-string boundary conditions. For the action to be well-defined, it turns
out that one must set ¢, = 1 _ at the two ends o = 0, 7. An overall sign is a matter of convention,
so we can set ¢ (0,7) = 4" (0,7), without loss of generality. But this still leaves two possibilities
for the other end, which are called R and NS:

R o: gh(mr) = ¢ (r,7) (3.7)
NS g (mr) = =y (m,7).
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Combining these with the equations of motion d_1;+ = 91— = 0, allows us to express the general
solutions as Fourier series
1 .
R: ¢ = — ) diemin(7*) (3.8)
\/5 nez
1 )
NS: ¢ = — > bpemirlrEo)

\/i reZ+1/2
The Majorana condition implies that d* = d“! and b*, = b*t. Note that the index n takes
integer values, whereas the index r takes half-integer values (ﬂ:%, ﬂ:%, ...). In particular, only the
R boundary condition gives a zero mode.

Canonical quantization of the free fermi fields ¥* (o, 7) is very standard and straightforward.
The result can be expressed as anticommutation relations for the coefficients d¥, and b#:

R : {d8,d%} = 0" 0mtn0 m,n € Z (3.9
1
NS {dt,d;} =n""br4s,0 r,s€Z+ 7

Thtisatirapplelition toethieiditsmoninodkeillator operators o

llator operators db, or b* that appear as coeflicients in
ure {b,b'} = 1 is very simple. It describes a two-state
he b’s or d’s with negative indices can be regarded as
ndices as lowering operators, just as we did for the a¥.
;p) satisfies

b |0;p) =0, m,r >0 (3.10)

f how we defined the ground state in the bosonic string
acting with the a and b raising operators are spacetime
state, defined as we have done here, is again a tachyon.
by which this tachyon can (and must) be removed from

that satisfy the algebra
dy,dg} =n"". (3.11)

c algebra. Thus the dy’s should be regarded as Dirac

2) and all states in the R sector should be spinors in order to furnish
representation spaces on which these operators can act. The conclusion, therefore, is that whereas
all string states in the NS sector are spacetime bosons, all string states in the R sector are spacetime
fermions.

The zero mode of the fermionic constraint y#0_x, = 0 gives a wave equation for (fermionic)
strings in the Ramond sector, Fy|e) = 0, which is called the Dirac-Ramond equation. In terms of
the oscillators

Fo=ag-do+ Y 0y dp. (3.12)

n#0
The zero-mode piece of Fy, g - dg, has been isolated, because it is just the usual Dirac operator,
¥*d,,, up to normalization. (Recall that aq, is proportional to p, = —id,, and df is proportional

to the Dirac matrices v#.) The fermionic ground state |1)), which satisfies
ahlto) = dhlihe) =0, n >0, (3.13)

satisfies the wave equation
Qg - do|tho) = 0, (3.14)

which is precisely the massless Dirac equation. Hence the fermionic ground state is a massless
spinor.
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In the closed-string case, the physical states are obtained by tensoring right-movers and left-
movers, each of which are mathematically very similar to the open-string spectrum. This means
that there are four distinct sectors of closed-string states: NS®NS and R®R describe spacetime
bosons, whereas NS®R and R®NS describe spacetime fermions.

3.2 Gravity and Unification

The original string theory described above requires 26 dimensions (25 spatial dimensions and
one time dimension). Also, the particle spectrum includes tachyons, and it does not contain any
fermions, one of the two important classes of particles in quantum theories. For these reasons, it
was clear that this string theory could not be a realistic theory of the strong interactions. The
RNS theory contains fermions, which is progress, but it requires ten dimensions, so clearly it is not
the correct theory of the strong interactions either. Another problem is the occurrence of massless
particles, which conflicts with the fact that all particles that have strong nuclear interactions are
massive.

Among the massless closed-string states (of either theory) there is one that has spin two. In
1974, it was shown by Scherk and me [9], and independently by Yoneya [10], that this particle
interacts like a graviton, so the theory actually includes general relativity. This led us to propose
that string theory should be used for gravity and unification rather than for hadrons. This implied,
in particular, that the string length scale should be comparable to the Planck length, rather than
the size of hadrons (10713 ¢m) as we had previously assumed.

This proposal had two immediate benefits: 1) Quantum contributions in field theory descrip-
tions of gravity have high-energy (or ultraviolet) divergences and therefore give infinite values for
physical quantities. On the other hand, string theory is free from ultraviolet divergences. 2) In the
context of the original goal of string theory — to explain hadron physics — extra dimensions are
unacceptable. However, in a theory that incorporates general relativity, the geometry of spacetime
is determined dynamically. Thus one could imagine that the theory admits consistent quantum
solutions in which the six extra spatial dimensions form a compact space, too small to have been
observed. The natural first guess is that the size of this space should be comparable to the string
scale and the Planck length.

3.3 Spacetime Supersymmetry

In 1976 Gliozzi, Scherk, and Olive [11] noted that the RNS spectrum admits a consistent truncation
(called the GSO projection), which is necessary for the consistency of the interacting theory. In
the NS sector, the GSO projection keeps states with an odd number of b-oscillator excitations, and
removes states with an even number of b-oscillator excitations. Once this rule is implemented the
spectrum of allowed masses is integral (M? = 0,1,2,...). In particular, the bosonic ground state is
now massless, so the spectrum no longer contains a tachyon. The GSO projection also acts on the
R sector, where there is an analogous restriction that amounts to imposing a chirality projection
on the spinors. The claim is that the truncated theory has spacetime supersymmetry.

If there is spacetime supersymmetry, then there should be an equal number of bosons and
fermions at every mass level. Let us denote the number of bosonic states with M2 = n by dns(n)
and the number of fermionic states with M2 = n by dgr(n). Then we can encode these numbers in
generating functions

S W 1 (B (1w 2\° 2 1m0 °
Ins(w) =nz::0st(n)w =2/ <H (W) - 11 (W) ) (3.15)

m=1 m=1
and o o .
fr(w) =Y dr(n)u" =8 ] (i J_r Zm) : (3.16)
n=0 m=1

The 8’s in the exponents refer to the number of transverse directions in ten dimensions. The effect
of the GSO projection is the subtraction of the second term in fng and reduction of coefficient in
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fr from 16 to 8. In 1829, Jacobi discovered the formula?

fr(w) = fxs(w). (3.17)

For him this relation was an obscure curiosity, but we now see that it provides strong evidence for
supersymmetry of the GSO-projected string theory in ten dimensions.

A complete proof of spacetime supersymmetry for the interacting string theory was con-
structed by Green and me five years after the GSO paper [12]. We developed an alternative world-
sheet theory to describe the GSO-projected theory based on world-sheet fields X# and 6%, rep-
resenting ten-dimensional superspace, in which supersymmetry was manifest. In this formulation
the action describes the embedding of the world-sheet in superspace.

Spacetime supersymmetry is the major prediction of superstring theory that could be con-
firmed experimentally at accessible energies, that has not been discovered already. A variety of
arguments, not specific to string theory, suggest that the characteristic energy scale associated to
supersymmetry breaking should be related to the electroweak scale, in other words in the range
100 GeV — 1 TeV. The symmetry implies that each of the known elementary particles should have
a supersymmetry partner particle, whose mass is in this general range. This means that some of
these superpartners should be observable at the CERN Large Hadron Collider (LHC), which is
currently under construction and is scheduled to begin operating in 2007. This machine collides two
7 TeV beams of protons. There is a slight chance that the Fermilab Tevatron, which is currently
in operation with collisions of 1 TeV beams, could discover superparticles first.

In most versions of phenomenological supersymmetry there is a multiplicatively conserved
quantum number called R-parity. All known particles have even R-parity, whereas their super-
partners have odd R-parity. Conservation of R-parity implies that the superparticles must be
pair-produced in particle collisions. It also implies that the lightest supersymmetry particle (or
LSP) should be absolutely stable. It is not known with certainty which particle is the LSP, but one
popular guess is that it is a “neutralino.” This is an electrically neutral fermion that is a quantum-
mechanical mixture of the partners of the photon, Z°, and neutral Higgs particles. Such an LSP
would interact very weakly, like a neutrino. A neutralino LSP is of considerable interest, since it is
an excellent dark matter candidate.? Searches for a class of possible dark matter particles called
WIMPS (weakly interacting massive particles) could discover a neutralino LSP some day, though
current experiments might not have sufficient detector volume to compensate for the exceedingly
small collision cross sections.

3.4 Superstrings

The first superstring revolution began in 1984 with the discovery that quantum mechanical consis-
tency of a ten-dimensional theory with A/ = 1 supersymmetry requires a local Yang—Mills gauge
symmetry based on one of two possible Lie groups: SO(32) or Eg x Eg [13]. Only for these two
choices do certain quantum mechanical anomalies cancel. The fact that these groups were singled
out caused a lot of excitement, because in ordinary quantum field theory there is no mathematical
principle that makes one group better than any other. The fact that only these groups are possi-
ble suggested that string theory has a very constrained structure, and therefore it might be very
predictive.

When one uses the supersymmetric string formalism for both left-moving modes and right-
moving modes, the supersymmetries associated with the left-movers and the right-movers can have
either opposite handedness or the same handedness. These two possibilities give different theories
called the type ITA and type IIB superstring theories, respectively. A third possibility, called type
I superstring theory, can be derived from the type IIB theory by modding out by its left-right
symmetry (a procedure called orientifold projection). The strings that survive this projection are
unoriented.

2He used a different notation, of course.
3Most of the mass of the universe consists of nonluminous matter, which has not yet been directly observed. Its
existence is inferred from its gravitational effects.
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A more surprising possibility is to use the formalism of the 26-dimensional bosonic string for
the left-movers and the formalism of the 10-dimensional supersymmetric string for the right-movers.
The string theories constructed in this way are called “heterotic” [14]. The mismatch in spacetime
dimensions may sound strange, but it is actually okay. The extra 16 left-moving dimensions must
describe a torus with very special properties to give a consistent theory. There are precisely two
distinct tori that have the required properties, and they correspond to the Lie groups SO(32) or
Eg X Eg.

Altogether, there are five distinct superstring theories, each in ten dimensions. Three of them,
the type I theory and the two heterotic theories, have ' = 1 supersymmetry in the ten-dimensional
sense. The minimal spinor in ten dimensions has 16 real components, so these theories have 16
conserved supercharges. The type I superstring theory has the gauge group SO(32), whereas the
heterotic theories realize both SO(32) (the HO theory) and Eg x Eg (the HE theory). The other
two theories, type ITA and type IIB, have N’ = 2 supersymmetry (32 supercharges).

In each of these five superstring theories there are consistent perturbation expansions of phys-
ical quantities. In four of the five cases (heterotic and type II) the fundamental strings are oriented
and unbreakable. As a result, these theories have particularly simple perturbation expansions.
Specifically, there is a unique Feynman diagram at each order of the expansion. The Feynman
diagrams depict string world sheets, and therefore they are two-dimensional surfaces. For these
four theories the unique L-loop diagram is a genus-L Riemann surface, which can be visualized as
a sphere with L handles. External (incoming or outgoing) particles are represented by N points
(or “punctures”) on the Riemann surface. A given diagram represents a well-defined integral of
dimension 6L 4+ 2N — 6. This integral has no ultraviolet divergences. Type I superstrings are unori-
ented and breakable. As a result, the perturbation expansion is more complicated for this theory,
and there are various world-sheet Feynman diagrams at each order. The separate diagrams have
divergences that cancel when they are combined correctly.

3.5 Compactification of Extra Dimensions

All five superstring theories require that spacetime should have ten dimensions, which is six more
than are observed. The reason this is not a fatal problem is that these theories contain general
relativity, and therefore the geometry of spacetime is determined dynamically. In other words, the
spacetime geometry must be part of a complete solution of the equations of the theory. This is
a severe constraint, but it still leaves many possibilities. Among these possibilities there are ones
in which the ten dimensions consist of a product of four-dimensional Minkowski spacetime with
a compact six-dimensional manifold K. If K has a typical size a, then by general principles of
quantum mechanics, its existence would be unobservable for energies below E, = fic/a. The most
natural guess is that this compactification scale should be comparable to the unification scale or
the string scale.

The possibilities for K are quite limited, especially if one requires that there be some super-
symmetry below the compactification scale. A class of manifolds K that has been studied a great
deal are called Calabi—Yau spaces [15].* They have properties that ensure that 1/4 of the original
supersymmetry is unbroken at low energies. In particular, starting with the HE theory compact-
ified on a suitably chosen Calabi—Yau space one can come quite close to making contact with a
realistic supersymmetric grand-unified theory. In the late 1980s such scenarios received a great
deal of attention. More recently, it has been recognized that there are a variety of other ways that
superstrings could give rise to a realistic model. Some of them are based on type II superstrings.

4 Recent Developments in Superstring Theory

The discovery that superstring theory can consistently unify gravity with the other forces in a
quantum framework was an important development. However, the realization that there are five
different superstring theories was somewhat puzzling. Certainly, there is only one physical universe

4A Calabi-Yau space is a special type of six-dimensional space, which can described using three complex coor-
dinates. More precisely, it is a K&hler manifold of SU(3) holonomy.
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that we can ever hope to observe, so it would be most satisfying if there were only one possible
theory. In the late 1980s it was realized that when extra dimensions are compact there is a property
known as T duality that relates the two type II theories and the two heterotic theories, so that
they shouldn’t really be regarded as distinct theories. T duality can be understood within the
framework of perturbation theory.

Further progress required understanding nonperturbative phenomena, something that was
achieved in the 1990s. Nonperturbative S dualities and the opening up of an eleventh dimension
led to new identifications. Once all of these correspondences are taken into account, one ends up
with the best possible conclusion. There really is a unique underlying theory, which has no arbitrary
adjustable dimensionless parameters.

4.1 T Duality

String theory exhibits many strange and surprising properties. One that was discovered in the late
1980s is called T duality.® In many cases, T duality implies that two different geometries for the
extra dimensions, K and K, are physically equivalent! In the simplest example, a circle of radius
R is equivalent to a circle of radius ¢2/R, where (as before) £, is the fundamental string length
scale.

Let us sketch an argument that should make this duality plausible. When there is a circular
extra dimension, the momentum along that direction is quantized: p = n/R, where n is an integer.
Using the relativistic energy formula E? = M? + " ,(p;)?, one sees that the momentum along the
circular dimension can be interpreted as contributing an amount (n/R)? to the mass squared as
measured by an observer in the noncompact dimensions. This is true whether one is considering
point particles, strings, or any other kinds of objects. Particle states with n # 0 are usually referred
to as Kaluza—Klein excitations.

In the special case of closed strings, there is a second kind of excitation that can also contribute
to the mass squared. Namely, the string can be wound around the circle, so that it is caught up on
the topology of the space. The contribution to the mass squared is the square of the tension T =
(2m£2)~! times the length of wrapped string, which is 27 Rm, if it wraps m times. Multiplying, the
contribution to the mass squared is (Rm/¢2)2. These are referred to as winding mode excitations.

Now we can make the key observation: Under T duality the role of Kaluza—Klein excita-
tions and winding-mode excitations are interchanged. Note that the two contributions to the mass
squared are exchanged if one interchanges m and n and at the same time sends R — ¢2/R.

T duality typically relates two different theories. Two particularly important examples are
ITA + IIB and HE & HO.

Therefore type ITA and type IIB (also HE and HO) should be regarded as a single theory. More
precisely, they represent opposite ends of a continuum of geometries as one varies the radius of a
circular dimension. This radius is not a parameter of the underlying theory. Rather, it arises as
the value of a scalar field, and therefore it is determined dynamically.

There are also fancier examples of T-duality equivalences. For example, there is an equivalence
of type ITA superstring theory compactified on a Calabi—Yau space and type IIB compactified on
the “mirror” Calabi-Yau space. This mirror pairing of topologically distinct Calabi-Yau spaces is
a striking discovery made by physicists that has subsequently been explored by mathematicians.

T duality might play a role in cosmology, since it suggests a possible way for a big crunch to
turn into a big bang. The heuristic idea is that a contracting space when it becomes smaller than
the string scale can be reinterpreted as an expanding space that is larger than the string scale,
without the need for any exotic forces to halt the contraction. Unfortunately, we are not yet able
to analyze such time-dependent scenarios reliably.

5The letter T has no particular significance. It was the symbol used by some authors for one of the low energy
fields.
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4.2 S Duality

Another kind of duality — called S duality — was discovered as part of the “second superstring
revolution” in the mid 1990s [16], [17]. (There had been some related proposals earlier [18], [19],
[20].) S duality relates the string coupling constant g, to 1/gs in the same way that T duality
relates R to 1/R. The two basic examples are

I & HO and IIB « IIB.

Thus, given our knowledge of the small g5 behavior of these theories, we learn how these three
theories behave when g5 > 1. For example, strongly coupled type I theory is equivalent to the
weakly coupled SO(32) heterotic theory. In the type IIB case the theory is related to itself, so one
is actually dealing with a symmetry. Let us examine this case in a little more detail.

Type IIB superstring theory contains two massless scalar fields, the dilaton ¢ and the axion
X, which are conveniently combined in a complex field

p=x+ie?. (4.1)

The low-energy (or supergravity) approximation has an SL(2, R) symmetry that transforms this
field nonlinearly:
ap+b
cp+d’
where a, b, ¢, d are real numbers satisfying ad — bc = 1. However, in the exact theory this symmetry
is broken to the discrete subgroup SL(2,Z) [16], which means that a,b,c,d are restricted to be
integers. Defining the vacuum value of the p field to be

(4.2)

0 i

(p) = o + 7 (4.3)

the SL(2, Z) symmetry transformation p — p+1 implies that 6 is an angular coordinate. Moreover,
in the special case § = 0, the symmetry transformation p — —1/p takes g; — 1/g;. This symmetry,
which is called S duality, implies that coupling constant gs is equivalent to coupling constant 1/gs,
so that, in the case of type IIB superstring theory, the weak coupling expansion and the strong
coupling expansion are identical!

An analogous S-duality transformation relates the type I superstring theory to the SO(32)
heterotic string theory. In that case there is no axion, and so the only transformation is ¢1 — —¢n,
which implies that g, in one theory corresponds to 1/g; in the other.

4.3 D-Branes

When studied nonperturbatively, one discovers that superstring theory contains various p-branes,
objects with p spatial dimensions, in addition to the fundamental strings. Their role only became
well understand when nonperturbative aspects of string theory came under control in the mid
1990s. The reason for this is that all of the p-branes, with the single exception of the fundamental
string (which is a 1-brane), become infinitely heavy as g — 0, and therefore they do not play a
role in perturbation theory. On the other hand, when the coupling g, is not small, this distinction
no longer significant. When that is the case, all of the p-branes are just as important as the
fundamental strings. In other words, what makes fundamental strings “fundamental” is the weak
coupling expansion.

Each of the type IT and heterotic theories contains a stable 5-brane (sometimes called an
NS5-brane), whose tension is proportional to 1/¢2. In addition, the type I and II superstring
theories contain a class of p-branes called D-branes, whose tension is proportional 1/g,. Another
characteristic feature of stable D-branes in the type I and II superstring theories is that they are
sources for gauge fields in the RR sector [21].

As we mentioned earlier, the defining property of D-branes is that fundamental strings can
end on them. This implies that quantum field theories of the Yang—Mills type, like the standard
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model, reside on D-branes [22]. The Yang-Mills fields arise as the massless modes of open strings
attached to the D-branes. An interesting possibility is that the reason we experience four spacetime
dimensions is because we are confined to live on three-dimensional D-branes (D3-branes), which
are embedded in a spacetime with six additional spatial directions. In this type of a picture, the
six transverse dimensions do not necessarily need to be small. Model-building along these lines is
one of the approaches that is being explored.

4.4 M Theory

S duality tells us how three of the five original superstring theories behave at strong coupling. This
raises the question: What happens to the other two superstring theories — type ITA and HE — when
gs is large? The answer, which came as quite a surprise, is that they grow an eleventh dimension
of size gs¢;. This new dimension is a circle in the type ITA case [23], [17] and a line interval in
the HE case [24]. When the eleventh dimension is large, one is outside the regime of perturbative
string theory, and new techniques are required. This calls for a new type of quantum theory, for
which Witten has proposed the name M theory.%

M theory has not been yet been formulated in the most general setting. However, quite
a lot is known about it. For one thing it is approximated at low energies by eleven-dimensional
supergravity, a theory that was formulated long ago [25]. A fundamental fact about 11-dimensional
supergravity is that it contains a massless three-form gauge field. Because of this, it turns out that
M theory contains two types of stable p-branes: a 2-brane and a 5-brane. They couple electrically
and magnetically, respectively, to the three-form gauge field.

There is a conjecture for an exact quantum mechanical description of M theory, that goes
by the name of Matrix theory [26]. This proposal gives a dual description of M theory in flat
11-dimensional spacetime in terms of the quantum mechanics of N x N matrices in the large N
limit. When n of the spatial dimensions are compactified on a torus, the dual theory becomes a
quantum field theory in n spatial dimensions (plus time). There is compelling evidence that this
conjecture is correct when n is not too large. However, it is unclear how to generalize it to other
geometries, so it is not the whole story.

Recall that the type IIA and type IIB superstring theories are T dual, meaning that if they
are compactified on circles of radii R4 and Rp, respectively, one obtains equivalent theories for the
identification R4 Rp = £2. Moreover, we have just learned that the type ITA theory is actually M
theory compactified on a circle, a fact that encodes nonperturbative information. It turns out to be
very useful to combine these two facts and to consider the duality between M theory compactified
on a torus, so that the eleven-dimensional spacetime is R? x T2, and type IIB superstring theory
compactified on a circle, so that the ten-dimensional spacetime is R® x S*. These should be precisely
equivalent.

A torus can be described as the complex plane modded out by the equivalence relations
z~z+w; and z ~ z + wy. Up to conformal equivalence, the periods w; and ws can be replaced
by 1 and 7, with Im 7 > 0. In this characterization 7 and 7' = (a7 +b)/(cT + d), where a,b, ¢, d are
integers satisfying ad — bc = 1, describe equivalent tori. Thus a torus is characterized by a modular
parameter 7 and an SL(2,Z) modular group. The natural, and correct, conjecture at this point
is that one should identify the modular parameter 7 of the M theory torus with the parameter
p that characterizes the type IIB vacuum [27, 28]. Then the duality of M theory and type IIB
superstring theory gives a geometrical explanation of the nonperturbative S duality symmetry of
the ITB theory: the transformation p — —1/p, which sends gs — 1/g; in the IIB theory, corresponds
to interchanging the two cycles of the torus in the M theory description.

Another interesting fact about the IIB theory is that it contains an infinite family of strings
labeled by a pair of integers (p, ¢) with no common divisor [27]. The (1,0) string can be identified
as the fundamental IIB string, while the (0,1) string is the D-string. (A D-string is a D1-brane.)
From this viewpoint, a (p, q) string can be regarded as a bound state of p fundamental strings and
g D-strings [22]. These strings have a very simple interpretation in the dual M theory description.

SHe suggests that M should represent “mysterious” or “magical.” Others have suggested that M could stand for
“membrane” or “mother.”
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They correspond to an M-theory 2-brane with one of its cycles wrapped around a (p,¢) homology
cycle of the torus. The minimal length of such a cycle is proportional to |p + ¢7|, and thus (using
7 = p) one finds that the tension of a (p, q) string is given by

T,.q = 27|p + gp|m?. (4.4)

One can try to construct a realistic four-dimensional theory starting from M theory. Since
this means starting in eleven dimensions, it is necessary to choose a suitable 7-manifold for the
extra dimensions. The way to get N/ = 1 supersymmetry in four dimensions is to require that the
7-manifold have G5 holonomy. The study of G manifolds is more difficult and less well understood
than that of Calabi—Yau manifolds. It is plausible that some models constructed in this way will
turn out to be dual to ones constructed by Calabi—Yau compactification of the HE theory. Such
relations are interesting, because the M theory picture would allow one to understand phenomena
that are nonperturbative in the heterotic picture.

4.5 Black Hole Entropy

The gravitational field generated by a large number of coincident D-branes causes warpage of the
spacetime geometry and creates an event horizon. This generalizes the usual story of black holes
to higher dimensional objects in higher dimensional spacetimes.

One of Hawking’s important discoveries was that black holes behave like thermodynamic
objects with a well-defined temperature and entropy. The entropy is given (in gravitational units)
by 1/4 the area of the event horizon. In quantum theory, an entropy S ordinarily means that there
are a large number of quantum states (namely, exp .S) that are contributing. So a natural question
is whether this rule also applies to black holes. D-branes provide a set-up in which this question
can be investigated.

In special cases, starting with an example in five dimensions that was analyzed by Strominger
and Vafa [29], one can count the quantum microstates associated with D-brane excitations and
compare the result with the Bekenstein-Hawking entropy formula. Although many examples have
been studied and no discrepancies have been found (aside from tiny corrections that are expected),
this correspondence has not yet been been derived in full generality. The problem is that one needs
to extrapolate from the weakly coupled D-brane picture to the strongly coupled black hole one,
and mathematical control of this extrapolation is only straightforward when there is a generous
measure of unbroken supersymmetry. This is only true for specially chosen examples. Even so, it is
fair to say that studies of D-branes have led to a much deeper understanding of the thermodynamic
properties of black holes in terms of string theory microphysics, a fact that is one of the most notable
successes of string theory so far.

4.6 AdS/CFT Duality

In a remarkable development, Maldacena conjectured that the quantum field theory that lives on
a collection of D3-branes (in the IIB theory) is actually equivalent to type IIB string theory in the
geometry that the gravitational field of the D3-branes creates [30]. He also proposed several other
analogous M theory dualities. These dualities are sometimes referred to as AdS/CFT dualities,
where AdS stands for anti de Sitter space and CFT stands for conformal field theory.” The near-
horizon geometry produced by the D-branes is a product of an anti de Sitter space and a sphere,
and the dual field theory is conformally invariant.

In the example that arises from considering IV coincident D3-branes in the type IIB theory,
one obtains a duality between SU(N) Yang-Mills theory with N' = 4 supersymmetry in four
dimensions and the type IIB string theory in a ten-dimensional geometry given by a product of a
five-dimensional Anti-de Sitter space (AdSs) and a five-dimensional sphere (S°). There are N units
of five-form flux threading the five sphere. Also, the radius R of the sphere and the Anti-de Sitter

7AdS space is a maximally symmetric geometry with negative scalar curvature. A CFT is invariant under the
group of conformal transformations. This is an extension of the Poincaré group that includes transformations that
rescale distances.
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space and the string coupling constant g, are related to the Yang—Mills theory coupling constant
gy m and gauge group SU(N) by the relations

(R/1s)* = gy mN (4.5)

and
9s = Gy m- (4.6)

The implications of this duality for correlation functions were spelled out in [31], [32]. This
astonishing proposal has been extended and generalized in a couple thousand subsequent papers.
Some of this work is reviewed in [33]. While we can’t hope to convince you here that these dualities
are sensible, we can point out that the first check is that the symmetries match. An important
ingredient in this matching is the fact that the symmetry group of Anti de Sitter space in n + 1
dimensions is SO(n,2), which is the same as that of the conformal group in n dimensions. The
general idea is that the n-dimensional CFT is associated to the boundary of the (n+1)-dimensional
AdS space.? The extra “radial” direction of the AdS space corresponds to size (or scale) in the
dual CFT.

This type of identification is an example of a “holographic” duality, since it is analogous
to representing three-dimensional space on a two-dimensional emulsion. The possibility of such
holographic correspondences arose in earlier studies of black holes in work of ’t Hooft and Susskind
[34], [35]. Holographic dualities can also be generalized to cases where the conformal symmetry is
broken. One way of doing this is by giving masses to some of the fields in the CFT.

5 Problems and Prospects

In this final section, we discuss some of the important issues that still need to be resolved, if string
theory is to achieve its lofty goals. These goals are two-fold: to develop a complete theoretical
description of fundamental microphysics and to understand the origin, evolution, and fate of the
universe. As will be evident, the issues discussed below represent formidable challenges, and the
solution of any one of them would be an important achievement. I am optimistic that breakthroughs
will be achieved in the coming years that will resolve, or at least recast, some of these questions.
This optimism is based both on a belief in the intrinsic beauty of the underlying theory and on a
very high regard for the many clever people who are studying it. At the same time, I think it is
not at all clear whether the end of the quest will ever be achieved.

5.1 Find a Complete Formulation of the Theory

There are techniques for identifying large classes of superstring and M theory vacua, and describing
them exactly, but there is not yet a succinct and compelling formulation of the underlying theory
that gives rise to these vacua. Even though such a formulation is not known, it is quite clear from
what we do know that it should be completely unique, with no adjustable parameters or other
arbitrariness.

Many things that we usually take for granted, such as the existence of a spacetime manifold,
are likely to be understood as emergent properties of specific vacua rather than identifiable features
of the underlying theory. If this is correct, then the missing formulation of the theory must be quite
unlike any previous theory. Usual approaches based on quantum fields depend on the existence of
an ambient spacetime manifold. It is not clear what the basic degrees of freedom should be in a
theory that does not assume a spacetime manifold at the outset.

5.2 TUnderstand the Energy Density of the Vacuum

In a quantum theory that contains gravity, such as string theory, the cosmological constant, A,
which characterizes the energy density of the vacuum, is (at least in principle) a computable
quantity. This energy (sometimes called dark energy) has recently been measured to fairly good

8The boundary is actually located at infinity.
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accuracy, and the result is surprising: it accounts for about 70% of the total mass/energy in the
universe.® Moreover, the sign of the cosmological constant is such that that the self-gravitation
of the vacuum is repulsive. This accounts for the observed acceleration in the expansion of the
present-day Universe.

The observed value of the cosmological constant/dark energy is important for cosmology, but
it is extremely tiny when expressed in Planck units (about 10712%). Therefore, a static Lorentz
invariant Minkowski spacetime, which has a vanishing vacuum energy, is surely an excellent ap-
proximation to the real world for particle physics purposes. We can achieve an exact cancellation
between the contributions of bosons and fermions to the vacuum energy when there is unbroken
supersymmetry, but no known principle ensures a near-perfect cancellation when supersymmetry
is broken.

Many imaginative proposals have been made to solve this problem, but none of them has
gained a wide following. In my view one should first understand how to derive A = 0 when
supersymmetry is broken, and then later try to account for the tiny nonzero value that is actually
observed. A radically different viewpoint that has gained in popularity recently is that string theory
can accommodate almost any value of A, but only solutions for which A is sufficiently small can
support life. So, if it were much larger, we wouldn’t be here to ask the question. This type of
reasoning is called “anthropic.”

5.3 Explain Elementary Particle Physics

Even though the underlying theory is unique, it admits an enormous number of different solutions
(or quantum vacua). Assuming that the theory is correct, one of these solutions should describe
the real world. The challenge is to find it.

The Universe we inhabit is changing with time, and (as we have just discussed) it appears
to have a small cosmological constant. However, for the purpose of describing elementary particle
physics it is surely an excellent approximation to assume that the Universe is static with no cosmo-
logical constant. In this framework, we would like to understand what are all the possible quantum
vacua of the fundamental theory, and which one gives a correct description of the microscopic
world of particle physics. This is a tall order.

Many classes of consistent supersymmetric vacua, often with a large number of parameters
(called moduli), have been found. Techniques for stabilizing the moduli have been developed,
which is important for preventing the occurrence of unobserved massless scalar particles. The
analysis becomes more difficult as the amount of supersymmetry that is broken increases. Vacua
in which all of the supersymmetry is broken (as in the real world) are particularly challenging. In
addition to the issue of the cosmological constant, one must also establish their quantum stability.
Nonsupersymmetric solutions that are stable in the classical approximation can be destabilized by
quantum corrections.

Presumably, if one had a complete list of all possible quantum vacua, one of them would be the
“right one.” It would be marvelous to identify this vacuum, but we would also like to understand
why it is the right one. Is it picked out by some special mathematical property, or is it just an
environmental accident of our particular corner of the Universe? The way this question plays out
will be important in determining the extent to which the observed world of particle physics can be
deduced from first principles.

5.4 TUnderstand the Structure of Spacetime and the Status of Quantum Mechanics

Hawking has suggested that when matter falls into black holes and eventually comes back out
as thermal radiation (called Hawking radiation), quantum coherence is lost [36]. In other words,
an initially pure quantum state can evolve into a mixed state, in violation of the basic tenets of
quantum mechanics. Most string theorists are convinced that this argument is not correct, but it
is difficult to explain precisely how string theory evades it.

91t is possible that something other than a cosmological constant is responsible for the dark energy. However,
even if that is the case, the data suggests that a cosmological constant is a good approximation.
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Singularities in the geometry of spacetime are a common feature of nontrivial solutions to
general relativity. In the case of black holes they are shielded behind a horizon. However, they
can also occur unshielded by a horizon, in which case one speaks of a naked singularity. Not only
are singularities places where general relativity breaks down, but even worse they undermine the
Cauchy problem — the ability to deduce the future from initial data. Another important issue,
which may be related, is to understand what ensures that the spacetime geometry has no closed
timelike curves, since their presence creates causal paradoxes.

The situation in string theory is surely better. Strings respond to spacetime differently from
point particles. Certain classes of spacelike singularities, which would not be acceptable in general
relativity, are known to be entirely harmless in string theory. However, there are other important
types of singularities that are not spacelike, for which current string theory technology is unable to
say what happens. Perhaps some of them are acceptable and others are forbidden, but it remains
to be explained which is which and how this works.

My impression is that a number of people are making important progress in addressing this
class of issues. So I am optimistic that they will be resolved relatively soon.

5.5 TUnderstand the Origin and Evolution of the Universe

Within the past few years people have started to carefully analyze time dependent solutions to
string theory. This is important for addressing the questions raised in the preceding subsection. It
is also important for cosmological applications. The first goal is to construct examples — even ones
that are unrealistic — that can be analyzed in detail, and that do not lead to pathologies. This
turns out to be surprisingly difficult.

If we had a complete list of consistent time-dependent solutions, then we would face the same
sort of question that we posed earlier in the particle physics context. What is the principle by
which the particular one that describes the evolution of our Universe is selected? Was there a
pre-big-bang era, and how did the Universe begin? Can string theory provide an understanding of
the early period of exponential growth (inflation) that occurred in the very early Universe? How
much of the observed large-scale structure of the Universe can be deduced from first principles?

We may not be close to answering these questions, but something important is happening.
The field of “superstring cosmology” is emerging as new and respectable discipline. String theorists
and string theory considerations are injecting new ideas into the study of cosmology. This might
be the arena in which predictions that are specific to string theory first confront data.

5.6 Find the String Theory Dual of QCD

We pointed out in the beginning of this article that string theory originated in an attempt to
describe the strong interactions, and that most workers abandoned the subject when it was realized
that QCD is the correct theory. Nonetheless, it is probably true that there is a string theory
dual to QCD that provides an alternative, but equivalent, description of the strong interactions.
Finding it would be enormously useful and informative. Presumably, this hasn’t been achieved yet
because this string theory is actually more difficult to construct than the “critical” gravitational
string theories that we have been discussing. Knowing this string theory would make it possible
to compute properties of hadrons analytically to good approximation, something that is extremely
difficult, even using state-of-the-art computers, starting from QCD.

One lesson of AdS/CFT is that the string dual of QCD should not be four-dimensional. As
emphasized by Polyakov, it should, at the least, possess a fifth dimension that is dual to scale size
[37]. Finding this string theory is a tough problem, but there is a reasonable chance that it will
meet with success.

5.7 Develop Mathematical Tools and Concepts

String theory is up against the frontiers of most major branches of mathematics. Given the ex-
perience to date, there is little doubt that future developments in string theory will utilize many
mathematical tools and concepts that do not currently exist. If recent trends continue, some of
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these will be developed in response to the needs of string theory, while others will be invented
independently by mathematicians and then utilized by string theorists. The need for cutting edge
mathematics is promoting a very healthy relationship between large segments of the theoretical
physics and mathematics communities. Not only are fundamental forces being unified, but so are
disciplines.
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