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Abstract. We review the connection between noncommutative gauge theory, matrix
models and fluid mechanical systems. The noncommutative Chern-Simons description
of the quantum Hall effect and bosonization of collective fermion states are used as
specific examples.

This is a draft version of the final writeup, for distribution only to the audience of
the corresponding lecture at the Poincaré Institute. It is incomplete in various ways
and likely to contain mistakes, omissions or inaccuracies. Citations, in particular, are
exceedingly preliminary and by no means represent the intentions of the author on
what to include or omit in the final version.

1 Introduction

The idea that space may be a derived or emergent concept is a relatively old theme in
theoretical physics. In the context of quantum mechanics, observables are operators
and it is only their spectrum and mutual relations (commutators) that define their
physical content. Space, to the extent that it is observable, should be no different. The
properties attributed to space from everyday experience -and postulated in newtonian
mechanics and special relativity- could be either exact or approximate, emerging in
some particular or partial classical limit. Other structures, extending or deforming
the concepts of classical geometry, and reducing to it under appropriate conditions,
are conceivable.

This possibility has had an early emergence in speculations by Heisenberg him-
self. It made reappearances in various guises and contexts [1]. One of the most strik-
ingly prescient of later developments in noncommutative gauge theory was the work
of Eguchi and Kawai in large-N single-plaquette lattice gauge theory [2]. It was, how-
ever, after the seminal and celebrated work of Alain Connes that noncommutative
geometry achieved the mathematical rigor and conceptual richness that made it a
major component of modern theoretical physics. The concept made further inroads
when it emerged as a property of spacetime solutions derived from string theory [4, 5]
and, by now, it claims a huge body of research literature.

One of the reasons that makes the idea of noncommutative spaces attractive is
the common language and connections that it provides between apparently disparate
topics. Indeed, as will be reviewed in this writeup, noncommutative physics unifies
such a priori different objects as gauge fields, membranes, fluids, matrix models and
many-body systems. (Some of the above connections can be established independently,
but the full continuum emerges only in the noncommutative setting.)

Unification of description usually brings unification of concepts. This raises the
stakes and elevates noncommutativity into a possibly fundamental property of na-
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ture. We could ask, for instance, whether the eventual bringing together of gravity,
quantum mechanics and thermodynamics will arise out of some underlying fully non-
commutative structure that shapes into spacetime, quantum mechanics and statistical
ensembles in some appropriate limit. Whether this is indeed true is, of course, unclear
and leaves room for wild speculation.

At this point, we should refrain from fantasizing any further and take a more
pragmatic point of view. The obvious question is: does noncommutativity buy us any
advantage for physics as we presently know it? It will be the purpose of this exposé (as,
I imagine, of the other talks in this session of the Poincaré Institute) to demonstrate
that this, indeed, is the case.

2 Review of noncommutative spaces

The concepts of noncommutative geometry will be covered by other speakers in this
session and there is probably little use in repeating them here. Moreover, there are
many excellent and complete review articles, of which [6, 7, 8] are only a small sample.

Nevertheless, a brief summary will be presented here, for two main reasons.
Firstly, it will make this writeup essentially self-contained and will minimize the need
to refer to other sources for a coherent reading; and secondly, the level and tone of
the presentation will be adapted to our needs, and hopefully will serve as a low-key
alternative to more rigorous and complete treatments.

2.1 The operator formulation

The simplest starting point for the definition of noncommutative spaces is through the
definition of noncommutative coordinates. This is the approach that is most closely
related to physics, making the allusions to quantum mechanics most explicit, and is
therefore also the most common one in physics texts. In this, the noncommutative
spaces are defined in terms of their coordinates Xµ, which are abstracted into (linear)
operators. Such coordinates can be added and multiplied (associatively), forming a
full operator algebra, but are not (necessarily) commutative. Instead, they obey the
commutation relations

[xµ, xν ] = iθµν , µ, ν = 1, . . . d (1)

The antisymmetric two-tensor θµν could be itself an operator, but is usually taken to
commute with all xµ (for ‘flat’ noncomutative spaces) and is, thus, a set of ordinary,
constant c-numbers. Its inverse, when it exists,

ωµν = (θ−1)µν (2)

defines a constant two-form ω characterizing the noncommutativity of the space.
Clearly the form of θ can be changed by redefining the coordinates of the space.

Linear redefinitions of the xµ, in particular, would leave θµν a c-number (nonlinear
redefinitions will be examined later). We can take advantage of this to give a simple
form to θµν . Specifically, by an orthogonal transformation of the xµ we can bring θµν

to a Darboux form consisting of two-dimensional blocks proportional to iσ2 plus a set
of zero eigenvalues. This would decompose the space into a direct sum of mutually
commuting two-dimensional noncommutative subspaces, plus possibly a number of
commuting coordinates (odd-dimensional spaces necessarily have at least one com-
muting coordinate). In general, there will be 2n properly noncommuting coordinates
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xα (α = 1, . . . 2n) and q = d−2n commuting ones Y i (i = 1, . . . q). In that case ω will
be defined as the inverse of the projection θ̄ of θ on the fully noncommuting subspace:

ωαβ = (θ̄−1)αβ , ωij = 0 (3)

The actual noncommutative space can be though of as a representation of the
above operator algebra (1), acting on a set of states. For real spaces the operators xµ

will be considered hermitian, their eigenvalues corresponding to possible values of the
corresponding coordinate. Not all coordinates can be diagonalized simultaneously, so
the notion of ‘points’ (sets of values for all coordinates xµ) is absent. The analogy
with quantum mechanical coordinate and momentum is clear, with each ‘Darboux’
pair of noncommutative coordinates being the analog of a canonical quantum pair.
Nevertheless, a full set of geometric notions survives, in particular relating to fields
on the space, as will become clear.

The representation of xµ can be reducible or irreducible. For the commuting
components Y i any useful representation must necessarily be reducible, else the cor-
responding directions would effectively be absent (consisting of a single point). States
are labeled by the values of these coordinates yi, taken to be continuous. The rest
of the space, consisting of canonical Heisenberg pairs, admits the tensor product of
Heisenberg-Fock Hilbert spaces (one for each two-dimensional noncommuting sub-
space k = 1, . . . n) as its unique irreducible representation. In general, we can have
a reducible representation consisting of the direct sum of N such irreducible compo-
nents for each set of values yi, labeled by an extra index a = 1, . . . N (we shall take
N not to depend on yi). A complete basis for the states, then, can be

|n1, . . . nn; y1, . . . yq; a〉 (4)

where nk is the Fock (oscillator) excitation number of the k-th two-dimensional sub-
space.

Due to the reducibility of the above representation, the operators xµ do not
constitute a complete set. To make the set complete, additional operators need be
introduced. To deal with the reducibility due to the values yi, we consider translation
(derivative) operators ∂µ. These are defined through their action on xµ, generating
constant shifts:

[∂µ, x
ν ] = δν

µ (5)

On the fully noncommutative subspace these are inner automorphisms generated by

∂α = −iωαβx
β (6)

For the commutative coordinates, however, extra operators have to be appended,
shifting the Casimirs Y i and thus acting on the coordinates yi as usual derivatives.

To deal with the reducibility due to the components a = 1, . . . N , we need to
introduce yet another set of operators in the full representation space mixing the
above N components. Such a set are the hermitian U(N) operators Gr, r = 1, . . . N2

that commute with the xµ, ∂µ and mix the components a. (We could, of course, choose
these operators to be the SU(N) subset, eliminating the trivial identity operator.)
The set of operators xα, ∂i, G

r is now complete.
Within the above setting, we can define field theories on a noncommutative

space. Fields are the analogs of functions of coordinates xµ; that is, arbitrary operators
in the universal enveloping algebra of the xµ. In general, the above fields are not
arbitrary operators on the full representation space, since they commute with ∂i and
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Gr. In particular, they act ‘pointwise’ on the commutative coordinates Y i are are,
therefore, ordinary functions of the yi.

We can, of course, define fields depending also on the remaining operators. Fields
involving operators Gr are useful, as they act as N × N matrices on components a.
They are the analogs of matrix-valued fields and will be useful in constructing gauge
theories. We could further define operators that depend on the commutative deriva-
tives ∂i. These have no commutative analog, and will not be considered here. No-
tice, however, that on fully noncommutative spaces (even-dimensional spaces without
commutative components), the matrix-valued fields fab(xµ) constitute the full set of
operators acting on the representation space.

The fundamental notions completing the discussion of noncommutative field
theory are the definitions of derivatives and space integral. Derivatives of a function
f are defined as commutators with the corresponding operator:

∂µ · f = [∂µ, f ] (7)

That is, through the adjoin action of the operator ∂µ on fields (we use the dot to denote
this action). For the commutative derivatives ∂i this is the ordinary partial derivative
∂/∂yi . For the noncommutative coordinates, however, such action is generated by the
xα themselves, as ∂α = −iωαβx

β . So the notion of coordinates and derivatives on
purely noncommutative spaces fuses, the distinction made only upon specifying the
action of the operators xα on fields (left- or right- multiplication, or adjoin action).

The integral over space is defined as the trace in the representation space, nor-
malized as: ∫

ddx =
∫
dqy tr′

√
det(2πθ) tr ≡ Tr (8)

where tr is the trace over the Fock spaces and tr′ is the trace over the degeneracy index
a = 1, . . . N . This corresponds to a space integral and a trace over the matrix indices
a. The extra determinant factor ensures the recovery of the proper commutative
limit (think of semiclassical quantization, or the transition from quantum to classical
statistical mechanical partition functions.)

All manipulations withing ordinary field theory can be transposed here, with a
noncommutative twist. For instance, the fact that the integral of a total derivative
vanishes (under proper boundary conditions), translates to the statement that the
trace of a commutator vanishes, and its violation by fields with nontrivial behavior
at infinity is mirrored in the nonvanishing trace of the commutator of unbounded,
non-trace class operators, such as the noncommutative coordinates themselves.

2.2 Weyl maps, Wigner functions and ∗-products

The product of noncommutative fields is simply the product of the corresponding
operators, which is clearly associative but not commutative. It is also not ‘pointwise’,
as the notion of points does not even exist. Nevertheless, in the limit θµν → 0 we
recover the usual (commutative) geometry and algebra of functions. Points are re-
covered as any set of states whose spread ∆xµ in each coordinate xµ goes to zero in
the commutative limit. Such a useful set is, e.g., the set of coherent states in each
noncommutative (Darboux) pair of coordinates with average values xµ.

Observations like that can form the basis of a complete mapping between non-
commutative fields and commutative functions f(x), leading to the notion of the
‘symbol’ of f(x) and the star-product. Specifically, by expressing fields as functions of
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the fundamental operators xµ and ordering the various xµ in the expressions for the
fields in a prescribed way, using their known commutators, establishes a one-to-one
correspondence between functions of operators and ordinary functions.

The ordering that is most usually adopted is the fully symmetric Weyl ordering,
in which monomials in the xµ are fully symmetrized. It is simplest to work with the
Fourier transforms of functions, since exponentials of linear combinations of xµ are
automatically Weyl ordered. So a classical function f(x), with Fourier transform f̃(k),
is mapped to the operator (noncommutative field) f as:

f =
∫
dk eikµxµ

(9)

(the integral over k is of the appropriate dimensionality). Conversely, the ‘symbol’
(commutative function) corresponding to an operator f can be expressed as:

f̃(k) =
√

det(θ/2π) tr fe−ikµxµ

(10)

where the above trace is taken over an irreducible representation of the noncommuta-
tive coordinates. This reproduces scalar functions. For matrix-valued noncommutative
fields f , acting nontrivially on a direct sum of N copies of the irreducible representa-
tion, the above expression generalizes to

f̃ab(k) =
√

det(θ/2π)
∑

n

〈n, a|fe−ikµxµ

|n, b〉 (11)

where |n, a〉 are a complete set of states for the a-th copy of the irreducible represen-
tation, reproducing a matrix function of commutative variables. Hermitian operators
f map to hermitian matrix functions fab(x) or, in the case N = 1, real functions.

On can show that, under the above mapping, derivatives and integrals of non-
commutative fields map to the standard commutative ones for their symbol. The
product of operators, however, maps to a new function, called the star-product of the
corresponding functions [9]:

f ↔ f(x) , g ↔ g(x) =⇒ fg ↔ (f ∗ g)(x) (12)

The star product can be written explicitly in terms of the Fourier transforms of
functions as

(f ∗ g)(k) =
∫
dk f̃(q) g̃(k − q) e

i
2 θµνkµkν (13)

This is the standard convolution of Fourier transforms, but with an extra phase factor.
The resulting ∗-product is associative but noncommutative and also nonlocal in the
coordinates xµ. The commutator of two noncommutative fields maps to the so-called
star, or Moyal, brackets of their symbols.

The above mapping has the advantage that it circumnavigates the conceptual
problems of noncommutative geometry by working with familiar objects such as or-
dinary functions and their integral and derivatives, trading the effects of noncommu-
tativity for a nonlocal, noncommutative function product. It can, however, obscure
the beauty and conceptual unification that arises from noncommutativity and make
some issues or calculations unwieldy. In what follows, we shall stick with the operator
formulation as exposed above. Translation into the *-product language can always be
done at any desired stage.
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3 Noncommutative gauge theory

Gauge theory on noncommutative spaces becomes particularly attractive [10, 11, 12].
Gauge fields Aµ are hermitian operators acting on the representation space. Since
they do not depend on ∂i they cannot shift the values of yi, while they act nontriv-
ially on the fully noncommuting subspace. They have effectively become big matrices
acting on the full Fock space with elements depending on the commuting coordinates.
Derivatives of these fields are defined through the adjoin action of ∂µ

∂µ ·Aν = [∂µ, Aν ] (14)

Using the above formalism, gauge field theory can be built in a way analogous
to the commuting case. Gauge transformations are unitary transformations in the full
representation space. Restricting Aµ to depend on the coordinates only, as above,
produces the so-called U(1) gauge theory. U(N) gauge theory can be obtained by
relaxing this restriction and allowing Aµ to also be a function of the Gr and thus act
on the index a.

3.1 Background-independent formulation

The basic moral of the previous section is that noncommutative gauge theory can
be written in a universal way [13, 14, 15]. In the operator formulation no special
distinction needs be done between U(1) and U(N) theories, nor need gauge and
spacetime degrees of freedom be treated distinctly. The fundamental operators of the
theory are

Dµ = −i∂µ +Aµ (15)

corresponding to covariant derivatives. Gauge transformations are simply unitary con-
jugations of the covariant derivative operators by a unitary field U . That is, the Dµ

transform covariantly:
Dµ → U−1DµU (16)

This reproduces the (noncommutative version of the) standard gauge transformation
of Aµ:

Aµ → −iU−1∂µ · U + U−1AµU (17)

For the fully noncommutative components, covariant derivative operators assume the
form

Dα = ωαβx
β +Aα = ωαβ(xβ + θβγAγ) = ωαβX

β (18)

The above rewriting is important in various ways. It stresses the fact that, on
fully noncommutative spaces, the separation of Dα into xα (coordinate) and Aα

(gauge) is largely arbitrary and artificial: both are operators acting on the Hilbert
space on an equal footing, the distinction between ‘derivative’ and ‘coordinate’ having
been eliminated. This separation is also gauge dependent, since a unitary transforma-
tion will mixt the two parts. In effect, gauge transfomations mix spatial and gauge
degrees of freedom! Further, it is not consistent any more to consider strictly SU(N)
gauge fields. Even if Aµ is originally traceless in the N -dimensional index a, gauge
transformations U cannot meaningfully be restricted to SU(N): the notion of partial
trace of an operator with respect to one component of a direct product space makes
sense, but the notion of partial determinant does not. A gauge transformation will
always generate a U(1) part for Aµ, making U(N) gauge theory the only theory that
arises naturally.
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The above rewriting also introduces the ‘covariant coordinate’ field Xα that
combines the ordinary coordinate and gauge fields in a covariant way and is dual to
the covariant derivative. Noncommutative gauge theory can be constructed entirely
in terms of the Xα. These, in turn, can be thought of as ‘deformed’ coordinates, the
deformation being generated by (the dual of) gauge fields, which alludes to stretching
membranes and fluids. All this is relevant in the upcoming story.

Any lagrangian built entirely out of Dµ will lead to a gauge invariant action,
since the trace will remain invariant under any unitary transformation. The standard
Lorentz-Yang-Mills action is built by defining the field strength

Fµν = ∂µ ·Aν − ∂ν ·Aµ + i[Aµ, Aν ] = i[Dµ, Dν ]− ωµν (19)

and writing the standard action

SLY M =
1

4g2
TrFµνF

µν = − 1
4g2

Tr([Dµ, Dν ] + iωµν)2 (20)

where Tr also includes integration over commutative components yi. In the above
we used some c-number metric tensor gµν to raise the indices of F . Note that the
operators ∂α·, understood to act in the adjoin on fields, commute, while the operators
∂α = −iωαβX

β have a nonzero commutator equal to

[∂α, ∂β ] = iωαβ (21)

This explains the extra ω-term appearing in the definition of F in terms of covariant
derivative commutators.

One can, however, just as well work with the action

ŜLY M =
1

4g2
TrF̂µνF̂

µν = − 1
4g2

Tr[Dµ, Dν ][Dµ, Dν ] (22)

Indeed, Ŝ differs from S by a term proportional to Trω2, which is an irrelevant (in-
finite) constant, as well as a term proportional to ωµνTr[Dµ, Dν ], which, being the
trace of a commutator (a ‘total derivative’), does not contribute to the equations
of motion. The two actions lead to the same classical theory. Note that θµν or ωµν

do not appear in the action. These quantities arise only in the commutator of non-
commutative coordinates. Since the xµ do not explicitly appear in the action either
(being just a gauge-dependent part of Dµ), all reference to the specific noncommuta-
tive space has been eliminated! This is the ‘background independent’ formulation of
noncommutative gauge theory that stresses its universality.

3.2 Superselection of the noncommutative vacuum

How does, then, a particular noncommutative space arise in this theory? The equa-
tions of motion for the operators Dµ are

[Dµ, [Dµ, Dν ]] = 0 (23)

The general operator solution of this equation is not fully known. Apart from the triv-
ial solution Dµ = 0, it admits as solution all operators with c-number commutators,
satisfying

[Dµ, Dν ] = −iωµν (24)
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for some ω. This is the classical ‘noncommutative vacuum’, where Dµ = −i∂µ, and
expanding Dµ around this vacuum leads to a specific noncommutative gauge theory.

Quantum mechanically, ωµν are superselection parameters and the above vacuum
is stable. To see this, assume that the time direction is commutative and consider the
collective mode

Dα = −iλαβ∂β (25)

with λαβ parameters depending only on time. This mode would change the noncom-
mutative vacuum while leaving the gauge field part of Dα unexcited. ω gets modified
into

ω′µν = λµαωαβλβν (26)

The action implies a quartic potential for this mode, with a strength proportional to
Tr1, and a kinetic term proportional to Tr∂α∂β . (There is also a gauge constraint which
does not alter the qualitative dynamical behavior of λ.) Both potential and kinetic
terms are infinite, and to regularize them we should truncate each Fock space trace up
to some highest state Λ, corresponding to a finite volume regularization (the area of
each noncommutative two-dimensional subspace has effectively become Λ). One can
check that the potential term would grow as Λn while the kinetic term would grow
as Λn+1. Thus the kinetic term dominates; the above collective degrees of freedom
acquire an infinite mass and will remain “frozen” to whatever initial value they are
placed, in spite of the nontrivial potential. (This is analogous to the θ-angle of the
vacuum of four-dimensional nonabelian gauge theories: the vacuum energy depends on
θ which is still superselected.) Quantum mechanically there is no interference between
different values of λ and we can fix them to some c-number value, thus fixing the
noncommutativity of space [16]. This phenomenon is similar to symmetry breaking,
but with the important difference that the potential is not flat along changes of the
“broken” vacuum, and consequently there are no Goldstone bosons.

In conclusion, we can start with the action (22) as the definition of our theory,
where Dµ are arbitrary operators (matrices) in some space. Gauge theory is then de-
fined as a perturbation around a (stable) classical vacuum. Particular choices of this
vacuum will lead to standard noncommutative gauge theory, with θµν and N appear-
ing as vacuum parameters. Living in any specific space and gauge group amounts to
landscaping!

3.3 Noncommutative Chern-Simons action

A particularly useful and important type of action in gauge theory is the Chern-
Simons term [17]. This is a topological action, best written in terms of differential
forms. In the commutative case, we define the one- and two-forms

A = iAµdx
µ , F = dA + A2 =

i

2

(
∂µAν − ∂νAµ + i[Aµ, Aν ]

)
dxµdxν (27)

The Chern-Simons action S2n+1 is the integral of the 2n+ 1-form C2n+1 satisfying

dC2n+1 = trFn+1 (28)

By virtue of (28) and the gauge invariance of trFn it follows that S2n+1 is gauge
invariant up to total derivatives, since, if δ stands for an infinitesimal gauge transfor-
mation,

dδC2n+1 = δdC2n+1 = δtrFn = 0 , so δC2n+1 = dΩ2n (29)
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The integrated action is therefore invariant under infinitesimal gauge transformations.
Large gauge transformations may lead to an additive change in the action and they
usually imply a quantization of its coefficient [17, 18]. As a result, the equations of
motion derived from this action are gauge covariant and read

δS2n+1

δA
=

δ

δA

∫
C2n+1 = (n+ 1)Fn (30)

The above can be considered as the defining relation for C2n+1.
We can define corresponding noncommutative Chern-Simons actions [19]-[27].

To this end, we shall adopt the differential form language [14] and define the usual
basis of one-forms dxµ as a set of formal anticommuting parameters with the property

dxµdxν = −dxνdxµ , dxµ1 · · · dxµd = εµ1...µD (31)

Topological actions do not involve the metric tensor and can be written as integrals of
d-forms. The only dynamical objects available in noncommutative gauge theory are
Dµ and thus the only form that we can write is

D = idxµDµ = d + A (32)

where we defined the exterior derivative and gauge field one-forms

d = dxµ∂µ , A = idxµAµ (33)

(note that both D and A as defined above are antihermitian). The action of the
exterior derivative d on an operator p-form H, d ·H, yields the p+ 1-form dxµ[∂µ,H]
and is given by

d ·H = dH− (−)pHd (34)

In particular, on the gauge field one-form A it acts as

d ·A = dA + Ad (35)

Correspondingly, the covariant exterior derivative of H is

D ·H = DH− (−)pHD (36)

As a result of the noncommutativity of the operators ∂µ, the exterior derivative op-
erator is not nilpotent but rather satisfies

d2 = ω , ω =
i

2
dxµdxνωµν (37)

We stress, however, that d· is still nilpotent since ω commutes with all operator forms:

d · d ·H = [d, [d,H]∓]± = ±[ω,H] = 0 (38)

The two-form F̂ = i
2dx

µdxνF̂µν is simply

F̂ = D2 =
1
2
D ·D = ω + dA + Ad + A2 = ω + F (39)

where F = i
2dx

µdxνFµν is the conventionally defined field strength two-form.
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The most general d-form that we can write involves arbitrary combinations of D
and ω. If, however, we adopt the view that ω should arise as a superselection (vacuum)
parameter and not as a term in the action, the unique form that we can write is Dd

and the unique action

Ŝd =
d+ 1
2d

TrDd = Tr Cd (40)

This is the Chern-Simons action. The coefficient was chosen to conform with the
commutative definition, as will be discussed shortly. In even dimensions Ŝd reduces
to the trace of a commutator Tr[D,Dd−1], a total derivative that does not affect the
equations of motion and corresponds to a topological term. In odd dimensions it
becomes a nontrivial action.

Ŝd is by construction gauge invariant. To see that it also satisfies the defining
property of a Chern-Simons form (30) is almost immediate: δ/δA = δ/δD and thus,
for d = 2n+ 1:

δ

δA
TrD2n+1 = (2n+ 1)D2n = (2n+ 1) F̂n (41)

So, with the chosen normalization in (40) we have the defining condition (30) with F̂
in the place of F. What is less obvious is that ŜD can be written entirely in terms of
F and A and that, for commutative spaces, it reduces to the standard Chern-Simons
action. To achieve that, one must expand CD in terms of d and A, make use of the
cyclicity of trace and the condition d2 = ω and reduce the expressions into ones
containing dA + Ad rather than isolated d s. The condition

Trωnd = 0 (42)

which is a result of the fact that ∂µ is off-diagonal for both commuting and noncom-
muting dimensions, can also be used to get rid of overall constants. This is a rather
involved procedure for which we have no algorithmic approach. (Specific cases will be
worked out later.) Note, further, that the use of the cyclicity of trace implies that we
dismiss total derivative terms (traces of commutators). Such terms do not affect the
equations of motion. For d = 1 the result is simply

Ŝ1 = TrA (43)

which is the ‘abelian’ one-dimensional Chern-Simons term. For d = 3 we obtain

Ŝ3 = Tr(AF− 1
3
A3) + 2Tr(ωA) (44)

where we used the fact that Tr[A(dA + Ad)] = 2Tr(A2d). The first term is the non-
commutative version of the standard three-dimensional Chern-Simons term, while the
second is a lower-dimensional Chern-Simons term involving explicitly ω.

We can get the general expression for Ŝd by referring to the defining relation.
This reads

δ

δA
Ŝ2n+1 = (n+ 1)F̂n = (n+ 1)(F + ω)n = (n+ 1)

n∑
k=0

(
n

k

)
ωn−kFk (45)

and by expressing Fk as the A-derivative of the standard Chern-Simons action S2k+1

we get
δ

δA

{
Ŝ2n+1 −

n∑
k=0

(
n+ 1
k + 1

)
ωn−kS2k+1

}
= 0 (46)
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So the expression in brackets must be a constant, easily seen to be zero by setting
A = 0. We therefore have

Ŝ2n+1 =
n∑

k=0

(
n+ 1
k + 1

)
Trωn−kC2k+1 (47)

We observe that we get the 2n + 1-dimensional Chern-Simons action plus all lower-
dimensional actions with tensors ω inserted to complete the dimensions. Each term is
separately gauge invariant and we could have chosen to omit them, or include them
with different coefficient. It is the specific combination above, however, that has the
property that it can be reformulated in a way that does not involve ω explicitly. The
standard Chern-Simons action can also be written in terms of D alone by inverting
(47):

S2n+1 = (n+ 1)Tr
∫ 1

0

D(t2D2 − ω)ndt = Tr
n∑

k=0

(
n+ 1
k + 1

)
k + 1
2k + 1

(−ω)n−kD2k+1 (48)

For example, the simplest nontrivial noncommutative action in 2+1 dimensions reads

S3 = Tr
(

2
3
D3 − 2ωD

)
(49)

The above can be written more explicitly in terms of the two spatial covariant deriva-
tivesD1,2, which are operators acting on the noncommutative space, and the temporal
covariant derivative D0 = dt(∂t + iA0), which contains a proper derivative operator
in the commutative direction x0 = t and a noncommutative gauge field A0:

S3 =
∫
dt 2πθTr

{
εij(Ḋi + i[A0, Di])Dj +

2
θ
A0

}
(50)

Note that the overall coefficient of the last, linear term is independent of θ.
We also point out a peculiar properly of the Chern-Simons form Ĉ2n+1. Its

covariant derivative yields F̂n+1:

D · Ĉ2n+1 = DĈ2n+1 + Ĉ2n+1D =
2n+ 2
2n+ 1

F̂n+1 (51)

A similar relation holds between Cd (understood as the form appearing inside the trace
in the right hand side of (48)) and F. Clearly the standard Chern-Simons form does not
share this property. Our Cd differs from the standard one by commutators that cannot
all be written as ordinary derivatives (such as, e.g., [d,dA]). These unconventional
terms turn Cd into a covariant quantity that satisfies (51).

3.4 Level quantization for the noncommutative Chern-Simons action

We conclude our consideration of the noncommutative Chern-Simons action by con-
sidering the quantization requirements for its coefficient [26, 27].

In the commutative case, a quantization condition for the coefficient of non-
abelian Chern-Simons actions (‘level quantization’) is required for global gauge in-
variance. This has its roots in the topology of the group of gauge transformations in
the given manifold. E.g., for the 3-dimensional term, the fact that π3[S(N)] = Z for
any N > 1 implies the existence of topologically nontrivial gauge transformations and
corresponding level quantization.



108 A. Polychronakos Séminaire Poincaré

For the noncommutative actions we have not studied the topology of the gauge
group. This would appear to be a hard question for a ‘fuzzy’ noncommutative space,
but in fact is is well-defined and easy to answer: gauge transformations are simply
unitary transformations on the full representation space on which Xµ or Dµ act. This
space is infinite dimensional, so we are dealing with (some version of) U(∞). Two
observations, however, elucidate the answer. First, for odd-dimensional noncommu-
tative spaces there is always one (and in general only one) commutative dimension
t, conventionally called time; and second, if we require gauge transformations to act
trivially at infinity, we are essentially restricting the corresponding unitary operators
to have finite support on the representation space and be bounded. So the relevant
gauge transformations are essentially U(N) matrices of the form U(t). The relevant
topology is S1 → U(N) and is nontrivial due to the U(1) factor in U(N):

π1[U(N)] = π1[U(1)] = Z (52)

This is true for any noncommutative gauge theory, abelian or nonabelian. A ‘winding
number one’ transformation would be a matrix of the form

U(t) = ei 2π
N tŨ(t) , t ∈ [0, 1] (53)

with Ũ an SU(N) matrix satisfying Ũ(0) = 1 and Ũ(1) = exp(−i 2π
N ), a ZN matrix.

This satisfies U(0) = U(1) = 1 but cannot be smoothly deformed to U(t) = 1.
What is the change, if any, of the noncommutative Chern-Simons action under

the above transformation? We may look at the explicit form (50) of S3 to decide it. The
first, cubic term is completely gauge invariant. Indeed, under a gauge transformation
the quantity inside the trace and integral transforms covariantly

εij(Ḋi + i[A0, Di])Dj → U(t)−1
[
εij(Ḋi + i[A0, Di])Dj

]
U(t) (54)

and upon tracing it remains invariant. The term A0, however, transforms as

A0 → U(t)−1A0U(t)− iU(t)−1U̇(t) (55)

The last term gives a nontrivial contribution to the action equal to

∆S3 = −i4π
∫ 1

0

dt trU(t)−1U̇(t) (56)

The SU(N) part Ũ of U(t) does not contribute in the above, since Ũ−1 ˙̃U is traceless.
The U(1) factor, however, contributes a part equal to

∆S3 = −i4π
∫ 1

0

dt i
2π
N

tr1 = 8π2 (57)

The coefficient of the action λ should be such that the overall change should be
quantum mechanically invisible, that is, a multiple of 2π. We get

λ 8π2 = 2πn or λ =
n

4π
(58)

with n an integer.
The above quantization condition is independent of θ and conforms with the

level quantization of the commutative nonabelian Chern-Simons theory. It also holds
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for the abelian (or, rather, U(1)) theory, for which there is no quantization in the
commutative case. In the commutative limit the corresponding topologically nontrivial
gauge transformations become singular and decouple from the theory, thus eliminating
the need for quantization. This result will be relevant in the upcoming considerations
of the quantum Hall effect.

4 Connection with fluid mechanics

At this point we take a break from noncommutative gauge theory to bring into the
picture fluid mechanics and review its two main formulations, Euler and Lagrange.
As will become apparent, the two subjects are intimately related. Already we saw
that noncommutative gauge theory can be formulated in terms of covariant deformed
coordinate operators Xµ. These parallel the spatial coordinates of particle fluids, with
the undeformed background coordinates xµ playing the role of body-fixed labels of
the particles.

4.1 Lagrange and Euler descriptions of fluids

We start with a summary review of the two main formulations of fluid mechanics,
the particle-fixed (Lagrange) and space-fixed (Euler) descriptions. For more extensive
reviews see [28, 29].

A fluid can be viewed as a dense collection of (identical) particles moving in some
d-dimensional space, evolving in time t. The Lagrange description uses the coordinates
of the particles comprising the fluid: Xi(x, t). These are labeled by a set of parameters
xi, which are the coordinates of some fiducial reference configuration and are called
particle-fixed or comoving coordinates. They serve, effectively, as particle ‘labels’.
Summation over particles amounts to integration over the comoving coordinates x
times the density of particles in the fiducial configuration ρ0(x), which is usually
taken to be homogeneous.

In the Euler description the fluid is described by the space-time–dependent den-
sity ρ(r, t) and velocity fields vi(r, t) at each point of space with coordinates ri. The
two formulations are related by considering the particles at space coordinates ri, that
is, Xi = ri, and expressing the density and velocity field in terms of the Lagrange
variables. We assume sufficient regularity so that (single-valued) inverse functions
χi(r, t) exist:

Xi(t, x)
∣∣∣
x=χ(t,r)

= ri (59)

Xi(x, t) provides a mapping of the fiducial particle position xi to position at time t,
while χi(r, t) is the inverse mapping. The Euler density then is defined by

ρ(r, t) = ρ0

∫
dxδ
(
X(x, t)− r

)
. (60)

(The integral and the δ-function carry the dimensionality of the relevant space.) This
evaluates as

1
ρ(r, t)

=
1
ρ0

det
∂Xi(x, t)
∂xj

∣∣∣
x=χ(r,t)

(61)

which is simply the change of volume element from fiducial to real space. The Euler
velocity is

vi(r, t) = Ẋi(x, t)
∣∣∣
x=χ(r,t)

(62)



110 A. Polychronakos Séminaire Poincaré

where overdot denotes differentiation with respect to the explicit time dependence.
(Evaluating an expression at x = χ(r, t) is equivalent to eliminating x in favor of X,
which is then renamed r.)

The number of particles in the fluid is conserved. This is a trivial (kinematical)
condition in the Lagrange formulation, where comoving coordinates directly relate to
particles. In the Euler formulations this manifests through conservation of the particle
current ji = ρvi, given in terms of Lagrange variables by

vi(r, t) = ρ0

∫
dxẊi(r, t)δ

(
X(x, t)− r

)
(63)

As a consequence of the above definition it obeys the continuity equation

ρ̇+ ∂ij
i = 0 . (64)

The kinetic part of the lagrangian K for the Lagrange variables is simply the
single-particle lagrangian for each particle in terms of the particle coordinates,
Ksp(X), summed over all particles.

K = ρ0

∫
dxKsp

(
X(x, t)

)
. (65)

The exact form of Ksp depends on whether the particles are relativistic or non-
relativistic, the presence of magnetic fields etc. As an example, the kinetic term for a
non-relativistic plasma in an external magnetic field generated by an electromagnetic
vector potential Ai is

K = ρ0

∫
dx

[
1
2
mgij(X)ẊiẊj + qAi(X, t) Ẋi

]
(66)

with m and q the mass and charge of each fluid particle and gij the metric of space.
Single-particle (external) potentials can be written in a similar way, while many-

body and near-neighbor (density dependent) potentials will be more involved.

4.2 Reparametrization symmetry and its noncommutative avatar

The Lagrange description has an obvious underlying symmetry. Comoving coordinates
are essentially arbitrary particle labels. All fluid quantities are invariant under particle
relabeling, that is, under reparametrizations of the variables xi, provided that the
density of the fiducial configuration ρ0 remains invariant. Such transformations are
volume-preserving diffeomorphisms of the variables xi.

For the minimal nontrivial case of two spatial dimensions, this symmetry cor-
responds to area-preserving diffeomorphisms. They can be thought of as canonical
transformations on a two-dimensional phase space and are parametrized by a function
of the two spatial variables, the generator of canonical transformation. Infinitesimal
transformations are written

δxi = εij
∂f

∂xj
(67)

with f(x) the generating function. Obviously δxi satisfies the area-preserving condi-
tion

det
∂(xi + δxi)

∂xj
= 1 or

∂δxi

∂xi
= 0 (68)
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The same condition can be written in an even more suggestive way. Define a canonical
structure for the two-dimensional space in terms of the Poisson brackets

{x1, x2} = θ or {xi, xj} = θεij = θij (69)

for some constant θ. Rescaling f by a factor θ−1, we can re-write δxi as

δxi = θij∂jf = {xi, f} (70)

Similarly, the transformation of the fundamental (Lagrange) fluid variables under the
above redefinition is

δXi = ∂jX
iδxj = θjk∂jX

i∂kf = {Xi, f} (71)

The above look like the classical analog (or precursor) of the gauge transforma-
tions of the covariant noncommutative gauge coordinates Xi of the previous sections.
This is not accidental: the area-preserving transformations for the fluid correspond to
relabeling the parameters x and do not generate a physically distinct fluid configu-
rations. They represent simply a redundancy in the description of the fluid in terms
of Lagrange coordinates; that is, a gauge symmetry. Physical fluid quantities, such
as the Euler variables, or the fluid lagrangian, are expressed as integrals of quanti-
ties transforming ‘covariantly’ under the above transformation; that is, transforming
by the Poisson bracket of the quantity with the generator of the transformation f ,
as in (71). They are, therefore, invariant under such transformations; that is, gauge
invariant.

The analogy with noncommutative gauge theory becomes manifest by writing the
Lagrange particle coordinates in terms of their deviation from the fiducial coordinates
[30]-[33]:

Xi(x, t) = xi + ai(x, t) = xi + θijAj(x, t) (72)

The deviation ai, and its dual Ai do not ransform covariantly any more; rather

δAi = ∂if + {Ai, f} (73)

The similarity with the gauge transformation of a gauge field is obvious. The duals
of the Xi

Di = ωijX
j = ωijx

j +Ai (74)

obviously correspond to covariant derivatives (although at this stage they are just
rewritings of the comoving particle coordinates). The analog of the field strength is

F̂ij = {Di, Dj} = ωij + ∂iAj − ∂jAi + {Ai, Aj} (75)

This is related to the fluid density, which in the Poisson bracket formulation reads

ρ0

ρ
= det

∂Xk(x, t)
∂xl

=
1
θ
{X1, X2} (76)

The field strength calculates as:

F̂ij = ωij{X1, X2} =
ρ0

ρ
εij (77)

The field strength essentially becomes the (inverse) fluid density!
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Similar considerations generalize to higher dimensions, with one twist: canoni-
cal transformations, the classical version of noncommutative gauge transformations,
are only a symplectic subgroup of full volume-preserving diffeomorphisms. Higher-
dimensional noncommutative gauge theory is analogous to a special version of fluid
mechanics that enjoys a somewhat limited particle relabeling invariance. For the pur-
poses of describing the quantum Hall effect, an essentially two-dimensional situation,
this is inconsequential.

4.3 Gauging the symmetry

In the above discussion the role of time was not considered. The particle relabeling (x-
space reparametrization) considered above were time-independent. Time-dependent
transformations are not, a priori, invariances of the fluid since they introduce extra,
nonphysical terms in the particle velocities Ẋi(x, t). To promote this transformation
into a full space-time gauge symmetry we must gauge time derivatives by introducing
a temporal gauge field A0:

D0X
i = ẋi + {A0, X

i} (78)

Under the transformation (71) with a time-dependent function f the above derivative
will transform covariantly

δD0X
i = {D0X

i, f} (79)

provided that the gauge field A0 transforms as

δA0 = ḟ + {A0, f} (80)

This gauging, however, has dynamical consequences. We can gauge fix the theory by
choosing the temporal gauge, putting A0 = 0. The action becomes identical to the
ungauged action, with the exception that now we have to satisfy the Gauss law for
the gauge-fixed symmetry, that is, the equation of motion for the reduced field A0.
The exact form of the constraint depends on the kinetic term of the lagrangian for
the fluid:

G = {Ẋi,
∂K

∂Ẋi
} = 0 (81)

As an example, for the plasma of (4.1) the Gauss law reads

G = {Ẋi,mgij(X)Ẋj + qAi(X)} = 0 (82)

Interesting two-dimensional special cases are (gij = δij , q = 0), when

G = {Ẋi, Xi} (83)

and the ‘lowest Landau level’ case of massless particles in a constant magetic field
(m = 0, Ai = (B/2)εijXj), when

G = {X1, X2} = 0 (84)

We conclude by mentioning that the fluid structure we described in this section
can also be interpreted as membrane dynamics. Indeed, a membrane is, in principle,
a sheet of fluid in a higher-dimensional space. A two-dimensional membrane in two
space dimensions is space-filling, and thus indistinguishable from a fluid, the density
expressing the way in which the membrane shrinks or expand locally. The full cor-
respondence of membranes, noncommutative (matrix) theory and fluids, relativistic
and non-relativistic, has been examined elsewhere. We shall not expand on it here.
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4.4 Noncommutative fluids and the Seiberg-Witten map

In the previous section we alluded to the connection between noncommutative gauge
theory and fluid mechanics. It is time to make the connection explicit [33]. We shall
work specifically in two (flat) spatial dimensions, as the most straightforward case
and relevant to the quantum Hall effect.

The transition from (classical) fluids to noncommutative fluids is achieved the
same way as the transition from classical to quantum mechanics. We promote the
canonical Poisson brackets introduced in the previous section to (operator) commu-
tators. All Poisson brackets that appear become commutators:

{ , } → − i[ , ] (85)

So the comoving parameters satisfy

[xi, xj ] = iθij (86)

They have become a noncommutative plane. This means that the particle labels
cannot have ‘sharp’ values and the pinpointing of particles in the fluid is no more
possible. In effect, we have a ‘fuzzification’ of the underlying fluid particles and a
corresponding ‘fuzzy’ fluid.

The remaining structure smoothly goes over to noncommutative gauge theory,
as already alluded. We assume that the noncommutative coordinates x1, x2 act on a
single irreducible representation of their Heisenberg algebra; this effectively assigns a
single particle state for ‘point’ of space (each state in the representation). Inclusion of
multiple copies of the irreducible representations would correspond to mutiple particle
states per ‘point’ of space and would endow the particles with internal degrees of
freedom.

Integration over the comoving parameters becomes 2πθ times trace over the
representation space. Summation over particles, then, becomes∑

particles

= ρ0

∫
dx → 2πθρ0Tr (87)

The parameter θ, or its inverse ω, was introduced arbitrarily and plays no role in the
fluid description. This is similar to the background-independent formulation of non-
commutative gauge theory in terms of covariant derivatives or coordinates. Presently,
we relate θ to the inverse density of the fiducial configuration ρ−1

0

2πθ =
1
ρ0

(88)

in which case the factor in the preceding equation disappears. Particle summation
becomes a simple trace, so particles are identified with states in the representation
space. This relation between fiducial density and noncommutativity parameter will
always be assumed to hold from now on.

The Lagrange coordinates of particles Xi and the gauge field A0 are functions of
the underlying ‘fuzzy’ (noncommutative ) particle labels, and thus become noncom-
mutative fields. Area-preserving reparametrizations, which are canonical transforma-
tions in the classical case, become unitary transformations in the noncommutative
case (think, again, of quantum mechanics). Operators Xi transform by unitary con-
jugations; infinitesimally,

δXi = i[f,Xi] (89)
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The deviations of Xi from the fiducial coordinates xi, on the other hand, as defined
in (72), and the temporal gauge field pick up extra terms and transform as proper
gauge fields:

δAµ = ∂µf − i[Aµ, f ] (90)

The remaining question is the form of the (gauge invariant) lagrangian that
corresponds to the noncommutative fluid. This depends on the specific fluid dynamics
and will be dealt with in the next section. Before we go there, we would like to examine
further the properties of the noncommutative fluid that derives from the present
construction. Just because the underlying particles become fuzzy does not necessarily
mean that the emerging fluid cannot be described in traditional terms. Indeed, fluids
are dense distributions of particles and we are not supposed to be able to distinguish
individual particles in any case. The Euler description, which talks about collective
fluid properties like density and velocity, remains valid in the noncommutative case
as we shall see.

The noncommutative version of equation (76) for the density becomes (with
2πθρ0 = 1)

[X1, X2] =
i

2πρ
(91)

This relation would suggest that the density, too, becomes a noncommutative field.
The difficulty with this expression is that it gives the density as a function of the
underlying comoving coordinates, which we know are noncommutative . A better
expression is (60), which gives the density directly at a point of space r. This formula
directly transcribes into

ρ(r, t) = Trδ
(
X − r

)
(92)

in tne noncommutative case. r is still an ordinary space variable, and the trace elimi-
nates the operator nature of the expression in the right hand side, rendering a classical
function of r and t. The only difficulty is in the definition of the delta function for the
noncommutative argument Xi − ri: the various Xi (two in our case) are operators
and do not commute, so there are ordering issues in defining any function. In act, the
operator δ(X − r) may not even be hermitian unless properly ordered, which would
produce a complex density.

In dealing with such problems, a procedure similar to the definition of the ‘sym-
bol’ of a noncommutative field is followed: a standard ordering of all monomials in-
volving various Xis is prescribed. The Weyl (totally symmetrized) ordering is usually
adopted. Under this ordering, the delta function above is defined as

δ
(
X − r

)
=
∫
dkeiki(r

i−Xi) (93)

where ki are classical (c-number) Fourier integration parameters. The above operator
has also the advantage of being hermitian. The spatial Fourier transform of the density
with respect to r is simply

ρ(k, t) = Tr e−ikiX
i

(94)

In a similar vein, we use the classical expression for the particle current

ji(r, t) = ρ0

∫
dxẊiδ

(
X − r

)
(95)

to write the corresponding expression for the noncommutative fluid as

ji(k, t) = TrD0X
i e−ikiX

i

(96)
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In the above, we used the covariant time derivative in order to make the expression
explicitly gauge invariant. The corresponding current is real, as the trace ensures that
the change of ordering between D0X and the exponential is immaterial.

The crucial observation is that the above density and current still satisfy the
continuity equation, which in Fourier space becomes

ρ̇+ ikij
i = 0 (97)

The proof is straightforward and relies on the following two facts, true due to the
cyclicity of trace:

d

dt
Tr e−ikiX

i

= −iTr kjẊ
je−ikiX

i

(98)

and

Tr [A0, kjX
j ]e−ikiX

i

= 0 (99)

The noncommutative fluid, therefore, has an Euler description in terms of a traditional
conserved particle density and current.

The above observation is the basis for a mapping between commutative and
noncommutative gauge theories, which fist arose in the context of string theory and is
known as the Seiberg-Witten map [5]. The key observation is that, in 2+1 dimensions,
a conserved current can be written in terms of its dual two-form, which then satisfies
the Bianchi identity. Specifically, define

Jµν = εµνλj
λ (100)

where j0 = ρ. Then, due to the continuity equation ∂µj
µ = 0, Jµν satisfies

∂µJνλ + cyclic perms. = 0 or dJ = 0 (101)

This means that J can be considered as an abelian field strength, which allows us
to define an abelian commutative gauge field Ãµ. The reference configuration of the
fluid, in which particles are in their fiducial positions Xi = xi and corresponds to
vanishing noncommutative gauge field, gives jµ

0 = (ρ0, 0, 0) or J0 = ρ0dx1dx2. If we
want to have this configuration correspond to vanishing abelian gauge field F̃µν , we
have to define

F̃ = J− J0 (102)

or, more explicitly

F̃0i = εikj
k , F̃ij = εij(ρ− ρ0) (103)

Substituting the explicit expressions (94,96) for ρ and ji, and expressing Xi in them
in terms of noncommutative fields, gives an explicit mapping between the noncom-
mutative fields Aµ and the commutative fields Ãµ.

Similar considerations extend to higher dimensions but, again, we shall not dwell
on them here [35, 34, 35]. The moral lesson of the above is that the Lagrange for-
mulation of fuzzy fluids is inherently noncommutative, while the Euler formulation
is commutative. The Seiberg-Witten map between them becomes the transition from
the particle-fixed Lagrange to the space-fixed Euler formulation.
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5 The noncommutative description of quantum Hall states

We reach, now, one of the main topics of this presentation. Is the above useful to
anything? Can we use it to describe or solve any interesting physical system or does
it remain an interesting peculiarity?

To find an appropriate application, we must look for systems with ‘fuzzy’ parti-
cles. This is not hard: quantum mechanical particles on their phase spaces are fuzzy,
due to Heisenberg uncertainty. This can be carried through, and eventually leads to
the description of one-dimensional fermions in terms of matrix models.

A more interesting situation arises in lowest Landau level physics, in which parti-
cles become fuzzy on the coordinate space. Spatial coordinates become noncommuting
when resticted to the lowest Landau level [36, 17], already introducing a noncommu-
tative element (although quite distinct from the one introduced in the sequel). This
is also the setting for the description of quantum Hall states and will be the topic of
the present section.

5.1 Noncommutative Chern-Simons description of the quantum Hall fluid

The system to be described consists of a large number N →∞ of electrons (we take
their charge e = 1) on the plane in the lowest Landau level of an external constant
magnetic field B. Upon proper dynamical conditions, they form quantum Hall states
(for a review of the quantum Hall effect see [38].) According to the observations of the
previous section, we can parametrize their coordinates as a fuzzy fluid in terms of two
noncommutative Lagrange coordinates (infinite hermitian ‘matrices’) Xi, i = 1, 2,
that is, by two operators on an infinite Hilbert space. The density of these electrons is
not fixed at this point, but will eventually relate to the noncommutativity parameter
as ρ0 = 1/2πθ.

The action is the noncommutative fluid analog of the gauge action of mass-
less particles in an external constant magnetic field. In the symmetric gauge for the
magnetic field, this would read

S =
∫
dt
B

2
Tr
{
εij(D0X

iXj
}

=
∫
dt
B

2
Tr
{
εij(Ẋi + i[A0, X

i])Xj+
}

(104)

The above expression was made gauge invariant by gauging the time derivative and
introducing a noncommutative temporal gauge field A0. As explained in previous
sections, however, this introduces a Gauss law constraint, which in the present case
reads

[X1, X2] = 0 (105)

This is undesirable in many ways. The would-be noncommutative coordinates become
commutative, eliminating the fuzziness of the description. More seriously, the density
of the fluid classically becomes singular, as can be seen from the expression (91) for
the inverse fluid density. (It can also be deduced from the commutative expression
(94), although in a slightly more convoluted way.)

Taking care of the above difficulty also gives the opportunity to introduce an
important piece of physics for the system: fractional quantum Hall states (Laughlin
states, in their simplest form) are incompressible and have a constant spatial density
ρ0. The filling fraction ν of the state is defined as the fraction of the Landau level
density ρ

LLL
= B/2π that ρ0 represents:

ν =
ρ0

ρ
LLL

=
2πρ
B

=
1
θB

(106)
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where the noncommutative parameter θ is related to the desired fluid density in the
standard way, spelled out again as

ρ0 =
1

2πθ
(107)

We can introduce this constant density ρ0 in the system by modifying the Gauss law
constraint by an appropriate constant, achieved by adding a term linear in A0. The
resulting action reads

S =
∫
dt
B

2
Tr
{
εij(Ẋi + i[A0, X

i])Xj + 2θA0

}
(108)

This was first proposed by Susskind [32], motivated by the earlier, classical mapping
of the quantum Hall fluid to a gauge action [30] and related string theory work [39].
The equation of motion for A0, now, imposes the Gauss law constraint

[X1, X2] = iθ (109)

essentially identifying X1,X2 with a noncommutative plane.
Interestingly, the above action is exactly the noncommutative CS action in 2+1

dimensions! A simple comparison of expression (50) and (108) above reveals that they
are the same, upon identifying θDi = εijX

j . The coefficient of the CS term λ relates
to B and the filling fraction as

λ =
Bθ

4π
=

1
4πν

(110)

This establishes the connection of the noncommutative Chern-Simons action with the
quantum Hall effect.

As before, gauge transformations are conjugations of Xi or Di by arbitrary time-
dependent unitary operators. In the quantum Hall fluid context they take the meaning
of reshuffling the electrons. Equivalently, the Xi can be considered as coordinates of a
two-dimensional fuzzy membrane, 2πθ playing the role of an area quantum and gauge
transformations realizing area preserving diffeomorphisms. The canonical conjugate
of X1 is P2 = BX2, and the generator of gauge transformations is

G = −iB[X1, X2] = Bθ =
1
ν

(111)

by virtue of (109). Since gauge transformations are interpreted as reshufflings of parti-
cles, the above has the interpretation of endowing the particles with quantum statistics
of order 1/ν.

5.2 Quasiparticle and quasihole classical states

The classical equation (109) has a unique solution, modulo gauge (unitary) trans-
formations, namely the unique irreducible representation of the Heisenberg algebra.
Representation states can be conveniently written in a Fock basis |n〉, n = 0, 1, . . . ,
for the ladder operators X1 ± iX2, |0〉 representing a state of minimal spread at the
origin. The classical theory has this representation as its unique state, the vacuum.

Deviations from the vacuum (109) can be achieved by introducing sources in the
action [32]. A localized source at the origin has a density of the form ρ = ρ0 − qδ2(x)
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in the continuous (commutative) case, representing a point source of particle number
−q, that is, a hole of charge q for q > 0. The noncommutative analog of such a density
is

[X1, X2] = iθ(1 + q|0〉〈0|) (112)

In the membrane picture the right-hand side of (112) corresponds to area and implies
that the area quantum at the origin has been increased to 2πθ(1+q), therefore piercing
a hole of area A = 2πθq and creating a particle deficit q = ρ0A. We shall call this a
quasihole state. For q > 0 we find the quasihole solution of (112) as

X1 + iX2 =
√

2θ
∞∑

n=1

√
n+ q |n− 1〉〈n| (113)

Such solutions are called noncommutative solitons [14, 51, 52].
The case of quasiparticles, q < 0 is more interesting. Clearly the area quantum

cannot be diminished below zero, and equations (112) and (113) cannot hold for
−q > 1. The correct equation is, instead,

[X1, X2] = iθ

(
1−

k−1∑
n=0

|n〉〈n| − ε|k〉〈k|

)
(114)

where k and ε are the integer and fractional part of the quasiparticle charge −q. The
solution of (114) is

X1 + iX2 =
k−1∑
n=0

zn|n〉〈n|+
√

2θ
∞∑

n=k+1

√
n− k − ε |n− 1〉〈n| (115)

(For k = 0 the first sum in (114,115) drops.) In the membrane picture, k quanta
of the membrane have ‘peeled’ and occupy positions zn = xn + iyn on the plane,
while the rest of the membrane has a deficit of area at the origin equal to 2πθε,
leading to a charge surplus ε. Clearly the quanta are electrons that sit on top of the
continuous charge distribution. If we want all charge density to be concentrated at the
origin, we must choose all zn = 0. The above quasiparticle states for integer q are the
noncommutative solitons and flux tubes that are also solutions of noncommutative
gauge theory, while the quasihole states are not solutions of the noncommutative
gauge theory action and have no direct analog.

Laughlin theory predicts that quasihole excitations in the quantum Hall state
have their charge −q quantized in integer units of ν, q = mν, withm a positive integer.
We see that the above discussion gives no hint of this quantization, while we see at
least some indication of electron quantization in (114,115). Quasihole quantization
will emerge in the quantum theory, as we shall see shortly, and is equivalent to a
quantization condition of the noncommutative Chern-SImons term.

5.3 Finite number of electrons: the Chern-Simons matrix model

Describing an infinitely plane filled with electrons is not the most interesting situation.
We wish to describe quantum Hall states of finite extent consisting of N electrons.
Obviously the coordinates Xi of the noncommutative fluid description would have to
be represented by finite N ×N matrices. The action (108), however, and the equation
(109) to which it leads, are inconsistent for finite matrices, and a modified action
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must be written which still captures the physical features of the quantum Hall system.
Such an action exists, and leads to a matrix model truncation of the noncommutative
Chern-Simons action involving a ‘boundary field’ [40]. It is

S =
∫
dt
B

2
Tr
{
εij(Ẋi + i[A0, X

i])Xj + 2θA0 − ω(Xi)2
}

+ Ψ†(iΨ̇−A0Ψ) (116)

It has the same form as the planar CS action, but with two extra terms. The first
involves Ψ, a complex N -vector that transforms in the fundamental of the gauge group
U(N):

Xi → UXiU−1 , Ψ → UΨ (117)

Its action is a covariant kinetic term similar to a complex scalar fermion. We shall,
however, quantize it as a boson; this is perfectly consistent, since there is no spatial
kinetic term that would lead to a negative Dirac sea and the usual inconsistencies of
first-order bosonic actions.

The term proportional to ω (not to be confused with θ−1) serves as a spatial
regulator: since we will be describing a finite number of electrons, there is nothing to
keep them localized anywhere in the plane. We added a confining harmonic potential
which serves as a ‘box’ to keep the particles near the origin.

We can again impose the A0 equation of motion as a Gauss constraint and then
put A0 = 0. In our case it reads

G ≡ −iB[X1, X2] + ΨΨ† −Bθ = 0 (118)

Taking the trace of the above equation gives

Ψ†Ψ = NBθ (119)

The equation of motion for Ψ in the A0 = 0 gauge is Ψ̇ = 0. So we can take it to be

Ψ =
√
NB |v〉 (120)

where |v〉 is a constant vector of unit length. The traceless part of (118) reads

[X1, X2] = iθ (1−N |v〉〈v|) (121)

This is similar to (109) for the infinite plane case, with an extra projection operator.
Using the residual gauge freedom under time-independent unitary transformations,
we can rotate |v〉 to the form |v〉 = (0, . . . 0, 1). The above commutator then takes the
form iθ diag (1, . . . , 1, 1−N) which is the ‘minimal’ deformation of the planar result
(109) that has a vanishing trace.

In the membrane picture, Ψ is like a boundary term. Its role is to absorb the
‘anomaly’ of the commutator [X1, X2], much like the case of a boundary field theory
required to absorb the anomaly of a bulk (commutative) Chern-Simons field theory.

The equations of motion for Xi read

Ẋi + ωεijX
j = 0 (122)

This is just a matrix harmonic oscillator. It is solved by

X1 + iX2 = eiωtA (123)
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where A is any N ×N matrix satisfying the constraint

[A,A†] = 2θ(1−N |v〉〈v|) (124)

The classical states of this theory are given by the set of matrices A = X1 + iX2

satisfying (124) or (121). We can easily find them by choosing a basis in which one of
the Xs is diagonal, say, X1. Then the commutator [X1, X2] is purely off-diagonal and
the components of the vector |v〉 must satisfy |vn|2 = 1/N . We can use the residual
U(1)N gauge freedom to choose the phases of vn so that vn = 1/

√
N . So we get

(X1)mn = xnδmn , (X2)mn = ynδmn +
iθ

xm − xn
(1− δmn) (125)

The solution is parametrized by the N eigenvalues of X1, xn, and the N diagonal
elements of X2, yn.

5.4 Quantum Hall ‘droplet’ vacuum

Not all solutions found above correspond to quantum Hall fluids. In fact, choosing all
xn and yn much bigger than

√
θ and not too close to each other, both X1 and X2

become almost diagonal; they represent N electrons scattered in positions (xn, yn) on
the plane and performing rotational motion around the origin with angular velocity
ω. This is the familiar motion of charged particles in a magnetic field along lines of
equal potential when their proper kinetic term is negligible. Quantum Hall states will
form when particles coalesce near the origin, that is, for states of low energy.

To find the ground state, we must minimize the potential

V =
Bω

2
Tr[(X1)2 + (X2)2] =

Bω

2
Tr(A†A) (126)

while imposing the constraint (121) or (124). This can be implemented with a matrix
Lagrange multiplier Λ (essentially, solving the equations of motion including A0 ≡ Λ
and putting the time derivatives to zero). We obtain

A = [Λ, A] , or Xi = iεij [Λ, Xj ] (127)

This is reminiscent of canonical commutation relations for a quantum harmonic os-
cillator, with Λ playing the role of the Hamiltonian. We are led to the solution

A =
√

2θ
N−1∑
n=0

√
n|n− 1〉〈n| , Λ =

N−1∑
n=0

n|n〉〈n| , |v〉 = |N − 1〉 (128)

This is essentially a quantum harmonic oscillator and Hamiltonian projected to the
lowest N energy eigenstates. It is easy to check that the above satisfies both (124)
and (127). Its physical interpretation is clear: it represents a circular quantum Hall
‘droplet’ of radius

√
2Nθ. Indeed, the radius-squared matrix coordinate R2 is

R2 = (X1)2 + (X2)2 = A†A+
1
2
[A,A†] (129)

=
N−2∑
n=0

θ(2n+ 1)|n〉〈n|+ θ(N − 1)|N − 1〉〈N − 1| (130)
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The highest eigenvalue of R2 is (2N − 1)θ. The particle density of this droplet is
ρ0 = N/(πR2) ∼ 1/(2πθ) as in the infinite plane case.

The matrices Xi are known and can be explicitly diagonalized in this case. Their
eigenvalues are given by the zeros of the N -th Hermite polynomial (times

√
2θ). In

the large-N limit the distribution of these zeros obeys the famous Wigner semi-circle
law, with radius

√
N . Since these eigenvalues are interpreted as electron coordinates,

this confirms once more the fact that the electrons are evenly distributed on a circle
of radius

√
2Nθ.

5.5 Excited states of the model

Excitations of the classical ground state can now be considered. Any perturbation
of (128) in the form of (125) is, of course, some excited state. We shall concentrate,
however, on two special types of excitations.

The first is obtained by performing on A,A† all transformations generated by
the infinitesimal transformation

A′ = A+
N−1∑
n=0

εn(A†)n (131)

with εn infinitesimal complex parameters. The sum is truncated to N − 1 since A†

is an N × N matrix and only its first N powers are independent. It is obvious that
(124) remains invariant under the above transformation and therefore also under the
finite transformations generated by repeated application of (131).

If A,A† were true oscillator operators, these would be canonical (unitary) trans-
formations, that is, gauge transformations that would leave the physical state in-
variant. For the finite A,A† in (128), however, these are not unitary transformations
and generate a new state. To understand what is that new state, examine what hap-
pens to the ‘border’ of the circular quantum Hall droplet under this transformation.
This is defined by A†A ∼ 2Nθ (for large N). To find the new boundary parametrize
A ∼

√
2Nθeiφ, with φ the polar angle on the plane and calculate (A†A)′. The new

boundary in polar coordinates is

R′(φ) =
√

2Nθ +
N∑

n=−N

cne
inφ (132)

where the coefficients cn are

cn = c∗−n =
Rn

2
εn−1 (n > 0), c0 = 0 (133)

This is an arbitrary area-preserving deformation of the boundary of the droplet, trun-
cated to the lowest N Fourier modes. The above states are, therefore, arbitrary area-
preserving boundary excitations of the droplet [53, 54, 55], appropriately truncated
to reflect the finite noncommutative nature of the system (the fact that there are only
N electrons).

Note that on the plane there is an infinity of area-preserving diffeomorphisms
that produce a specific deformation of a given curve. From the droplet point of view,
however, these are all gauge equivalent since they deform the outside of the droplet
(which is empty) or the inside of it (which is full and thus invariant). The finite theory
that we examine has actually broken this infinite gauge freedom, since most of these
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canonical transformations of a, a† do not preserve the Gauss constraint (124) when
applied on A,A†. The transformations (131) pick a representative in this class which
respects the constraint.

The second class of excitations are the analogs of quasihole and quasiparticle
states. States with a quasihole of charge −q at the origin can be written quite explicitly
in the form

A =
√

2θ

(
√
q|N − 1〉〈0|+

N−1∑
n=1

√
n+ q|n− 1〉〈n|

)
, q > 0 (134)

It can be verified that the eigenvalues of A†A are

(A†A)n = 2θ(n+ q) , n = 0, 1, . . . N − 1 (135)

so it represents a circular droplet with a circular hole of area 2πθq at the origin, that
is, with a charge deficit q. The droplet radius has appropriately swelled, since the
total number of particles is always N .

Note that (134) stills respects the Gauss constraint (124) (with |v〉 = |N − 1〉)
without the explicit introduction of any source. So, unlike the infinite plane case, this
model contains states representing quasiholes without the need to introduce external
sources. What happens is that the hole and the boundary of the droplet together
cancel the anomaly of the commutator, the outer boundary part absorbing an amount
N + q and the inner (hole) boundary producing an amount q. This possibility did not
exist in the infinite plane, where the boundary at infinity was invisible, and an explicit
source was needed to nucleate the hole.

Quasiparticle states are a different matter. In fact, there are no quasiparticle
states with the extra particle number localized anywhere within the droplet. Such
states do not belong to the ν = 1/Bθ Laughlin state. There are quasiparticle states
with an integer particle number −q = m, and the extra m electrons occupying posi-
tions outside the droplet. The explicit form of these states is not so easy to write. At
any rate, it is interesting that the matrix model ‘sees’ the quantization of the particle
number and the inaccessibility of the interior of the quantum Hall state in a natural
way.

Having said all that, we are now making the point that all types of states defined
above are the same. Quasihole and quasiparticle states are nonperturbative boundary
excitations of the droplet, while perturbative boundary excitations can be viewed as
marginal particle states.

To clarify this point, note that the transformation (131) or (132) defining in-
finitesimal boundary excitations has 2N real parameters. The general state of the
system, as presented in (125) also depends on 2N parameters (the xn and yn). The
configuration space is connected, so all states can be reached continuously from the
ground state. Therefore, all states can be generated by exponentiating (131). This is
again a feature of the finite-N model: there is no sharp distinction between ‘pertur-
bative’ (boundary) and ‘soliton’ (quasiparticle) states, each being a particular limit
of the other.

5.6 Equivalence to the Calogero model

The model examined above should feel very familiar to Calogero model aficionados.
Indeed, it is equivalent to the harmonic rational Calogero model [41, 42, 43], whose
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connection to fractional statistics [44, 45] and anyons [46]-[47] has been established
in different contexts. This is an integrable system of N nonrelativistic particles on
the line interacting with mutual inverse-square potential and an external harmonic
potential, with Hamiltonian

H =
N∑

n=1

(
ω

2B
p2

n +
Bω

2
x2

n

)
+
∑
n 6=m

ν−2

(xn − xm)2
(136)

In terms of the parameters of the model, the mass of the particles is B/ω and the
coupling constant of the two-body inverse-square potential is ν−2. We refer the reader
to [48, 49, 50] for details on the Calogero model and its connection with the matrix
model. Here we simply state the relevant results and give their connection to quantum
Hall quantities.

The positions of the Calogero particles xn are the eigenvalues of X1, while the
momenta pn are the diagonal elements of X2, specifically pn = Byn. The motion of
the xn generated by the Hamiltonian (136) is compatible with the evolution of the
eigenvalues of X1 as it evolves in time according to (123). So the Calogero model
gives a one-dimensional perspective of the quantum Hall state by monitoring some
effective electron coordinates along X1 (the eigenvalues of X1).

The Hamiltonian of the Calogero model (136) is equal to the potential V =
1
2BωTr(Xi)2 of the matrix model. Therefore, energy states map between the two
models. The ground state is obtained by putting the particles at their static equi-
librium positions. Because of their repulsion, they will form a lattice of points lying
at the roots of the N -th Hermite polynomial and reproducing the semi-cycle Wigner
distribution mentioned before.

Boundary excitations of the quantum Hall droplet correspond to small vibrations
around the equilibrium position, that is, sound waves on the lattice. Quasiholes are
large-amplitude (nonlinear) oscillations of the particles at a localized region of the
lattice. For a quasihole of charge q at the center, on the average q particles near x = 0
participate in the oscillation.

Finally, quasiparticles are excitations where one of the particles is isolated out-
side the ground state distribution (a ‘soliton’) [56]. As it moves, it ‘hits’ the distribu-
tion on one side and causes a solitary wave of net charge 1 to propagate through the
distribution. As the wave reaches the other end of the distribution another particle
emerges and gets emitted there, continuing its motion outside the distribution. So a
quasiparticle is more or less identified with a Calogero particle, although its role, at
different times, is assumed by different Calogero particles, or even by soliton waves
within the ground state distribution.

Overall, we have a ‘holographic’ description of the two0-dimensional quantum
Hall states in terms of the one-dimensional Calogero particle picture. Properties of
the system can be translated back-and-forth between the two descriptions. Further
connections at the quantum level will be described in subsequent sections.

6 The quantum matrix Chern-Simons model

The properties of the model analyzed in the previous section are classical. The ‘states’
and ‘oscillators’ that we encountered were due to the noncommutative nature of the
coordinates and were referring to the classical matrix model.

The full physical content of the model, and its complete equivalence to quantum
Hall (Laughlin) states, is revealed only upon quantization. In fact, some of the most
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interesting features of the states, such as filling fraction and quasihole charge quanti-
zation, manifest only in the quantum domain. This will be the subject of the present
section.

6.1 Quantization of the filling fraction

We now come to the question of the quantization of the above matrix model. This
is an important issue, since some of the relevant features of the quantum Hall state
will only emerge at the quantum level. The quantization has been treated in [49]. We
shall repeat here the basic arguments establishing their relevance to the quantum Hall
system.

We shall use double brackets for quantum commutators and double kets for
quantum states, to distinguish them from matrix commutators and N -vectors.

Quantum mechanically the matrix elements of Xi become operators. Since the
lagrangian is first-order in time derivatives, X1

mn and X2
kl are canonically conjugate:

[[X1
mn, X

2
kl]] =

i

B
δmlδkn (137)

or, in terms of A = X1 + iX2

[[Amn, A
†
kl]] =

1
B
δmkδnl (138)

The Hamiltonian, ordered as 1
2BωTrA†A, is

H =
∑
mn

1
2
BωA†mnAmn (139)

This is just N2 harmonic oscillators. Further, the components of the vector Ψn cor-
respond to N harmonic oscillators. Quantized as bosons, their canonical commutator
is

[[Ψm,Ψ†
n]] = δmn (140)

So the system is a priori just N(N + 1) uncoupled oscillators. What couples the
oscillators and reduces the system to effectively 2N phase space variables (the planar
coordinates of the electrons) is the Gauss law constraint (118). In writing it, we in
principle encounter operator ordering ambiguities. These are easily fixed, however,
by noting that the operator G is the quantum generator of unitary rotations of both
Xi and Ψ. Therefore, it must satisfy the commutation relations of the U(N) algebra.
The X-part is an orbital realization of SU(N) on the manifold of N ×N hermitian
matrices. Specifically, expand X1,2 and A,A† in the complete basis of matrices {1, T a}
where T a are the N2 − 1 normalized fundamental SU(N) generators:

X1 = x0 +
N2−1∑
a=1

xaT
a ,

√
BA = ao +

N2−1∑
a=1

aaT
a (141)

xa, aa are scalar operators. Then, by (137,138) the corresponding components of BX2

are the conjugate operators −i∂/∂xa, while aa, a
†
a are harmonic oscillator operators.

We can write the components of the matrix commutator GX = −iB[X1, X2] in G in
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the following ordering

Ga
X = −ifabcxb

∂

∂xa
(142)

= −i(A†mkAnk −A†nkAmk) (143)

= −ia†bf
abcac (144)

where fabc are the structure constants of SU(N). Similarly, expressing GΨ = ΨΨ† in
the SU(N) basis of matrices, we write its components in the ordering

Ga
Ψ = Ψ†

mT
a
mnΨn (145)

The operators above, with the specific normal ordering, indeed satisfy the SU(N)
algebra. The expression of Ga

X in terms of xa is like an angular momentum. The
expression of Ga

Ψ in terms of the oscillators Ψi and of Ga
X in terms of the oscillators aa

is the well-known Jordan-Wigner realization of the SU(N) algebra in the Fock space
of bosonic oscillators. Specifically, let Ra

αβ be the matrix elements of the generators
of SU(N) in any representation of dimension dR, and aα, a

†
α a set of dR mutually

commuting oscillators. Then the operators

Ga = a†αR
a
αβaβ (146)

satisfy the SU(N) algebra. The Fock space of the oscillators contains all the symmetric
tensor products of R-representations of SU(N); the total number operator of the
oscillators identifies the number of R components in the specific symmetric product.
The expressions for Ga

Ψ and Ga
X are specific cases of the above construction for Ra

the fundamental (T a) or the adjoin (−ifa) representation respectively.
So, the traceless part of the Gauss law (118) becomes

(Ga
X +Ga

Ψ)|phys〉〉 = 0 (147)

where |phys〉〉 denotes the physical quantum states of the model. The trace part, on
the other hand, expresses the fact that the total U(1) charge of the model must vanish.
It reads

(Ψ†
nΨn −NBθ)|phys〉〉 = 0 (148)

We are now set to derive the first nontrivial quantum mechanical implication:
the inverse-filling fraction is quantized to integer values. To see this, first notice that
the first term in (148) is nothing but the total number operator for the oscillators Ψn

and is obviously an integer. So we immediately conclude that NBθ must be quantized
to an integer.

However, this is not the whole story. Let us look again at the SU(N) Gauss
law (147). It tells us that physical states must be in a singlet representation of Ga.
The orbital part Ga

X , however, realizes only representations arising out of products
of the adjoin, and therefore it contains only irreps whose total number of boxes in
their Young tableau is an integer multiple of N . Alternatively, the U(1) and ZN part
of U is invisible in the transformation Xi → UXiU−1 and thus the ZN charge of
the operator realizing this transformation on states must vanish. (For instance, for
N = 2, Ga is the usual orbital angular momentum in 3 dimensions which cannot be
half-integer.)

Since physical states are invariant under the sum of GX and GΨ, the represen-
tations of GΨ and GX must be conjugate to each other so that their product contain
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the singlet. Therefore, the irreps of GΨ must also have a number of boxes which is
a multiple of N . The oscillator realization (148) contains all the symmetric irreps of
SU(N), whose Young tableau consists of a single row. The number of boxes equals
the total number operator of the oscillators Ψ†

nΨn. So we conclude that NBθ must
be an integer multiple of N [49], that is,

Bθ =
1
ν

= k , k = integer (149)

The above effect has a purely group theoretic origin. The same effect, however,
can be recovered using topological considerations, by demanding invariance of the
quantum action exp(iS) under gauge U(N) transformations with a nontrivial winding
in the temporal direction [49]. This is clearly the finite-N counterpart of the level
quantization for the noncommutative Chern-Simons term as exposed in a previous
section, namely 4πλ = integer By (110) this is equivalent to (149).

By reducing the model to the dynamics of the eigenvalues of X1 we recover a
quantum Calogero model with Hamiltonian

H =
N∑

n=1

(
ω

2B
p2

n +
Bω

2
x2

n

)
+
∑
n 6=m

k(k + 1)
(xn − xm)2

(150)

Note the shift of the coupling constant from k2 to k(k + 1) compared to the classical
case. This is a quantum reordering effect which results in the shift of ν−1 from k
to k + 1 ≡ n. The above model is, in fact, perfectly well-defined even for fractional
values of ν−1, while the matrix model that generated it requires quantization. This is
due to the fact that, by embedding the particle system in the matrix model, we have
augmented its particle permutation symmetry SN to general U(N) transformations;
while the smaller symmetry SN is always well-defined, the larger U(N) symmetry
becomes anomalous unless ν−1 is quantized.

6.2 Quantum states

We can now examine the quantum excitations of this theory. The quantum states of
the model are simply states in the Fock space of a collection of oscillators. The total
energy is the energy carried by the N2 oscillators Amn or aa. We must also impose the
constraint (147) and (148) on the Fock states. Overall, this becomes a combinatorics
group theory problem which is in principle doable, although quite tedious.

Fortunately, we do not need to go through it here. The quantization of this
model is known and achieves its most intuitive description in terms of the states of
the corresponding Calogero model. We explain how.

Let us work in theX1 representation,X2 being its canonical momentum. Writing
X1 = UΛ1U

−1 with Λ = diag {xi} being its eigenvalues, we can view the state of
the system as a wavefunction of U and xn. The gauge generator Ga

X appearing in
the Gauss law (147) is actually the conjugate momentum to the variables U . Due to
the Gauss law, the angular degrees of freedom U are constrained to be in a specific
angular momentum state, determined by the representation of SU(N) carried by
the Ψn. From the discussion of the previous section, we understand that this is the
completely symmetric representation with nN = N/ν boxes in the Young tableau.
So the dynamics of U are completely fixed, and it suffices to consider the states of
the eigenvalues. These are described by the states of the quantum Calogero model.
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The Hamiltonian of the Calogero model corresponds to the matrix potential V =
1
2BωTr(Xi)2, which contains all the relevant information for the system.

Calogero energy eigenstates are expressed in terms of N positive, integer ‘quasi-
occupation numbers’ nj (quasinumbers, for short), with the property

nj − nj−1 ≥ n =
1
ν
, j = 1, . . . N (151)

In terms of the nj the spectrum becomes identical to the spectrum of N independent
harmonic oscillators

E =
N∑

j=1

Ej =
N∑

j=1

ω

(
nj +

1
2

)
(152)

The constraint (151) means that the nj cannot be packed closer than n = ν−1, so they
have a ‘statistical repulsion’ of order n. For filling fraction ν = 1 these are ordinary
fermions, while for ν−1 = n > 1 they behave as particles with an enhanced exclusion
principle.

The scattering phase shift between Calogero particles is exp(iπ/ν). So, in terms
of the phase that their wavefunction picks upon exchanging them, they look like
fermions for odd n and bosons for even n [44]. Since the underlying particles (electrons)
must be fermions, we should pick n odd.

The energy ‘eigenvalues’ Ej are the quantum analogs of the eigenvalues of the
matrix 1

2Bω(Xi)2. The radial positions Rj are determined by

1
2
BωR2

j = Ej → R2
j =

2nj + 1
B

(153)

So the quasinumbers 2nj + 1 determine the radial positions of electrons. The ground
state values are the smallest non-negative integers satisfying (151)

nj,gs = n(j − 1) , j = 1, . . . N (154)

They form a ‘Fermi sea’ but with a density of states dilated by a factor ν compared
to standard fermions. This state reproduces the circular quantum Hall droplet. Its
radius maps to the Fermi level, R ∼

√
(2nN,gs + 1)/B ∼

√
2Nθ.

Quasiparticle and quasihole states are identified in a way analogous to particles
and holes of a Fermi sea. A quasiparticle state is obtained by peeling a ‘particle’
from the surface of the sea (quasinumber nN,gs) and putting it to a higher value
n′N > n(N − 1). This corresponds to an electron in a rotationally invariant state at
radial position R′ ∼

√
2(n′N + 1)/B. Successive particles can be excited this way.

The particle number is obviously quantized to an integer (the number of excited
quasinumbers) and we can only place them outside the quantum Hall droplet.

Quasiholes are somewhat subtler: they correspond to the minimal excitations of
the ground state inside the quantum Hall droplet. This can be achieved by leaving
all quasinumber nj for j ≤ k unchanged, and increasing all nj , j > k by one

nj = n(j − 1) j ≤ k (155)
= n(j − 1) + 1 k < j ≤ N (156)

This increases the gap between nk and nk+1 to n+ 1 and creates a minimal ‘hole.’
This hole has a particle number −q = −1/n = −ν. To see it, consider removing a

particle altogether from quasinumber nk. This would create a gap of 2n between nk−1
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and nk+1. The extra gap n can be considered as arising out of the formation of n holes
(increasing nj for j ≥ k n times). Thus the absence of a particle corresponds to n
holes. We therefore obtain the important result that the quasihole charge is naturally
quantized to units of

qh = ν =
1
n

(157)

in accordance with Laughlin theory.
We conclude by stressing once more that there is no fundamental distinction

between particles and holes for finite N . A particle can be considered as a nonpertur-
bative excitation of many holes near the Fermi level, while a hole can be viewed as a
coherent state of many particles of minimal excitation.

6.3 Final remarks on the matrix model

The quantization of the inverse filling fraction and, importantly, the quasihole charge
quantization emerged as quantum mechanical consequences of this model. The quan-
tizations of the two parameters had a rather different origin. We can summarize here
the basic meaning of each:

Quantization of the inverse filling fraction is basically angular momentum quan-
tization. The matrix commutator of [X1, X2] is an orbital angular momentum in the
compact space of the angular parameters of the matrices, and it must be quantized.
Alternatively (and equivalently), it can be understood as a topological quantization
condition due to a global gauge anomaly of the model.

Quantization of the quasihole charge, on the other hand, is nothing but harmonic
oscillator quantization. Quasiholes are simply individual quanta of the oscillators Amn.
The square of the radial coordinate R2 = (X1)2 + (X2)2 is basically a harmonic
oscillator.

√
BX1 and

√
BX2 are canonically conjugate, so the quanta of R2 are 2/B.

Each quantum increasesR2 by 2/B and so it increases the area by 2π/B. This creates a
charge deficit q equal to the area times the ground state density q = (2π/B)·(1/2πθ) =
1/θB = ν. So the fundamental quasihole charge is ν.

An important effect, which can be both interesting and frustrating, is the quan-
tum shift in the effective value of the inverse filling fraction from k to n = k+1. This
is the root of the famous fermionization of the eigenvalues of the matrix model in
the singlet sector (k = 0). Its presence complicates some efforts to reproduce layered
quantum Hall states, as it frustrates the obvious charge density counting.

There are obviously many questions that we left untouched, some of them al-
ready addressed and some still open [57]-[64]. Their list includes the description of Hall
states with spin, the treatment of cylindrical, spherical or toroidal space topologies,
the description of states with nontrivial filling fraction, the exact mapping between
quantities of physical interest in the two descriptions, the inclusion of electron inter-
actions etc. The interested reader is directed to the numerous papers in the literature
dealing with these issues. In the concluding section we prefer to present an alternative
of the noncommutative fluid description of quantum many-body states.

7 The noncommutative Euler picture and Bosonization

In the previous sections we reviewed the noncommutative picture of the Lagrange
formulation of fluids and its use in the quantum Hall effect. The Euler formulation,
on the other hand, was peculiar in that it afforded a fully commutative description
was possible, leading to the Seiberg-Witten map.
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This, however, is not the only possibility. Indeed, we saw that there were two
potential descriptions for the density of the fluid, one inherently commutative (94) and
one inherently noncommutative (91). Although the commutative one was adopted,
one could just as well work with the noncommutative one, expecting to recover the
standard Euler description only at the commutative limit. As it turns out, this is a
very natural description of fluids consisting of fermions. Since the noncommutative
density is an inherently bosonic field, it affords a description of fermionic systems in
terms of bosonic field variables, naturally leading to bosonization.

7.1 Density description of fermionic many-body systems

The starting point will be a system of N non-interacting fermions in D = 1 spatial
dimensions. The restriction of the dimensionality of space at this point is completely
unnecessary and inconsequential, and is imposed only for conceptual and notational
simplification and easier comparison with previous sections. In fact, much of the
formalism will not even make specific reference to the dimensionality of space.

We shall choose our fermions to be noninteracting and carrying no internal de-
grees of freedom such as spin, color etc. (there is no conflict with the spin-statistics
theorem in this first-quantized, many-body description). Again, this is solely for con-
venience and to allow us to focus on the main conceptual issue of their fluid description
rather than other dynamical questions. The only remaining physical quantity is the
single-particle Hamiltonian defining their dynamics, denoted Hsp(x, p). Here x, p are
single-particle coordinate and momentum operators, together forming a ‘noncommu-
tative plane’, with the role of θ played by ~ itself:

[x, p]sp = i~ (158)

The subscript sp will be appended to single-particle operators or relations (except x
and p) to distinguish them from upcoming field theory quantities.

Single-particle states are elements of the irreducible representation of the above
Heisenberg commutator. A basis would be the eigenstates |n〉 of Hsp corresponding
to eigenvalues En (assumed nondegenerate for simplicity). The states of the N -body
system, on the other hand, are fully antisymmetrized elements of the N -body Hilbert
space consisting of N copies of the above space. They can be expressed in a Fock
description in terms of the occupation number basis Nn = 0, 1 for each single particle
level. The ground state, in particular, is the state |1, . . . 1, 0, . . . 〉 with the N lowest
levels occupied by fermions.

An alternative description, however, working with a single copy of the above
space is possible, in terms of a single-particle density-like function [65, 66]. Specifically,
define the (hermitian) single-particle operator ρ whose eigenvalues correspond to the
the occupation numbers Ni = 0, 1 of a set of N specific single-particle states:

ρ =
N∑

n=1

|ψn〉〈ψn| (159)

Clearly ρ is a good description of the N -body fermion system whenever the fermions
occupy N single-particle states. The ground state ρ0, in particular, is such a state
and would correspond to

ρ0 =
N∑

n=1

|n〉〈n| (160)
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Due to the Schrödinger evolution of the single-particle states |n〉, the operator ρ
satisfies the evolution equation

i~ρ̇ = [Hsp, ρ]sp (161)

This description has several drawbacks. It is obviously limited from the fact
that it can describe only ‘factorizable’ states, that is, basis states in some appropriate
Fock space, but not their linear combinations (‘entangled’ states). This is serious, as
it violates the quantum mechanical superposition principle, and makes it clear that
this cannot be a full quantum description of the system. Further, the operator ρ must
be a projection operator with exactly N eigenvalues equal to one and the rest of them
vanishing, which can be written as the algebraic constraint

ρ2 = ρ , Trρ = N (162)

So ρ is similar to the density matrix, except for its trace.
In spite of the above, we shall see that this is a valid starting point for a full

description of the many-body quantum system in a second-quantized picture. To
give ρ proper dynamics, we must write an action that leads to the above equations
(evolution plus constraints) in a canonical setting. The simplest way to achieve this
is by ‘solving’ the constraint in terms of a unitary field U as:

ρ = U−1ρ0U (163)

with ρ0 the ground state. Any ρ can be expressed as above, U being the unitary
operator mapping the first N energy eigenstates to the actual single-particle states
entering the definition of ρ. An appropriate action for U is

S =
∫
dtTr

(
i~ρ0U̇U

−1 − U−1ρ0UHsp

)
(164)

It is easy to check that it leads to (161) for (163). Note that the first term in the action
is a first-order kinetic term, defining a canonical one-form. The matrix elements of U ,
therefore, encode both coordinates and momenta and constitute the full phase space
variable of the system. The Poisson brackets of U and, consequently, ρ can be derived
by inverting the above canonical one-form. The result is that the matrix elements ρmn

of ρ have Poisson brackets

{ρm1n1 , ρm2n2} =
1
i~

(ρm1n2δm2n1 − ρm2n1δm1n2) (165)

The second term in the action is the Hamiltonian H = Tr(ρHsp) and represents the
sum of the energy expectation values of the N fermions.

7.2 The correspondence to a noncommutative fluid

It should be clear the the above description essentially defines a noncommutative
fluid. Indeed, the operators U and ρ act on the Heisenberg Hilbert space and can
be expressed in terms of the fundamental operators x, p. As such, they are noncom-
mutative fields. The constraint for ρ is the noncommutative version of the relation
f2 = f defining the characteristic function of a domain. We can, therefore, visualize ρ
as a ‘droplet’ of a noncommutative fluid that fills a ‘domain’ of the noncommutative
plain with a droplet ‘hight’ equal to 1. The actual density of the fluid is fixed by the
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integration formula on the noncommutative plane, assigning an area of 2π~ to each
state on the Hilbert space. So the value of the density inside the droplet becomes
1/2π~.

A similar picture is obtained by considering the classical ‘symbol’ of the above
operator, using the Weyl-ordering mapping. The corresponding commutative function
represents a droplet with a fuzzy boundary (the field drops smoothly from 1 to 0, and
can even become negative at some points), but the bulk of the droplet and its exterior
are at constant density (0 or 1).

As one should expect, this is the value of the density of states on phase space
according to the semiclassical quantization condition assigning one quantum state
per phase space area h = 2π~. The above description is the quantum, fuzzy, non-
commutative analog of the classical phase space density. According to the Liouville
theorem, a collection of particles with some density on the phase space evolves in an
area-preserving way, so a droplet of constant density evolves into a droplet of different
shape but the same constant density [67].

The ground state ρ0 corresponds to a droplet filling a ‘lake’ in phase space in
which the classical value of the single particle energy satisfies

Hsp(x, p) ≤ EF (166)

This ensures the minimal energy for the full state. The boundary of the droplet is at
the line defined by the points Hsp = EF , the highest energy of any single particle.
This is the Fermi energy.

The unitary transformation U maps to a ‘star-unitary’ commutative function
satisfying U ∗ U∗ = 1. One could think that in the commutative (classical) limit it
becomes a phase, U = exp[iφ(x, p)]. This, however, is not necessarily so. U enters into
the definition of ρ only through the adjoin action ρ = U∗ ∗ ρ0 ∗ U . If U became a
phase in the commutative limit, it would give ρ = ρ0 (upon mapping star products to
ordinary products), creating no variation. The trick is that U(x, p) can contain terms
of order ~−1: since the star-products in the definition of ρ in terms of U reproduce
ρ0 plus terms of order ~, the overall result will be of order to a finite function in
this limit; its action on ρ0, however, is finite and defines a canonical transformation,
changing the shape of the droplet. Overall, we have a correspondence with a fuzzy,
incompressible phase space fluid in the density (Euler) description.

7.3 Quantization and the full many-body correspondence

What makes this description viable and useful is that it reproduces the full Hilbert
space of the N fermions upon quantization.

The easiest way to see this is to notice that the action (164) is of the Kirillov-
Kostant-Souriau form for the group of unitary transformations on the Hilbert space.
For concreteness, we may introduce a cutoff and truncate the Hilbert space to the K
first energy levels K � N . Then the above becomes the KKS action for the group
U(K). Its properties and quantization are fully known, and we summarize the basic
points.

Both ρ = u−1ρ0U and the action (164) are invariant under time-dependent
transformations

U(t) → V (t)U(t) , [ρ0, V (t)] = 0 (167)

for any unitary operator (K×K unitary matrix) commuting with ρ0. This means that
the corresponding ‘diagonal’ degrees of freedom of U are redundant and correspond to
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a gauge invariance of the description in terms of U . This introduces a Gauss law as well
as a ‘global gauge anomaly’ for the action that requires a quantization condition, akin
to the magnetic monopole quantization or level quantization for the Chern-Simons
term. The end result is:

• The eigenvalues of the constant matrix ρ0 must be integers for a consistent
quantization.

On the other hand, the classical Poisson brackets for ρ (165) become, upon
quantization,

[[ρm1n1 , ρm2n2 ]] = ρm1n2δm2n1 − ρm2n1δm1n2 (168)

where we used, again, double brackets for quantum commutators to distinguish from
matrix (single-particle) commutators. The above is nothing but the U(K) algebra in
a ‘cartesian’ basis (notice how ~ has disappeared). The quantum Hilbert space, there-
fore, will form representations of U(K). The Gauss law, however, imposes constraints
on what these can be. The end result is:

• The quantum states form an irreducible representation of U(K) determined
by a Young tableau with the number of boxes in each row corresponding to the
eigenvalues of ρ0.

In our case, the eigenvalues are N 1s and K−N 0s, already properly quantized.
So the Young tableau corresponds to a single column of N boxes; that is, the N -fold
fully antisymmetric representation of U(K).

This is exactly the Hilbert space of N fermions on K single-particle states! The
dimensionality of this representation is

D =
K!

N !(K −N)!
(169)

matching the number quantum states of N fermions in K levels. The matrix elements
of the operator ρmn in the above representation can be realized in a Jordan-Wigner
construction involving K fermionic oscillators Ψn, as

ρmn = Ψ†
nΨm (170)

satisfying the constraint
K∑

n=1

Ψ†
nΨn = N (171)

This Ψ is essentially the second-quantized fermion field, the above relation being the
constraint to the N -particle sector. The quantized Hamiltonian operator for ρ in this
realization becomes

H = Tr(ρHsp) =
∑
m,n

Ψ†
m(Hsp)mnΨn (172)

and thus also corresponds to the second-quantized many-body Hamiltonian. Overall,
this becomes a complete description of the many-body fermion system in terms of a
quantized noncommutative density field ρ or, equivalently, the unitary noncommuta-
tive field U .

7.4 Bosonization and beyond...

The above also constitutes an exact bosonization of the fermion system. Indeed, the
fields ρ or U are bosonic, so they afford a description of fermions without use of Grass-
man variables. The price to pay is the increase of dimensionality (two phase space
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rather than one space dimensions) and the noncommutative nature of the classical
ρ-dynamics, even before quantization.

The correspondence to traditional bosonization is achieved through the Seiberg-
Witten map on the field U . We shall not enter into any detail here, but the upshot
of the story is that the action (164) maps to the (commutative) action of a one-
dimensional chiral boson under this map. The corresponding space derivative of the
field is an abelian ‘current’ that maps to the boundary of the classical fluid droplet,
which parametrizes the full shape of the fluid. Overall this recovers standard abelian
bosonization results [68] in the noncommutative hydrodynamic setting.

Generalizations to particles carrying internal degrees of freedom are possible
and lead to the Wess-Zunmino-Witten action for nonabelian bosonization [69]. Most
intriguingly, the above discussion can be exported to higher dimensions, leading to
bosonization of higher-dimensional fermion systems through a noncommutative field
(fluid) theory [73]. Extensions and applications of the above issues are the subject of
ongoing investigation.

This was a lightning review of the more recent and current aspects of noncom-
mutative fluids and their uses in many-body systems. There is a lot more to learn and
do. If some of the readers are inspired and motivated into further study or research
in this subject, then this narrative has served its purpose. We shall stop here.
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