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Abstract. Heisenberg spin-1/2 chains are the archetype of quantum integrable one di-
mensional models describing magnetic properties of a vide range of compounds, (like
the KCuF3 crystal) which can be probed experimentally through neutron scattering
experiments, while being at the same time at the root of the invention of Bethe ansatz
and Yang-Baxter structures that led in turn to quantum groups discovery. The aim of
this lecture is to describe these algebraic ingredients and to show how to obtain from
them (using combined analytical and numerical analysis) dynamical correlation func-
tions of integrable Heisenberg spin-1/2 chain, the Fourier transform of which, the so
called dynamical structure factors, being directly measured in inelastic neutron scat-
tering experiments. Our method is based on the the algebraic Bethe ansatz and the
resolution of the quantum inverse scattering problem. It leads to recent progress in
the computation of integrable Heisenberg spin-1/2 chains correlation functions that we
review here.

1 Introduction

One of the main tasks of statistical mechanics is to understand macroscopic quantities
such as specific heat, susceptibility, or transport properties for a fluid or a crystal in
terms of microscopic elementary interactions between the constituents which are for
example molecules, or ions. A fundamental theoretical quantity for this study is the so
called dynamical structure factor (the Fourier transform of the dynamical two-point
correlation function). The importance of these functions originates from the following
facts : (i) They can be measured directly via scattering of neutrons or photons at
the material to be studied [1, 2, 3, 4, 5, 7, 6], so that if we are able to compute
these functions within a model given by some Hamiltonian describing microscopic
interactions, we can compare this model with the reality. (ii) From these quantities it is
possible to compute other fundamental macroscopic quantities of statistical mechanics
for systems in thermodynamical equilibrium and close to this equilibrium, like in
particular transport coefficients (see e.g., [7]).

Thus if one is interested in understanding, for example, magnetic properties of
crystals one should find models describing the microscopic interactions between the
spins of the constituent ions and develop methods to calculate within such models the
dynamical spin-spin correlation functions. This is for a generically interacting quan-
tum Hamiltonian a very involved problem, quite often out of reach of any treatment
by perturbation theory. Hence, the strategy to attack this difficult task has been first
to construct simple enough but representative models encoding the main features
of magnetic properties of crystals. A serious but not senseless simplification in this
process is the reduction of the dimensionality of the problem leading in particular to
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consider models defined in one dimension. Although drastic at first sight, this strategy
proved to be quite successful. In fact there exists today an impressive list of magnetic
materials where the interaction between the different constituents is mainly along
one dimensional chains whereas the energy exchange between the different chains is
negligible [8]. Strong one dimensional magnetic character is most usually produced
by separating the chains carrying the dominant magnetic interaction by large non
magnetic complex ions, like in CuCl2.2NC5H5. Note however that in these systems,
the three dimensional character is usually recovered at sufficiently low temperature.

A very interesting example of such a compound is provided by the (rather exotic)
KCuF3 crystal which displays properties characteristic of one dimensional antiferro-
magnets [9, 8, 10, 11, 12]. Although the KCuF3 crystal is fully three dimensional,
its one dimensional magnetic properties are attributed to the distortion of the octa-
hedral environment of the Cu2+ ions due to the Jahn-Teller effect [13]. It leads to a
spatial alignment of the 3d orbitals in Cu2+ resulting in a strong exchange interaction
along one axis of the crystal (the chain axis) while in the perpendicular direction the
exchange interaction is very small due to poor overlap of the corresponding orbitals.
The ratio between the two interaction constants has been evaluated to be of the order
0.027 [9], making the magnetic behavior of the KCuF3 compound effectively one di-
mensional. Further, the Cu2+ ions provide [8] effective spin-1/2 dynamical variables
in interaction which is well represented by the Heisenberg spin chain Hamiltonian
[14]. The XXZ spin- 1

2 Heisenberg chain in an external magnetic field h is a quantum
interacting model defined on a one-dimensional lattice with Hamiltonian,

H = H(0) − hSz, (1)
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σz
m, [H(0), Sz] = 0. (3)

Here ∆ is the anisotropy parameter (essentially equal to one for KCuF3), M is
the number of sites of the chain (and here we assume for simplicity periodic boundary
conditions), h denotes the uniform external magnetic field, and σx,y,z

m are the local
spin operators (here in the spin- 1

2 representation) associated with each site m of the
chain. The quantum space of states is H = ⊗M

m=1Hm, where Hm ∼ C2 is called local
quantum space, with dimH = 2M . The operators σx,y,z

m act as the corresponding
Pauli matrices in the space Hm and as the identity operator elsewhere.

Following our above discussion, to be able to compare predictions of such a
one-dimensional model to actual magnetic compounds such as KCuF3, we need to
compute various physical observable quantities such as the dynamical structure fac-
tors; they are the Fourier transform of the dynamical spin-spin correlation functions
which at non zero temperature T , lattice distance m and time difference t, are given
as traces over the space of states,

Sαβ(m, t) =
tr(σα

1 e
iHt σβ

m+1 e
−iHt e−

H
kT )

tr(e−
H
kT )

. (4)
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At zero temperature, this expression reduces to an average value of the product of
Heisenberg spin operators taken in the ground state |ψg 〉, the normalized (non de-
generated in the disordered regime) state with lowest energy level of the Heisenberg
chain ,

Sαβ(m, t) = 〈ψg |σ
α
1 e

iHt σβ
m+1 e

−iHt |ψg 〉. (5)

The Fourier transform (in space and time) Sαβ(q, ω) of this dynamical correlation
functions is related, at first order in the neutron-crystal interaction, to the differential
magnetic cross sections for the inelastic scattering of unpolarized neutrons off a crystal
(like KCuF3), with energy transfer ω and momentum transfer q through the following
formula [5]:

dσ

dΩdω
∼ (δαβ −

qαqβ
q2

) Sαβ(q, ω) (6)

Hence, to compare the Heisenberg model to experimental measurements of the
neutron scattering cross sections, we need to compute the dynamical spin-spin corre-
lation functions (4) or (5).

This amounts first to determine the spectrum of the Heisenberg Hamiltonian.
Further, we need to identify the action of the local spin operators in the corresponding
eigenstate basis and obtain their matrix elements to be summed up to perform the
trace, and the scalar products, necessary in the actual computation of (4) or (5).

The solution to these different steps turns out to be a fantastic challenge in-
volving deep algebraic structures hidden in the original Bethe ansatz solution [15] of
the Heisenberg Hamiltonian spectrum and unraveled along its extensions [16, 17, 18,
19, 20] in particular through the associated Yang-Baxter structures [21, 22, 23, 24,
25, 26, 27]; these led, in the search of an algebraic way to construct new integrable
models [28, 29, 30, 31], to the discovery of quantum groups [32, 33, 34, 35]; it was
latter realized that the underlying the symmetry algebra of the Heisenberg model in
the infinite lattice limit is the quantum affine algebra Uq(ŝl2) [36, 37].

The aim of this lecture is to describe the methods used towards the solution
of these successive steps. Some of them are already 75 years old and go back to H.
Bethe [15], while others have been developed only in the last ten years. But before
going into the historical developments and technical details about these tools, and
as a motivation to eventually spend some time learning about them, I would like to
give here one of the result that we obtained rather recently [38, 39, 40]: the graph-
ical plot (as a function of q and ω) of the total dynamical structure factor at zero
temperature S(q, ω) and its successful comparison to experimental neutron scattering
measurements on the KCuF3 crystal (the colors encode here the value of the function
in the (q, ω) plane, from blue corresponding to zero value to dark red in the highest
contributions), see Fig. 1.

This computation involves both analytical (exact) results about the spectrum of
the Heisenberg Hamiltonian, the matrix elements of the local spin operators between
eigenstates using Bethe ansatz techniques and numerical analysis used to perform the
sums over these matrix elements to obtain the dynamical structure factor S(q, ω) (see
section 3).

What makes these results at all possible is the integrable nature of the Heisenberg
Hamiltonian, namely in particular the possibility to determine its exact spectrum.
This model, introduced by Heisenberg in 1928 [14], can in fact be considered as the
archetype of a large class of integrable (called also exactly solvable) models in low
dimensions in classical and quantum statistical mechanics and field theory. They
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Figure 1: The dynamical structure factor S(q, ω), on the right computed using Bethe
ansatz techniques and on the left from inelastic neutron scattering experiment on
KCuF3 [11] (experimental data and picture, courtesy A. Tennant)

already found many applications ranging from condensed matter physics (see e.g.,
[26, 41, 42, 43]) to high energy physics (see e.g., [44, 45, 46]).

The history of these integrable models of statistical physics started in fact a bit
before the Heisenberg spin chain, with the proposal by Lenz and by Ising [47, 48]) of
the Ising model to investigate ferromagnetic properties of solids. Ising first solved the
one dimensional case where there is no phase transition at any finite temperature to a
ferromagnetic ordered state. It is rather unfortunate that Ising did not realize at that
time that this failure was a peculiarity of the one dimensional situation. However,
this was taken by Heisenberg as a motivation to propose his own model in 1928 [14],
based on a more sophisticated treatment of the interactions between the spins (using
in particular their full quantum operator nature which was simplified drastically in
the Ising case). In this way, the more complicated Heisenberg model was exploited
(successfully) first, and only after did theoretical physicists (and chemists!) return to
the somehow simpler Ising model [49, 50, 51, 52, 53].

The Bethe solution of the Heisenberg spin chain in 1931 gave the starting point
for the development of the field of quantum integrable models in one-dimensional
statistical mechanics, using his now famous Bethe ansatz and its further extensions
[15, 17, 18, 20, 21]. The Ising model generated also fantastic line of research, starting
with the Onsager solution of the two-dimensional case in 1942 [51]. It had a major
impact on the theory of critical phenomena and launches a series of study of two-
dimensional exactly solvable models of classical statistical mechanics (in fact related
through their transfer matrices to the above quantum one-dimensional spin chains)
culminating in the works of Baxter in the 70’s on the 6-vertex (related to the XXZ
chain) and 8-vertex (related to the XY Z chain) models (see the book [26] and refer-
ences therein). These remarkable success (also with the works of Gaudin, Yang and
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many others) (see [26, 25, 27] and references therein) led to apply these techniques
to a quite interesting continuum model, the Non Linear Schroedinger model, which
was also classically solvable through the inverse scattering methods using its Lax pair
structure, see e.g. [54, 55] and references therein. This led to the discovery of an
algebraic version of the Bethe ansatz by Faddeev, Sklyanin and Taktadjan [23, 24].
The algebraic structure at work in this method has been coined since this pioneering
work, the Yang-Baxter algebra. It is written as a quadratic algebra of quantum oper-
ators depending on a continuous parameterλ (the spectral parameter) and governed
by an R-matrix which in the case of the Heisenberg XXZ chain is directly related to
the Boltzman weights of the 6-vertex model. For that case, there is four operators,
A,B,C,D that can be considered as forming the operator entries of a 2 × 2 matrix,
the monodromy matrix,

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (7)

This monodromy matrix is constructed from the R-matrix of the model as a specific
ordered product all along the chain (see the next section). The quadratic commutation
relations between the operators A,B,C,D can the be written in a compact way as,

R12(λ, µ) T1(λ) T2(µ) = T2(µ) T1(λ) R12(λ, µ), (8)

with the tensor notations T1(λ) = T (λ) ⊗ Id and T2(µ) = Id ⊗ T (µ). There the R-
matrix appears as the structure constants of the Yang-Baxter algebra. It is is a linear
operator in the tensor product V1⊗V2, where each Vi is isomorphic to C

2, and depends
generically on two spectral parameters λ1 and λ2 associated to these two vector spaces.
It is denoted by R12(λ1, λ2). Such an R-matrix satisfies the Yang-Baxter equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) = R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2). (9)

These commutation relations imply in particular that the transfer matrices, defined
as

T (λ) = trT (λ) = A(λ) +D(λ), (10)

commute for different values of the spectral parameter [T (λ), T (µ)] = 0 and also with
Sz, [T (λ), Sz ]
= 0. The Hamiltonian (2) at h = 0 is related to T (λ) by the ‘trace identity’

H(0) = 2 sinh η
dT (λ)

dλ
T −1(λ)

λ= η
2

− 2M cosh η. (11)

Therefore, the spectrum of the Hamiltonian (1) is given by the common eigenvectors
of the transfer matrices and of Sz. They can be constructed by the successive action of
operator B(λi) (or equivalently by the C(λi)) on a reference state provided the spec-
tral parameters λi satisfy the original Bethe equations. The analysis of these equations
leads to the determination of the Hamiltonian spectrum, and to the determination of
the groundstate, in particular in the limit of infinite chains.

It is interesting to mention that the above algebraic structures have nice classical
limits that are related to Lie-Poisson structures (see [54, 55] and references therein).
It enables to construct the corresponding classical integrable models purely from the
knowledge of a Lie algebra and its representations. The similar question for the quan-
tum case was of great importance in constructing new quantum integrable models,
not only on the lattice but also in the continuum [28, 29, 30, 31]. In turn, the full
solution of this problem led to the discovery of quantum groups [32, 33, 34, 35].
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After determining the spectrum, the next task is to consider the computation of
correlation functions such as (5). There is two main routes to compute dynamical two
point correlation functions of this type, namely, depending on the lattice distance m
and on the time variable t (we assume here translational invariance):

(i) Compute first the action of local operators on the ground state

σα
1 e

iHt σβ
m+1 e

−iHt |ψg 〉 = | ψ̃g 〉 (12)

and then calculate the resulting scalar product to get

Sαβ(m, t) = 〈ψg | ψ̃g〉. (13)

Note however that for dynamical correlation functions this amounts to evaluate the
action of the exponential of the Hamiltonian operator not only on Hamiltonian eigen-
states (which is easy) but also on general states resulting from the action of local
operators on Hamiltonian eigenstates (which is rather complicated).

(ii) Insert the identity as a sum over a complete set of normalized states |ψi 〉 (for
instance, the basis constructed out of the eigenvectors of the Hamiltonian) between
the local operators to obtain a representation for the correlation function as a sum
over matrix elements of local operators,

Sαβ(m, t) =
∑

i

〈ψg |σ
α
1 |ψi 〉 〈ψi |σ

α
1 |ψg 〉 e

i(Ei−Eg)t eim(Pi−Pg), (14)

where, Ei, Pi and Eg , Pg are the energy and momentum eigenvalues of the states |ψi 〉
and of the groundstate |ψg 〉 respectively. This amounts again to be able to act with
local operators on eigenstates, to compute the resulting scalar products, and finally
to perform the above sum containing in the XXZ spin- 1

2 model case with M sites
2M terms.

In both approaches, we need to obtain the action of local operators on Hamilto-
nian eigenstates in a compact and manageable form and then to evaluate the resulting
scalar product. This problem turns out to be very involved due to the highly non local
nature of the Bethe eigenstates. Indeed, the creation operators of Bethe eigenstates
(the operators B(λ)) are extremely nonlocal in terms of local spin operators σα

i . In
fact (see next section) they are the sum of 2M terms (M is the number of lattice sites
in the chain), each term being some product of spin operators σα

i from the site one
to the site M . As a consequence, A,B,C,D operators do not have an priori simple
commutation relations with the local spin operators, which is the ingredient we would
need to compute the action of the latter on Bethe eigenstates. It is a major problem
that prevents for very long the computation of correlation functions. In fact, the first
case to be understood was the free fermion point ∆ = 0 (a computation essentially
equivalent to the one for the two-dimensional Ising model). In that case, thanks to a
Jordan-Wigner transformation, it is possible to rewrite the Hamiltonian as a quadratic
expression in the fermionic operators and hence to use them as creation operators for
its eigenstates while the local spin operators have also a simple expression in terms of
them. It is this property, namely the fact that all relevant quantities can be embedded
inside the same Clifford algebra, that finally opened the possibility to compute the
correlation functions in that case. Nevertheless tremendous work was necessary to
achieve full answers [51, 52, 53, 56, 57, 58, 59, 60].
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Going beyond the free Fermion case has been a major challenge for the last
thirty years.

For integrable quantum spin chains [61, 62, 63] and lattice models [26], the first
attempts to go beyond free Fermion models relied on the Bethe ansatz techniques
[23, 64] and was undertaken by A. G. Izergin and V. E. Korepin (see e.g. [61] and
references therein). Their approach yields formulae for the correlation functions [61,
65, 66, 67] written as vacuum expectation values of some determinants depending on
so-called “dual fields” which were introduced to overcome the huge combinatorial sums
arising in particular from the action of local operators on Bethe states. However these
formulae are not completely explicit, since these “dual fields” cannot be eliminated
from the final result.

In the last fifteen years, two main approaches to a more explicit computation of
form factors and correlation functions have been developed, mainly for lattice models.

One of these approaches was initiated by M. Jimbo, T. Miwa and their collab-
orators [68, 36, 37, 69] and enables, using some (rather well controlled) hypothesis,
to compute form factors and correlation functions of quantum spin chains of infi-
nite length (and in their massive regime) by expressing them in terms of traces of
q-deformed vertex operators over an irreducible highest weight representation of the
corresponding quantum affine algebra. This quantum affine algebra is conjectured
to be the infinite dimensional symmetry algebra of the Heisenberg infinite chain,
and all relevant quantities can be embedded in this algebra, making the computa-
tion of correlation functions possible. The vertex operators traces turn out to satisfy
an axiomatic system of equations called q-deformed Knizhnik-Zamolodchikov (q-KZ)
equations, the solutions of which can be expressed in terms of multiple integral for-
mulae. Using these equations similar formulae can be conjectured in the massless
regime. Recently, a more algebraic representation for the solution of these q-deformed
Knizhnik-Zamolodchikov equations have been obtained for the XXX and XXZ (and
conjectured for the XY Z) spin 1/2 chains; in these representations, all elementary
blocks of the correlation functions can be expressed in terms of some transcendental
functions [70, 71, 72]. A detailed review of the approach can be found in [62].

These results, their proofs, together with their extension to non-zero magnetic
field have been obtained in 1999 [38, 73] using the algebraic Bethe ansatz framework
[23, 24, 25] and the actual resolution of the so-called quantum inverse scattering
problem [38, 74]. The main steps of this method are as follows. Let us first note that
any n-point correlation function of the Heisenberg chain can be reconstructed as a
sum of elementary building blocks defined in the following way:

Fm({εj , ε
′
j}) = 〈ψg |

m∏

j=1

E
ε′j ,εj

j |ψg 〉. (15)

Here |ψg 〉 is the normalized ground state of the chain and E
ε′j ,εj

j denotes the elemen-
tary operator acting on the quantum space Hj at site j as the 2×2 matrix of elements

Eε′,ε
lk = δl,ε′δk,ε.

A multiple integral representation for these building blocks was obtained for
the first time in [68, 69]. We briefly recall how we derived them in the framework of
algebraic Bethe Ansatz [38, 73] by solving the following successive problems:

(i) determination of the ground state 〈ψg |,
(ii) evaluation of the action the product of local operators on this ground state,
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(iii) computation of the scalar product of the resulting state with |ψg 〉,

(iv) thermodynamic limit.

The starting point of our method is to use in step (i) the description of the
eigenstates obtained via algebraic Bethe Ansatz [23, 61]. They are constructed in
this framework in terms of generalized creation and annihilation operators which are
themselves highly non-local. Acting with local operators on such states in step (ii)
is therefore a priori a non-trivial problem. One of the key-ingredient of our method,
which enables us to compute this action explicitly, is the solution of the so-called
quantum inverse scattering problem [38, 74]: local operators are reconstructed in terms
of the generators of the so-called Yang-Baxter algebra, which contains in particular
the creation/annihilation operators for the eigenstates. Hence, all computations can
now be done in the Yang-Baxter algebra. In particular, the step (ii) is now completed
using only the quadratic commutation relations satisfied by these generators [73].
The computation of the resulting scalar products in step (iii) may also present some
technical difficulties. In the case of the XXZ Heisenberg chain, it has been solved
using again the algebraic structure of the Yang-Baxter algebra [83, 38]. Finally, the
step (iv) is obtained using the results of [19, 20].

Note that this procedure remains essentially the same in the case of the two-point
correlation functions. The main difference is that, in step (ii), the reconstruction of
the corresponding local operators from the solution of the inverse problem gives rise to
a more complicated combination of the generators of the Yang-Baxter algebra, so that
the use of their commutation relations to determine their action on the eigenstates
involves a more complicated combinatoric.

At zero magnetic field our method gives a complete proof of the multiple inte-
gral representations obtained in [68, 69, 37] both for massive and massless regimes.
Hence, together with the works [68, 69], it also gives a proof that correlation functions
of the XXZ (inhomogeneous) chain indeed satisfy (reduced) q-deformed Knizhnik-
Zamolodchikov equations. Moreover, time or temperature dependent correlation func-
tions can also be computed [80, 63, 81] using such techniques.

This method allows also for the computation of the matrix elements of the local
spin operators and the above elementary blocks of the correlation functions for the
finite chain. Hence, thermodynamic limit can be considered separately. In particu-
lar, using both analytical results from Bethe ansatz for these matrix elements of the
spin operators [84, 38, 73, 74] and numerical methods to take the summation over
intermediate states it has been possible recently to compute [39, 40] dynamical struc-
ture factors (i.e., Fourier transform of the dynamical spin-spin correlation functions)
for finite XXZ Heisenberg spin chain in a magnetic field (with for example 500 or
1000 sites) and to compare successfully these theoretical results with actual neutron
scattering experiments, for example on KCuF3 as shown in Fig. 1.

This article is meant to be a rather brief review on the problem of correlation
functions in quantum integrable models and more specifically in the XXZ Heisenberg
model. More detailed account of the results sketched here together with their proofs
can be found in the original articles [84, 38, 73, 74, 75, 76, 77, 78, 79, 63, 80, 85, 86] and
in [39, 40, 87]. This lecture is organized as follows. The space of states of the Heisenberg
spin chain will be described in the next section. It includes a brief introduction to
the algebraic Bethe ansatz and to various tools of importance in the computation of
correlation functions, like in particular the solution of the quantum inverse scattering
problem and the determinant representations of the scalar products of states. Section
3 is devoted to the correlation functions of the finite chain and the description of
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the method leading to Fig. 1. Correlation functions in the thermodynamic limit are
studied in the section 4. In the section 5 we describe several exact and asymptotic
results together with some open problems. Conclusions and some perspectives are
given in the last section.

2 Heisenberg spin chain and algebraic Bethe ansatz

The space of states is of dimension 2M as it follows from the definition of the Hamilto-
nian in (1). Apart from the completely ferromagnetic states with all spins up or down,
the construction of the Hamiltonian eigenvectors is rather non trivial. The purpose
of this section is to briefly explain the basics of the knowledge of the space of states
in the framework of the algebraic Bethe ansatz, leading in particular to the determi-
nation of the spectrum of (1).

2.1 Algebraic Bethe ansatz

The algebraic Bethe ansatz originated from the fusion of the original (coordinate)
Bethe ansatz and of the inverse scattering method in its Hamiltonian formulation
[23, 24, 25]. At the root of the algebraic Bethe ansatz method is the construction of
the quantum monodromy matrix. In the case of the XXZ chain (1) the monodromy
matrix is a 2 × 2 matrix,

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (16)

with operator-valued entries A,B,C and D which depend on a complex parameter λ
(spectral parameter) and act in the quantum space of states H of the chain. One of
the main property of these operators is that the trace of T , namely A+D, commutes
with the Hamiltonian H , while operators B and C can be used as creation operators
of respectively eigenvectors and dual eigenvectors of A+D and hence of H itself. The
monodromy matrix is defined as the following ordered product,

T (λ) = LM (λ) . . . L2(λ)L1(λ), (17)

where Ln(λ) denotes the quantum L-operator at the site n of the chain:

Ln(λ) =

(
sinh(λ+ η

2 σ
z
n) sinh η σ−

n

sinh η σ+
n sinh(λ− η

2 σ
z
n)

)
. (18)

The parameter η is related to the anisotropy parameter as ∆ = cosh η. It follows
from this definition that the monodromy matrix is an highly non local operator in
terms of the local spin operators σx,y,z

n . However, the commutation relations between
the operators A,B,C,D can be computed in a simple way. They are given by the
quantum R-matrix,

R(λ, µ) =




1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1


 (19)

where

b(λ, µ) =
sinh(λ− µ)

sinh(λ− µ+ η)
, c(λ, µ) =

sinh(η)

sinh(λ− µ+ η)
, (20)
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The R-matrix is a linear operator in the tensor product V1 ⊗ V2, where each Vi is
isomorphic to C

2, and depends generically on two spectral parameters λ1 and λ2

associated to these two vector spaces. It is denoted by R12(λ1, λ2). Such an R-matrix
satisfies the Yang-Baxter equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) = R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2). (21)

It gives the following commutation relations among the operators entries of the mon-
odromy matrix,

R12(λ, µ) T1(λ) T2(µ) = T2(µ) T1(λ) R12(λ, µ), (22)

with the tensor notations T1(λ) = T (λ) ⊗ Id and T2(µ) = Id ⊗ T (µ). These commu-
tation relations imply in particular that the transfer matrices, defined as

T (λ) = trT (λ) = A(λ) +D(λ), (23)

commute for different values of the spectral parameter [T (λ), T (µ)] = 0 and also with
Sz, [T (λ), Sz ]
= 0. The Hamiltonian (2) at h = 0 is related to T (λ) by the ‘trace identity’ (11).

Therefore, the spectrum of the Hamiltonian (1) is given by the common eigen-
vectors of the transfer matrices and of Sz.

For technical reasons, it is actually convenient to introduce a slightly more gen-
eral object, the twisted transfer matrix

Tκ(λ) = A(λ) + κD(λ), (24)

where κ is a complex parameter. The particular case of Tκ(λ) at κ = 1 corresponds
to the usual (untwisted) transfer matrix T (λ). It will be also convenient to consider
an inhomogeneous version of the XXZ chain, for which

T1...M (λ; ξ1, . . . , ξM ) = LM (λ − ξM + η/2) . . . L1(λ− ξ1 + η/2). (25)

Here, ξ1, . . . , ξM are complex parameters (inhomogeneity parameters) attached to
each site of the lattice. The homogeneous model (1) corresponds to the case where
ξj = η/2 for j = 1, . . . ,M .

In the framework of algebraic Bethe ansatz, an arbitrary quantum state can
be obtained from the vectors generated by multiple action of operators B(λ) on the
reference vector | 0 〉 with all spins up (respectively by multiple action of operators
C(λ) on the dual reference vector 〈 0 |),

|ψ 〉 =

N∏

j=1

B(λj)| 0 〉, 〈ψ | = 〈 0 |

N∏

j=1

C(λj), N = 0, 1, . . . ,M. (26)

2.2 Description of the spectrum

Let us consider here the subspace H(M/2−N) of the space of states H with a fixed
number N of spins down. In this subspace, the eigenvectors |ψκ({λ}) 〉 (respectively
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〈ψκ({λ}) |) of the twisted transfer matrix Tκ(µ) can be constructed in the form (26),
where the parameters λ1, . . . , λN satisfy the system of twisted Bethe equations

Yκ(λj |{λ}) = 0, j = 1, . . . , N. (27)

Here, the function Yκ is defined as

Yκ(µ|{λ}) = a(µ)
N∏

k=1

sinh(λk − µ+ η) + κ d(µ)
N∏

k=1

sinh(λk − µ− η), (28)

and a(λ), d(λ) are the eigenvalues of the operators A(λ) and D(λ) on the reference
state | 0 〉. In the normalization (18) and for the inhomogeneous model (25), we have

a(λ) =

M∏

a=1

sinh(λ− ξa + η), d(λ) =

M∏

a=1

sinh(λ − ξa). (29)

The corresponding eigenvalue of Tκ(µ) on |ψκ({λ}) 〉 (or on a dual eigenvector) is

τκ(µ|{λ}) = a(µ)

N∏

k=1

sinh(λk − µ+ η)

sinh(λk − µ)
+ κ d(µ)

N∏

k=1

sinh(µ− λk + η)

sinh(µ− λk)
. (30)

The solutions of the system of twisted Bethe equations (27) have been analyzed
in [88]. In general, not all of these solutions correspond to eigenvectors of Tκ(µ).

Definition 2.1 A solution {λ} of the system (27) is called admissible if

d(λj)

N∏

k=1
k 6=j

sinh(λj − λk + η) 6= 0, j = 1, . . . , N, (31)

and un-admissible otherwise. A solution is called off-diagonal if the corresponding
parameters λ1, . . . , λN are pairwise distinct, and diagonal otherwise.

One of the main result of [88] is that, for generic parameters κ and {ξ}, the set of
the eigenvectors corresponding to the admissible off-diagonal solutions of the system
of twisted Bethe equations (27) form a basis in the subspace H(M/2−N). It has been
proven in [80] that this result is still valid in the homogeneous case ξj = η/2, j =
1, . . . , N , at least if κ is in a punctured vicinity of the origin (i.e. 0 < |κ| < κ0 for κ0

small enough). Note however that, for specific values of κ and {ξ}, the basis of the
eigenvectors in H(M/2−N) may include some states corresponding to un-admissible
solutions of (27) (in particular in the homogeneous limit at κ = 1).

At κ = 1, it follows from the trace identity (11) that the eigenvectors of the
transfer matrix coincide, in the homogeneous limit, with the ones of the Hamiltonian
(1). The corresponding eigenvalues in the case of zero magnetic field can be obtained
from (11), (30):

H(0) |ψ({λ}) 〉 = (

N∑

j=1

E(λj)) · |ψ({λ}) 〉, (32)

where the (bare) one-particle energy E(λ) is equal to

E(λ) =
2 sinh2 η

sinh(λ+ η
2 ) sinh(λ− η

2 )
. (33)
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2.3 Drinfel’d twist and F-basis

As already noted, the operators A, B, C, D are highly non local in terms of local
spin operators. There exists however an interesting description of these operators by
means of a change of basis of the space of states. In particular, this basis will provide
a direct access to the scalar products of states. The root of this new basis is provided
by the notion of Drinfel’d twist [35] associated to the R-matrix of the XXZ chain.
It leads to the notion of factorizing F -matrices. To be essentially self-contained we
briefly recall here their main properties and refer to [84] for more details and proofs.

Definition 2.2 For inhomogeneity parameters ξj in generic positions and for any in-
teger n one can associate to any element σ of the symmetric group Sn of order n a
unique R-matrix Rσ

1...n

(ξ1, . . . , ξn), denoted for simplicity Rσ
1...n, constructed as an ordered product (depend-

ing on σ) of the elementary R-matrices Rij(ξi, ξj).

We have the following property for arbitrary integer n :

Proposition 2.1

Rσ
1...n T1...n(λ; ξ1, . . . , ξn) = Tσ(1)...σ(n)(λ; ξσ(1), . . . , ξσ(n)) R

σ
1...n. (34)

We can now define the notion of factorizing F -matrix :

Definition 2.3 A factorizing F -matrix associated to a given elementary R matrix is
an invertible matrix F1...n(ξ1, . . . , ξn), defined for arbitrary integer n, satisfying the
following relation for any element σ of Sn:

Fσ(1)...σ(n)(ξσ(1), . . . , ξσ(n)) R
σ
1...n(ξ1, . . . , ξn) = F1...n(ξ1, . . . , ξn). (35)

In other words, such an F -matrix factorizes the corresponding R-matrix for arbitrary
integer n. Taking into account the fact that the parameters ξn are in one to one
correspondence with the vector spaces Hn, we can adopt simplified notations such
that

F1...n(ξ1, . . . , ξn) = F1...n,

Fσ(1)...σ(n)(ξσ(1), . . . , ξσ(n)) = Fσ(1)...σ(n).

Theorem 2.1 [84] For the XXZ model with inhomogeneity parameters ξn in generic
positions, there exist a factorizing, triangular F -matrix. It is constructed explicitly
from the R-matrix.

It has two important properties :

Proposition 2.2 [84] In the F -basis, the monodromy matrix T̃

T̃1...M (λ; ξ1, . . . , ξM ) = F1...MT1...M (λ; ξ1, . . . , ξM ) F−1
1...M , (36)

is totally symmetric under any simultaneous permutations of the lattice sites i and of
the corresponding inhomogeneity parameters ξi.
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The second property gives the explicit expressions of the monodromy matrix in
the F -basis. For the XXZ- 1

2 model, the quantum monodromy operator is a 2 × 2
matrix with entries A, B, C, D which are obtained as sums of 2M−1 operators which
themselves are products of M local spin operators on the quantum chain. As an
example, the B operator is given as

B1...M (λ) =
N∑

i=1

σ−
i Ωi +

∑

i6=j 6=k

σ−
i (σ−

j σ+
k ) Ωijk + higher terms, (37)

where the matrices Ωi, Ωijk , are diagonal operators acting respectively on all sites but
i, on all sites but i, j, k, and the higher order terms involve more and more exchange
spin terms like σ−

j σ+
k . It means that the B operator returns one spin somewhere on

the chain, this operation being however dressed non-locally and with non-diagonal
operators by multiple exchange terms of the type σ−

j σ+
k .

So, whereas these formulas in the original basis are quite involved, their expres-
sions in the F -basis simplify drastically :

Proposition 2.3 [84] The operators D, B and C in the F -basis are given by the for-
mulas

D̃1...M (λ; ξ1, . . . , ξM ) =
M
⊗

i=1

(
b(λ, ξi) 0

0 1

)

[i]

. (38)

B̃1...M (λ) =

M∑

i=1

σ−
i c(λ, ξi) ⊗

j 6=i

(
b(λ, ξj) 0

0 b−1(ξj , ξi)

)

[j]

. (39)

C̃1...M (λ) =

M∑

i=1

σ+
i c(λ, ξi) ⊗

j 6=i

(
b(λ, ξj) b

−1(ξi, ξj) 0
0 1

)

[j]

, (40)

and the operator Ã can be obtained from quantum determinant relations.

We wish first to stress that while the operators Ã, B̃, C̃, D̃ satisfy the same
quadratic commutation relations as A, B, C, D, they are completely symmetric
under simultaneous exchange of the inhomogeneity parameters and the of the spaces
Hn. It really means that the factorizing F -matrices we have constructed solve the
combinatorial problem induced by the non-trivial action of the permutation group
SM given by the R-matrix. In the F -basis the action of the permutation group on the
operators Ã, B̃, C̃, D̃ is trivial.

Further, it can be shown that the pseudo-vacuum vector is left invariant, namely,
it is an eigenvector of the total F -matrix with eigenvalue 1; in particular, the algebraic
Bethe ansatz can be carried out also in the F -basis. Hence, a direct computation of
Bethe eigenvectors and of their scalar products in this F -basis is made possible, while
it was a priori very involved in the original basis. There, only commutation relations
between the operators A, B, C, D can be used, leading (see [61]) to very intricate
sums over partitions.

2.4 Solution of the quantum inverse problem

The very simple expressions of the monodromy matrix operators entries D, B, C in

the F -basis suggests that any local operator E
ε′j ,εj

j , acting in a local quantum space
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Hj at site j, can be expressed in terms of the entries of the monodromy matrix. This
is the so-called quantum inverse scattering problem. The solution to this problem was
found in [38, 74]:

Theorem 2.2

E
ε′j ,εj

j =

j−1∏

α=1

T (ξα) · Tεj ,ε′j
(ξj) ·

j∏

α=1

T −1(ξα). (41)

The proof of this theorem is elementary (see [38, 74]) and hence it can be obtained
for a large class of lattice integrable models. It relies essentially on the property that
the R-matrix R(λ, µ) reduces to the permutation operator for λ = µ. An immediate
consequence of this theorem is that the operators A, B, C, and D generate the space
of all operators acting in H.

2.5 Scalar products

We give here the expressions for the scalar product of an eigenvector of the twisted
transfer matrix with any arbitrary state of the form (26). These scalar products can be
expressed as determinant of rather simple matrices. The root of all these determinants
is in fact the determinant representation for the partition function of the 6-vertex
model with domain wall boundary conditions [89]. Let us first define, for arbitrary
positive integers n, n′ (n ≤ n′) and arbitrary sets of variables λ1, . . . , λn, µ1, . . . , µn

and ν1, . . . , νn′ such that {λ} ⊂ {ν}, the n× n matrix Ωκ({λ}, {µ}|{ν}) as

(Ωκ)jk({λ}, {µ}|{ν}) = a(µk) t(λj , µk)

n′∏

a=1

sinh(νa − µk + η)

− κ d(µk) t(µk, λj)

n′∏

a=1

sinh(νa − µk − η), (42)

with

t(λ, µ) =
sinh η

sinh(λ− µ) sinh(λ − µ+ η)
. (43)

Proposition 2.4 [83, 38, 63] Let {λ1, . . . , λN} be a solution of the system of twisted
Bethe equations (27), and µ1, . . . , µN be generic complex numbers. Then,

〈 0 |

N∏

j=1

C(µj) |ψκ({λ}) 〉 = 〈ψκ({λ}) |

N∏

j=1

B(µj)| 0 〉

=

N∏
a=1

d(λa)
N∏

a,b=1

sinh(µb − λa)

N∏
a>b

sinh(λa − λb) sinh(µb − µa)

· det
N

(
∂

∂λj
τκ(µk |{λ})

)

(44)

=

N∏
a=1

d(λa)

N∏
a>b

sinh(λa − λb) sinh(µb − µa)

· det
N

Ωκ({λ}, {µ}|{λ}).

(45)
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These equations are valid for any arbitrary complex parameter κ, in particular at
κ = 1. In this case we may omit the subscript κ and denote

(ψ, τ,Y ,Ω) = (ψκ, τκ,Yκ,Ωκ)|κ=1.

If the sets {λ} and {µ} are different, the eigenvector |ψκ({λ}) 〉 is orthogonal to
the dual eigenvector 〈ψκ({µ}) |. Otherwise we obtain a formula for the norm of the
corresponding vector [90, 82, 38],

〈ψκ({λ}) |ψκ({λ}) 〉 =

N∏
a=1

d(λa)

N∏
a,b=1
a6=b

sinh(λa − λb)

· det
N

Ωκ({λ}, {λ}|{λ})

= (−1)N

N∏
a=1

d(λa)

N∏
a,b=1
a6=b

sinh(λa − λb)

· det
N

(
∂

∂λk
Yκ(λj |{λ})

)
.

2.6 Action of operators A, B, C, D on a general state

An important step of the computation of correlation function is to express the action
of any product of local operators on any Bethe eigenvector. From the solution of the
quantum inverse scattering problem, this is given by the successive action of A, B, C,
D operators on a vector constructed by action of C operators on the reference vector.
Action of A, B, C, D on such a vector are well known (see for example [61]). They
can be written in the following form:

〈 0 |
N∏

k=1

C(λk)A(λN+1) =
N+1∑

a′=1

a(λa′)

N∏
k=1

sinh(λk − λa′ + η)

N+1∏
k=1
k 6=a′

sinh(λk − λa′)

〈 0 |
N+1∏

k=1
k 6=a′

C(λk); (46)

〈 0 |

N∏

k=1

C(λk)D(λN+1) =

N+1∑

a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 6=a

sinh(λa − λk)

〈 0 |

N+1∏

k=1
k 6=a

C(λk). (47)
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The action of the operator B(λ) can be obtained similarly,

〈 0 |

N∏

k=1

C(λk)B(λN+1) =

N+1∑

a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 6=a

sinh(λa − λk)

×

×

N+1∑

a′=1
a′ 6=a

a(λa′)

sinh(λN+1 − λa′ + η)

N+1∏
j=1
j 6=a

sinh(λj − λa′ + η)

N+1∏
j=1

j 6=a,a′

sinh(λj − λa′)

〈 0 |

N+1∏

k=1
k 6=a,a′

C(λk), (48)

and the action of C is obvious.

3 Correlation functions : finite chain

To compute correlation functions of some product of local operators, the following
successive problems have to be addressed: (i) determination of the ground state 〈ψg |,
(ii) evaluation of the action of the product of the local operators on it, and (iii)
computation of the scalar product of the resulting state with |ψg 〉. Using the solution
of the quantum inverse scattering problem together with the explicit determinant
formulas for the scalar products and the norm of the Bethe state, one sees that ma-
trix elements of local spin operators and correlation functions can be expressed as
(multiple) sums of determinants [73]. It should be stressed that this result is purely
algebraic and is valid for finite chains of arbitrary length M .

3.1 Matrix elements of local operators

We begin with the calculation of the one-point functions. These results follow directly
from the solution of the quantum inverse scattering problem, the above action of
operators A, B, C and D, and the determinant representation of the scalar products.
We consider,

F−
N (m, {µj}, {λk}) = 〈 0 |

N+1∏

j=1

C(µj) σ
−
m

N∏

k=1

B(λk) | 0 〉, (49)

and

F+
N (m, {λk}, {µj}) = 〈 0 |

N∏

k=1

C(λk) σ+
m

N+1∏

j=1

B(µj) | 0 〉, (50)

where {λk}n and {µj}n+1 are solutions of Bethe equations.

Proposition 3.1 For two Bethe states with spectral parameters {λk}N and {µj}N+1,
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the matrix element of the operator σ−
m can be represented as a determinant,

F−
N (m, {µj}, {λk}) =

φm−1({µj})

φm−1({λk})

N+1∏
j=1

sinh(µj − ξm + η)

N∏
k=1

sinh(λk − ξm + η)

·

·
detN+1H

−(m, {µj}, {λk})∏
N+1≥k>j≥1

sinh(µk − µj)
∏

1≤β<α≤N

sinh(λβ − λα)
, (51)

φm({λk}) =
N∏

k=1

m∏

j=1

b−1(λk , ξj), (52)

and the (N + 1) × (N + 1) matrix H− is defined as

H−
ab(m) =

ϕ(η)

ϕ(µa − λb)

(
a(λb)

N+1∏

j=1
j 6=a

ϕ(µj − λb + η) − d(λb)

N+1∏

j=1
j 6=a

ϕ(µj − λb − η)

)
(53)

for b < N + 1,

H−
aN+1(m) =

ϕ(η)

ϕ(µa − ξm + η)ϕ(µa − ξm)
. (54)

The matrix element F+
N (m, {λk}, {µj}) we get,

F+
N (m, {λk}, {µj}) =

φm(λk)φm−1(λk)

φm−1(µj)φm(µj)
F−

N (m, {µj}, {λk}). (55)

The matrix elements of the operator σz
m between two Bethe states have been

obtained similarly [38].

3.2 Elementary blocks of correlation functions

In this section we consider a more general case of correlation functions : the ground

state mean value of any product of the local elementary 2×2 matrices Eε′,ε
lk = δl,ε′δk,ε:

Fm({εj , ε
′
j}) =

〈ψg |
m∏

j=1

E
ε′j ,εj

j |ψg 〉

〈ψg |ψg〉
. (56)

An arbitrary n-point correlation function can be obtained as a sum of such mean
values. Using the solution of the quantum inverse scattering problem, we reduce this
problem to the computation of the ground state mean value of an arbitrary ordered
product of monodromy matrix elements,

Fm({εj , ε
′
j}) = φ−1

m ({λ})
〈ψg |Tε1,ε′1

(ξ1) . . . Tεm,ε′m(ξm)|ψg 〉

〈ψg |ψg〉
, (57)

To calculate these mean values we first describe generically the product of the mon-
odromy matrix elements. For that purpose, one should consider the two following
sets of indices, α+ = {j : 1 ≤ j ≤ m, εj = 1}, card(α+) = s′, maxj∈α+(j) ≡ j′max,
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minj∈α+(j) ≡ j′min, and similarly α− = {j : 1 ≤ j ≤ m, ε′j = 2}, card(α−) = s,
maxj∈α−(j) ≡ jmax, minj∈α−(j) ≡ jmin. The intersection of these two sets is not
empty and corresponds to the operators B(ξj). Consider now the action,

〈 0 |

N∏

k=1

C(λk)Tε1,ε′1
(λN+1) . . . Tεm,ε′m(λN+m), (58)

applying one by one the formulae (46)-(48). For all the indices j from the sets α+ and
α− one obtains a summation on the corresponding indices a′j (for j ∈ α+, correspond-
ing to the action of the operators A(λ) or B(λ)) or aj (for j ∈ α−, corresponding to
the action of the operators D(λ) or B(λ)). As the product of the monodromy matrix
elements is ordered these summations are also ordered and the corresponding indices
should be taken from the following sets, Aj = {b : 1 ≤ b ≤ N +m, b 6= ak, a

′
k, k < j}

and A
′
j = {b : 1 ≤ b ≤ N +m, b 6= a′k, k < j, b 6= ak, k ≤ j}. Thus,

〈 0 |

N∏

k=1

C(λk)Tε1,ε′1
(λN+1) . . . Tεm,ε′m(λN+m) =

=
∑

{aj ,a′

j}
G{aj ,a′

j}(λ1, . . . , λN+m)〈 0 |
∏

b∈Am+1

C(λb) (59)

The summation is taken over the indices aj for j ∈ α− and a′j for j ∈ α+ such
that 1 ≤ aj ≤ N + j, aj ∈ Aj , 1 ≤ a′j ≤ N + j, a′j ∈ A

′
j . The functions

G{aj ,a′

j}(λ1, . . . λN+m) can then be easily obtained from the formulae (46)-(48) taking

into account that λa = ξa−N for a > N :

G{aj ,a′

j}(λ1, . . . , λN+m) =
∏

j∈α−

d(λaj
)

N+j−1∏
b=1

b∈Aj

sinh(λaj
− λb + η)

N+j∏
b=1

b∈A
′

j

sinh(λaj
− λb)

×

×
∏

j∈α+

a(λa′

j
)

N+j−1∏
b=1

b∈A
′

j

sinh(λb − λa′

j
+ η)

N+j∏
b=1

b∈Aj+1

sinh(λb − λa′

j
)

. (60)

Now to calculate the normalized mean value (57) we apply the determinant
representation for the scalar product. It should be mentioned that the number of
operators C(λ) has to be equal to the number of the operators B(λ), as otherwise
the mean value is zero, and hence the total number of elements in the sets α+ and
α− is s+ s′ = m. Taking into account that in (57), for b > N, λb = ξb−N one has to
consider the following scalar products,

〈 0 |
∏

b∈Am+1

C(λb)
N∏

k=1

B(λk)| 0 〉

〈 0 |
N∏

k=1

C(λk)
N∏

k=1

B(λk)| 0 〉

,
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for all the permitted values of aj , a
′
j . Finally we obtain:

Fm({εj , ε
′
j}) =

1∏
k<l

sinh(ξk − ξl)

∑

{aj ,a′

j}
H{aj ,a′

j}(λ1, . . . , λN+m), (61)

the sum being taken on the same set of indices aj , a
′
j as in (59). The functions

H{aj ,a′

j}({λ}) can be obtained using (60) and the determinant representations for

the scalar products.

3.3 Two-point functions

The method presented in the last section is quite straightforward and gives formally
the possibility to compute any correlation function. However, it has been developed
for the computation of the average values of monomials in the monodromy matrix
operators entries, leading to the elementary building blocks, whereas the study of
the two-point functions involves big sums of such blocks. Indeed, let us consider for
example the correlation function 〈σz

1 σ
z
m+1 〉. Then, according to the solution of the

inverse scattering problem (41), we need to calculate the expectation value

〈ψ({λ}) | (A−D)(ξ1) ·

m∏

a=2

T (ξa) · (A−D)(ξm+1) ·

m+1∏

b=1

T −1(ξb) |ψ({λ}) 〉. (62)

Since |ψ({λ}) 〉 is an eigenvector, the action of
∏m+1

b=1 T −1(ξb) on this state merely
produces a numerical factor. However, it is much more complicated to evaluate the
action of

∏m
a=2 T (ξa). Indeed, we have to act first with (A−D)(ξ1) on 〈ψ({λ}) | (or

with (A −D)(ξm+1) on |ψ({λ}) 〉), which gives a sum of states which are no longer
eigenvectors of the transfer matrix, and on which the multiple action of T is not simple.
In fact, the product

∏m
a=2(A+D)(ξa) would lead to a sum of 2m−1 elementary blocks.

This is not very convenient, in particular at large distance m. Therefore, to obtain
manageable expressions for such correlation functions, it is of great importance to
develop an alternative and compact way to express the multiple action of the transfer
matrix on arbitrary states or, in other words, to make an effective re-summation of
the corresponding sum of the 2m−1 terms. This can be achieved in the following way
:

Proposition 3.2 Let κ, x1, . . . , xm and µ1, . . . , µN be generic parameters. Then the ac-
tion of∏m

a=1 Tκ(xa) on a state of the form 〈 0 |
∏N

j=1 C(µj) can be formally written as

〈 0 |

N∏

j=1

C(µj)

m∏

a=1

Tκ(xa) =
1

N !

∮

Γ{x}∪Γ{µ}

N∏

j=1

dzj

2πi
·

m∏

a=1

τκ(xa|{z}) ·

N∏

a=1

1

Yκ(za|{z})

×

N∏

j,k=1
j<k

sinh(zj − zk)

sinh(µj − µk)
· det

N
Ωκ({z}, {µ}|{z}) · 〈 0 |

N∏

j=1

C(zj), (63)
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where the integration contour Γ{x} ∪ Γ{µ} surrounds the points1 x1, . . . , xm and
µ1, . . . , µN and does not contain any other pole of the integrand.

One of the simplest applications concerns the generating function of the two-
point correlation function of the third components of spin, which is defined as the
normalized expectation value 〈Qκ

l,m 〉 of the operator

Qκ
l,m =

m∏

n=l

(
1 + κ

2
+

1− κ

2
· σz

n

)
=

l−1∏

j=1

T (ξj) ·

m∏

j=l

Tκ(ξj) ·

m∏

j=1

T −1(ξj), (64)

where |ψ({λ}) 〉 is an eigenvector of T (µ) in the subspace H(M/2−N). The two-point
correlation function of the third components of local spins in the eigenvector |ψ({λ}) 〉
can be obtained in terms of the second ‘lattice derivative’ and the second derivative
with respect to κ of the generating function 〈Qκ

l,m 〉 at κ = 1:

〈σz
l σ

z
l+m 〉 = 〈σz

l 〉 + 〈σz
l+m 〉 − 1

+ 2
∂2

∂κ2
〈Qκ

l,l+m −Qκ
l,l+m−1 −Qκ

l+1,l+m +Qκ
l+1,l+m−1 〉

κ=1

. (65)

Due to the translational invariance of the correlation functions in the homogeneous
model, we will simply consider the expectation value 〈Qκ

1,m 〉. For any given eigenvec-
tor, we obtain the following result:

Theorem 3.1 Let {λ} be an admissible off-diagonal solution of the system of untwisted
Bethe equations, and let us consider the corresponding expectation value 〈Qκ

1,m 〉 in the
inhomogeneous finite XXZ chain. Then there exists κ0 > 0 such that, for |κ| < κ0,
the following representations hold:

〈Qκ
1,m 〉 =

1

N !

∮

Γ{ξ}∪Γ{λ}

N∏

j=1

dzj

2πi
·

m∏

a=1

τκ(ξa|{z})

τ(ξa|{λ})
·

N∏

a=1

1

Yκ(za|{z})

× det
N

Ωκ({z}, {λ}|{z}) ·
detN Ω({λ}, {z}|{λ})

detN Ω({λ}, {λ}|{λ})
, (66)

The integration contours are such that the only singularities of the integrand which
contribute to the integral are the points ξ1, . . . , ξm and λ1 . . . , λN .

From this result, we can extract a compact representation for the two-point
function of σz [79]. Similar expressions exists for other correlation functions of the
spin operators, and in particular for the time dependent case [79, 63]. Moreover, this
multiple contour integral representation permits to relate two very different ways to
compute two point correlation functions of the type, g12 = 〈ω|θ1θ2|ω〉, namely,
(i) to compute the action of local operators on the ground state θ1θ2|ω〉 = |ω̃〉 and then
to calculate the resulting scalar product g12 = 〈ω|ω̃〉 as was explain in the previous
sections.
(ii) to insert a sum over a complete set of states |ωi〉 (for instance, a complete set of

1More precisely, for a set of complex variables {ν1, . . . , νl}, the notation Γ{ν} should be un-
derstood in the following way: Γ{ν} is the boundary of a set of poly-disks Da(r) in CN , i.e.
Γ{ν} = ∪l

a=1
D̄a(r) with D̄a(r) = {z ∈ CN : |zk − νa| = r, k = 1, . . . ,N}.
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eigenvectors of the Hamiltonian) between the local operators θ1 and θ2 and to obtain
the representation for the correlation function as a sum over matrix elements of local
operators,

g12 =
∑

i

〈ω|θ1|ωi〉 · 〈ωi|θ2|ω〉. (67)

In fact the above representation as multiple contour integrals contains both expan-
sions. Indeed there is two ways to evaluate the corresponding integrals : either to
compute the residues in the poles inside Γ, or to compute the residues in the poles
within strips of the width iπ outside Γ.

The first way leads to a representation of the correlation function 〈σz
1σ

z
m+1〉

in terms of the previously obtained [75] m-multiple sums. Evaluation of the above
contour integral in terms of the poles outside the contour Γ gives us the expansion
(ii) of the correlation function (i.e. an expansion in terms of matrix elements of σz

between the ground state and all excited states). This relation holds also for the time
dependent case [79, 63].

3.4 Towards the comparison with neutron scattering experiments

In this section, we first briefly review all elements necessary for the computation of
the dynamical spin-spin correlation functions of the anisotropic Heisenberg model,
following [39, 40] and leading in particular to the successful comparison with neutron
scattering experiments, see Fig. 1. We start by giving our notations and discussing the
eigenstates in some details. The reference state is taken to be the state with all spins
up, |0〉 = ⊗M

i=1| ↑〉i. Since the total magnetization commutes with the Hamiltonian,
the Hilbert space separates into subspaces of fixed magnetization, determined from
the number of reversed spins N . We take the number of sites M to be even, and
2N ≤M , the other sector being accessible through a change in the reference state.

Eigenstates in each subspace are completely characterized for 2N ≤M by a set
of rapidities {λj}, j = 1, ..., N , solution to the Bethe equations

[
sinh(λj + iζ/2)

sinh(λj − iζ/2)

]M

=

N∏

k 6=j

sinh(λj − λk + iζ)

sinh(λj − λk − iζ)
, j = 1, ..., N (68)

where ∆ = cos ζ. In view of the periodicity of the sinh function in the complex
plane, we can restrict the possible values that the rapidities can take to the strip
−π/2 < Imλ ≤ π/2, or alternately define an extended zone scheme in which λ and
λ+ iπZ are identified.

A more practical version of the Bethe equations is obtained by writing them in
logarithmic form,

atan

[
tanh(λj)

tan(ζ/2)

]
−

1

M

N∑

k=1

atan

[
tanh(λj − λk)

tan ζ

]
=π

Ij
M
. (69)

Here, Ij are distinct half-integers which can be viewed as quantum numbers: each
choice of a set {Ij}, j = 1, ..., N (with Ij defined mod(M)) uniquely specifies a set of
rapidities, and therefore an eigenstate. The energy of a state is given as a function of
the rapidities by

E = J

N∑

j=1

− sin2 ζ

cosh 2λj − cos ζ
− h(

M

2
−N), (70)
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whereas the momentum has a simple representation in terms of the quantum numbers,

q =

N∑

j=1

i ln

[
sinh(λj + iζ/2)

sinh(λj − iζ/2)

]
= πN +

2π

M

N∑

j=1

Ij mod 2π. (71)

The ground state is given by I0
j = −N+1

2 + j, j = 1, ..., N , and all excited states are
in principle obtained from the different choices of sets {Ij}.

To study dynamics, some ingredients have to be added to the Bethe Ansatz:
the matrix elements of spin operators between eigenstates (form factors). In terms of

form factors for the Fourier-transformed spin operators Sa
q = 1√

M

∑M
j=1 e

iqjSa
j , the

structure factor can be written as a sum

Saā(q, ω) = 2π
∑

α6=GS

|〈GS|Sa
q |α〉|

2δ(ω − ωα) (72)

over the whole set of intermediate eigenstates |α〉 (distinct from the ground state
|GS〉) in a fixed magnetization subspace. Each term in (72) can be obtained [38]
as a product of determinants of specific matrices, which are fully determined for
given bra and ket eigenstates by a knowledge of the corresponding sets of rapidities.
The analytical summation of this series remains for the moment out of reach, but
numerically, for chains of length a few hundred sites, quite feasible. Moreover, we
know that the correlation functions of the finite chain approach their thermodynamic
limit with errors of order 1

M , hence if M = 200 for example the error is usually quite
acceptable to make comparison with experiments.

The strategy to follow is now clear. We compute the Szz and S−+ structure
factors by directly summing the terms on the right-hand side of equation (72) over a
judiciously chosen subset of eigenstates. The momentum delta functions are broadened
to width ε ∼ 1/M using δε(x) = 1√

πε
e−x2/ε2 in order to obtain smooth curves. We scan

through the eigenstates in the following order. First, we observe that the form factors
of the spin operators between the ground state and an eigenstate {λ} are extremely
rapidly decreasing functions of the number of holes that need to be inserted in the
configuration of the lowest-energy state (in the same base) in order to obtain the
configuration {I} corresponding to {λ}. We therefore scan through all bases and
configurations for increasing number of holes, starting from one-hole states for Szz,
and zero-hole states for S−+. Although the number of possible configurations for
fixed base and number of holes is a rapidly increasing function of the number of
holes, we find that the total contributions for fixed bases also rapidly decrease for
increasing hole numbers. We therefore limit ourselves to states with up to three holes,
corresponding to up to six-particle excitations. We can quantify the quality of the
present computational method by evaluating the sum rules for the longitudinal and
transverse form factors. Namely, by integrating over momentum and frequency, we
should saturate the values

∫ ∞

−∞

dω

2π

1

M

∑

q

Szz(q, ω) =
1

4
− 〈Sz〉2 =

1

4

[
1 − (1 −

2N

M
)2
]

(73)

∫ ∞

−∞

dω

2π

1

M

∑

q

S−+(q, ω) =
1

2
− 〈Sz〉 =

N

M
. (74)
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In Fig. 2, we plot the longitudinal structure factor as a function of momentum
and frequency for anisotropy ∆ = 0.75, for four values of the magnetization. Fig. 3
contains the transverse structure factor for the same anisotropy and magnetizations.

For all intermediate states involving strings, we explicitly check that the devi-
ations from the string hypothesis are small. We find in general that states involving
strings of length higher that two are admissible solutions to the Bethe equations for
high enough magnetizations. At zero field, only two-string states have exponentially
small deviations δ, and all higher-string states must be discarded.

The relative contributions to the structure factors from different bases is very
much dependent on the system size, the anisotropy, and the magnetization. In general,
we find that two- and four-particle contributions are sufficient to saturate well over
90% of the sum rules in all cases, for system sizes up to M = 200. Interestingly,

Figure 2: Longitudinal structure factor as a function of momentum q and frequency
ω, for ∆ = 0.75, and N = M/8,M/4, 3M/8, and M/2. Here, M = 200 and all
contributions up to two holes are taken into account. The sum rule is thereby saturated
to 98.6%, 97.0%, 95.4% and 97.8%.

however, we find that string states also contribute noticeably in many cases. For
example, in Fig. 4, we plot the zero-field transverse structure factor contributions
coming from intermediate states with one string of length two and up to three holes.
Around six or seven percent of the weight is accounted for by these states, and similar
or somewhat lower figures are found in other cases. Strings of length higher than two
do not contribute significantly. For example, we find only around 5.7e-8 % of the sum
rule from states with one string of length three, for the longitudinal structure factor
for ∆ = 0.25 at M = N/4 with N = 128. For ∆ = 0.75, we find 6.3e-7 %. For the
transverse correlators, the figures are 2.3e-12 % and 3.1e-12 %. Even though these
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numbers would increase if we could go to larger system sizes, we do not expect them
to ever become numerically significant.

Figure 3: Transverse structure factor as a function of momentum q and frequency ω, for
∆ = 0.75, and N = M/8,M/4, 3M/8, and M/2. Here, M = 200 and all contributions
up to two holes are taken into account. The sum rule is thereby saturated to 99.3%,
97.8%, 96.5% and 98.8%.

The imperfect saturation of the sum rules that we obtain in general can be
ascribed either to higher states in the hierarchy which are not included in our partial
summations, or states that are in principle included, but which are rejected in view
of their deviations from the string hypothesis. As the proportion of excluded string
states can be rather large (ranging anywhere from zero to fifty percent), we believe the
latter explanation to be the correct one. In any case, these results are precise enough
to be compared successfully to different data from neutron scattering experiments
for several magnetic compounds. From our results covering the whole Brillouin zone
and frequency space, it is straightforward to obtain space-time dependent correlation
functions by inverse Fourier transform:

〈Sa
j+1(t)S

ā
1 (0)〉c =

1

M

∑

α6=GS

|〈GS|Sa
qα
|α〉|2e−iqαj−iωαt. (75)

It is possible to compare these results to known exact results for equal-time correlators
at short distance, and to the large-distance asymptotic form obtained from conformal
field theory. This comparison can only be made at zero field, where both sets of
results are known exactly. The comparison turns out to be extremely good, as can be
expected from the high saturation of the sum rules [40].
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Figure 4: The two-string contributions to the transverse structure factor at zero mag-
netic field, as a function of momentum q and frequency ω, and for anisotropy 0.75.
The density scale has been enhanced as compared to that used in the previous figures.
Here, M = 200 and contributions up to three holes are taken into account. The sum
rule contributions from these states is 6.3 %.

4 Correlation functions : infinite chain

In the thermodynamic limit, M → ∞ and at zero magnetic field, the model exhibits
three different regimes depending on the value of ∆ [26]. For ∆ < −1, the model is
ferromagnetic, for −1 < ∆ < 1, the model has a non degenerated anti ferromagnetic
ground state, and no gap in the spectrum (massless regime), while for ∆ > 1, the
ground state is twice degenerated with a gap in the spectrum (massive regime). In
both cases, the ground state has spin zero. Hence the number of parameters λ in the
ground state vectors is equal to half the sizeM of the chain. ForM → ∞, these param-
eters will be distributed in some continuous interval according to a density function ρ.

4.1 The thermodynamic limit

In this limit, the Bethe equations for the ground state, written in their logarithmic
form, become a linear integral equation for the density distribution of these λ’s,

ρtot(α) +

∫ Λ

−Λ

K(α− β)ρtot(β) dβ =
p′0tot

(α)

2π
, (76)

where the new real variables α are defined in terms of general spectral parameters λ
differently in the two domains. From now on, we only describe the massless regime
(see [73] for the other case) −1 < ∆ < 1 where α = λ. The density ρ is defined as
the limit of the quantity 1

M(λj+1−λj)
, and the functions K(λ) and p′0tot

(λ) are the
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derivatives with respect to λ of the functions − θ(λ)
2π and p0tot (λ):

K(α) =
sin 2ζ

2π sinh(α+ iζ) sinh(α− iζ)

p′0(α) =
sin ζ

sinh(α+ i ζ
2 ) sinh(α− i ζ

2 )

for − 1 < ∆ < 1, with ζ = iη, (77)

with p′0tot
(α) =

1

M

M∑

i=1

p′0(α − βk − i
ζ

2
), (78)

where βk = ξk. The integration limit Λ is equal to +∞ for −1 < ∆ < 1. The solution
for the equation (76) in the homogeneous model where all parameters ξk are equal to
η/2, that is the density for the ground state of the Hamiltonian in the thermodynamic
limit, is given by the following function [19]:

ρ(α) =
1

2ζ cosh(πα
ζ )

For technical convenience, we will also use the function,

ρtot(α) =
1

M

M∑

i=1

ρ(α− βk − i
ζ

2
).

It will be also convenient to consider, without any loss of generality, that the inhomo-
geneity parameters are contained in the region −ζ < Imβj < 0. Using these results,
for any C∞ function f (π-periodic in the domain ∆ > 1), sums over all the values of
f at the point αj , 1 ≤ j ≤ N , parameterizing the ground state, can be replaced in
the thermodynamic limit by an integral:

1

M

N∑

j=1

f(αj) =

∫ Λ

−Λ

f(α)ρtot(α) dα +O(M−1).

Thus, multiple sums obtained in correlation functions will become multiple integrals.
Similarly, it is possible to evaluate the behavior of the determinant formulas for the
scalar products and the norm of Bethe vectors (and in particular their ratios) in the
limit M → ∞.

4.2 Elementary blocks

From the representations as multiple sums of these elementary blocks in the finite
chain we can obtain their multiple integral representations in the thermodynamic
limit. Let us now consider separately the two regimes of the XXZ model. In the
massless regime η = −iζ is imaginary, the ground state parameters λ are real and
the limit of integration is infinity Λ = ∞. In this case we consider the inhomogene-
ity parameters ξj such that 0 > Im(ξj) > −ζ. For the correlation functions in the
thermodynamic limit one obtains the following result in this regime:
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Proposition 4.1

Fm({εj , ε
′
j}) =

∏

k<l

sinh π
ζ (ξk − ξl)

sinh(ξk − ξl)

s′∏

j=1

∞−iζ∫

−∞−iζ

dλj

2iζ

m∏

j=s′+1

∞∫

−∞

i
dλj

2ζ

m∏

a=1

m∏

k=1

1

sinh π
ζ (λa − ξk)

∏

j∈α−




j−1∏

k=1

sinh(µj − ξk − iζ)

m∏

k=j+1

sinh(µj − ξk)




∏

j∈α+




j−1∏

k=1

sinh(µ′
j − ξk + iζ)

m∏

k=j+1

sinh(µ′
j − ξk)



∏

a>b

sinh π
ζ (λa − λb)

sinh(λa − λb − iζ)
,

where the parameters of integration are ordered in the following way {λ1, . . . λm} =
{µ′

j′max
, . . . , µ′

j′min
, µjmin , . . . , µjmax}.

The homogeneous limit (ξj = −iζ/2, ∀j) of the correlation function Fm({εj , ε
′
j})

can then be taken in an obvious way. We have obtained similar representations for
the massive regime, and also in the presence of a non-zero magnetic field [73]. For
zero magnetic field, these results agree exactly with the ones obtained by Jimbo and
Miwa in [69], using in particular q-KZ equations. It means that for zero magnetic
field, the elementary blocks of correlation functions indeed satisfy q-KZ equations.
Recently, more algebraic representations of solutions of the q-KZ equations have been
obtained that correspond to the above correlation functions [70, 71]. From the finite
chain representation for the two-point function, it is also possible to obtain multiple
integral representations for that case as well, in particular for their generating function
[75, 76]. They correspond to different huge re-summations and symmetrization of the
corresponding elementary blocks, as in the finite chain situation [75]. Moreover, the
case of time dependent correlation functions as also been obtained [79, 63]. Finally,
let us note that at the free fermion point, all the results presented here lead, in a very
elementary way, to already know results [76, 80, 63].

5 Exact and asymptotic results

5.1 Exact results at ∆ = 1/2

Up to now, two exact results have been obtained for the case of anisotropy ∆ = 1/2
: the exact value of the emptiness formation probability for arbitrary distance m [77]
and the two point function of the third component of spin [85]. These two results follow
from the above multiple integral representations for which, due to the determinant
structure of the integrand, the corresponding multiple integrals can be separated and
hence explicitly computed for this special value of the anisotropy.

5.1.1 The emptiness formation probability

This correlation function τ(m) (the probability to find in the ground state a ferro-
magnetic string of length m) is defined as the following expectation value

τ(m) = 〈ψg |
m∏

k=1

1 − σz
k

2
|ψg〉, (79)
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where |ψg〉 denotes the normalized ground state. In the thermodynamic limit (M →
∞), this quantity can be expressed as a multiple integral with m integrations [68, 69,
37, 38, 73].

Proposition 5.1 For ∆ = cos ζ, 0 < ζ < π, τ(m) = limξ1,...ξm→− iζ
2
τ(m, {ξj}), where

τ(m, {ξj}) =
1

m!

∞∫

−∞

Zm({λ}, {ξ})
m∏

a<b

sinh(ξa − ξb)
detm

(
i

2ζ sinh π
ζ (λj − ξk)

)
dmλ, (80)

Zm({λ}, {ξ}) =
m∏

a=1

m∏
b=1

sinh(λa−ξb) sinh(λa−ξb−iζ)
sinh(λa−λb−iζ) ·

·
detm

“

−i sin ζ

sinh(λj−ξk) sinh(λj−ξk−iζ)

”

m
Q

a>b

sinh(ξa−ξb)
. (81)

The proof is given in [75]. Due to the determinant structure of the integrand, the
integrals can be separated and computed for the special case ∆ = 1

2 (ζ = π/3):

Proposition 5.2 Let ξk = εk − iπ/6 and εab = εa − εb, we obtain,

τ(m, {εj}) =
(−1)

m2
−m
2

2m2

m∏

a>b

sinh 3εba

sinh εba

m∏

a,b=1
a6=b

1

sinh εab
· detm

(
3 sinh

εjk

2

sinh
3εjk

2

)
, (82)

τ(m) =

(
1

2

)m2 m−1∏

k=0

(3k + 1)!

(m+ k)!
. (83)

Observe that the quantity Am =
∏m−1

k=0 (3k+1)!/(m+k)! is the number of alternating
sign matrices of size m. This result was conjectured in [91].

5.1.2 The two point function of σz

The two point functions can be obtained, as in the finite chain situation, from a gen-
erating function 〈Qκ(m)〉; in the thermodynamic limit, we use the following multiple
integral representation [79]:

〈Qκ(m)〉 =

m∑

n=0

κm−n

n!(m− n)!

∮

Γ{−iζ/2}

dmz

(2πi)m

∫

R−iζ

dnλ

∫

R

dm−nλ ·

m∏

j=1

ϕm(zj)

ϕm(λj)

n∏

j=1

{
t(zj , λj)

m∏

k=1

sinh(zj − λk − iζ)

sinh(zj − zk − iζ)

}
m∏

j=n+1

{
t(λj , zj)

m∏

k=1

sinh(λk − zj − iζ)

sinh(zk − zj − iζ)

}

m∏

j=1

m∏

k=1

sinh(λk − zj − iζ)

sinh(λk − λj − iζ)
· detm

(
i

2ζ sinh π
ζ (λ− z)

)
. (84)

Here,

∆ = cos ζ, t(z, λ) =
−i sin ζ

sinh(z − λ) sinh(z − λ− iζ)
, ϕ(z) =

sinh(z − i ζ
2 )

sinh(z + i ζ
2 )
,

(85)



Vol. X, 2007 Heisenberg Spin Chains 167

and the integrals over the variables zj are taken with respect to a closed contour Γ
which surrounds the point −iζ/2 and does not contain any other singularities of the
integrand. The equation (84) is valid for the homogeneous XXZ chain with arbitrary
−1 < ∆ < 1. If we consider the inhomogeneous XXZ model with inhomogeneities
ξ1, . . . , ξm, then one should replace in the representation (84) the function ϕm in the
following way:

ϕm(z) →

m∏

b=1

sinh(z − ξb − iζ)

sinh(z − ξb)
, ϕ−m(λ) →

m∏

b=1

sinh(λ− ξb)

sinh(λ− ξb − iζ)
. (86)

In order to come back to the homogeneous case, one should set ξk = −iζ/2, k =
1, . . . ,m in (86). In the inhomogeneous model, the integration contour Γ surrounds
the points ξ1, . . . , ξm, and the integrals over zj are therefore equal to the sum of the
residues of the integrand in these simple poles. It turns out that again for the special
case ∆ = 1

2 integrals can be separated and computed to give [85] :

Proposition 5.3

〈Qκ(m)〉 =
3m

2m2

m∏

a>b

sinh 3(ξa − ξb)

sinh3(ξa − ξb)

m∑

n=0

κm−n
∑

{ξ}={ξγ+
}∪{ξγ

−
}

|γ+|=n

det
m

Φ̂(n)

×
∏

a∈γ+

∏

b∈γ−

sinh(ξb − ξa − iπ
3 ) sinh(ξa − ξb)

sinh2(ξb − ξa + iπ
3 )

,

Φ̂(n)({ξγ+}, {ξγ−
}) =




Φ(ξj − ξk) Φ(ξj − ξk − iπ
3 )

Φ(ξj − ξk + iπ
3 ) Φ(ξj − ξk)


 , Φ(x) =

sinh x
2

sinh 3x
2

.

Here the sum is taken with respect to all partitions of the set {ξ} into two disjoint sub-
sets {ξγ+}∪{ξγ−

} of cardinality n and m−n respectively. The first n lines and columns

of the matrix Φ̂(n) are associated with the parameters ξ ∈ {ξγ+}. The remaining lines
and columns are associated with ξ ∈ {ξγ−

}.

Thus, we have obtained an explicit answer for the generating function 〈Qκ(m)〉
of the inhomogeneous XXZ model. It is also possible to check that the above sum
over partitions remains indeed finite in the homogeneous limit ξk → 0. Finally, for
small distances it is possible to compute the above expressions explicitly as polynomial
functions of the variable κ of degree m. Interestingly, it turns out that all coefficients
are integer numbers divided by 2m2

[85], meaning a possible combinatorial interpre-
tation of these numbers as for the emptiness formation probability computed in the
previous section.

5.2 Asymptotic results

An important issue is the analysis of the multiple integral representations of correla-
tion functions for large distances. There it means analyzing asymptotic behavior of
m-fold integrals form large. An interesting example to study in this respect is provided
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by the emptiness formation probability. This correlation function reduces to a single
elementary block. Moreover, we already described its exact value for an anisotropy
∆ = 1

2 in the previous section. In fact, it is possible to obtain the asymptotic behavior
of τ(m) using the saddle-point method for arbitrary values of the anisotropy ∆ > −1
. This was performed for the first time in [76] in the case of free fermions (∆ = 0),
but it can be applied to the general case as well. We present here the results in the
massless and massive regimes [78, 63].

To apply the saddle-point method to the emptiness formation probability, it is
convenient to express its integral representation in the following form:

τ(m) =

∫

D

dmλ Gm({λ}) em2Sm({λ}), (87)

with

Sm({λ}) = −
1

m2

m∑

a>b

log[sinh(λa − λb + η) sinh(λa − λb − η)]

+
1

m

m∑

a=1

log[sinh(λa + η/2) sinh(λa − η/2)]

+
1

m2
lim

ξ1...ξm→η/2
log
[( −2iπ

sinh η

)m
(
det ρ(λj , ξk)

)2
∏
a6=b

sinh(ξa − ξb)

]
(88)

and

Gm({λ}) = lim
ξ1...ξm→η/2

detm

[
i

2π t(λj , ξk)
]

detm ρ(λj , ξk)
. (89)

In (87), the integration domain D is such that the variable of integration λ1, . . . , λm

are ordered in the interval C = [−Λh,Λh] (i.e. −Λh < λ1 < · · · < λm < Λh in the
massless case, and −iΛh < iλ1 < · · · < iλm < iΛh in the massive case).

The main problem in the saddle point analysis is that, a priori, we do not know
any asymptotic equivalent of the quantity Gm(λ) when m→ ∞. Nevertheless, in the
case of zero magnetic field, it is still possible to compute the asymptotic behavior
of (87) in the leading order, provided we make the following hypothesis: we assume
that the integrand of (87) admits a maximum for a certain value λ′

1, . . . , λ
′
m of the

integration variables λ1, . . . , λm, that, for largem, the distribution of these parameters
λ′1, . . . , λ

′
m can be described by a density function ρs(λ

′) of the form

ρs(λ
′
j) = lim

m→∞
1

m(λ′j+1 − λ′j)
, (90)

on the symmetric interval [−Λ,Λ] and that, at the leading order in m, we can replace
the sums over the set of parameters {λ′} by integrals weighted with the density ρs(λ

′).
First, it is easy to determine the maximum of the function Sm({λ}). Indeed, let

{λ̃} be solution of the system

∂λj
Sm({λ̃}) = 0, 1 ≤ j ≤ m. (91)

In the limit m → ∞, if we suppose again that the parameters λ̃1, . . . , λ̃m become
distributed according to a certain density ρ̃s(λ) and that sums over the λ̃j become
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integrals over this density, the system (91) turns again into a single integral equation
for ρ̃s, that can be solved explicitly in the case of zero magnetic field. It gives the
maximum of Sm({λ}) when m→ ∞2.

The second step is to show that the factor Gm({λ}) gives always a negligible
contribution compared to Sm({λ̃}) at this order in m, at least for any distribution of
the variables λj satisfying the previous hypothesis of regularity. We obtain,

lim
m→∞

1

m2
logGm({λ}) = 0 (92)

for any distribution of {λ} with good properties of regularity, in particular for the
saddle point. This means that, at the main order in m, the factor Gm({λ}) does not
contribute to the value of the maximum of the integrand.

Finally we obtain the following result concerning the asymptotic behaviour of
τ(m) for m→ ∞ (see [78, 63]):

S(0)(∆) = lim
m→∞

log τ(m)

m2
, (93)

= −
ζ

2
−

∞∑

n=1

e−nζ

n

sinh(nζ)

cosh(2nζ)
, (∆ = cosh ζ > 1), (94)

= log
π

ζ
+

1

2

∫

R−i0

dω

ω

sinh ω
2 (π − ζ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 coshωζ
, (−1 < ∆ = cos ζ < 1). (95)

It coincides with the exact known results obtained in [92, 76] at the free fermion point
and in [91, 77] at ∆ = 1/2, and is in agreement with the expected (infinite) value in
the Ising limit. Similar techniques can be applied to the two point function. However,
the result that has been extracted so far is only the absence of the gaussian term.
Unfortunately, we do not know up to now how to extract the expected power law
corrections to the gaussian behavior from this saddle point analysis. More powerful
methods will certainly be needed to go further.

5.3 Asymptotic behavior of the two-point functions

The long-distance asymptotic behavior of physical correlation functions, such as the
two-point functions, have attracted long-standing interest. In the case of the XXZ
model, some predictions were made already a long time ago. These predictions are
confirmed by the numerical sum over the exact form factors that we performed for
the XXZ model in the disordered regime [40].

In the massive regime (∆ > 1), spin-spin correlation functions are expected to
decay exponentially with the distance and the exact value of the correlation length
was proposed in [94]. For the XXZ chain in the massless regime (−1 < ∆ ≤ 1), zero
temperature is a critical point and the correlation length becomes infinite in units of
the lattice spacing. The leading long-distance effects can be predicted by conformal
field theory and the correlation functions are expected to decay as a power of the

2At this main order in m, there exists a unique solution of the integral equation for ρ̃s, and we
know it corresponds to a maximum because Sm({λ}) → −∞ on the boundary of D.
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distance. In particular, one expects that, at the leading order,

〈σx
j σ

x
j+n 〉 = (−1)n A

nπ−ζ
+ · · · , (96)

〈σz
j σ

z
j+n 〉 = −

1

π(π − ζ)

1

n2
+ (−1)n Az

n
π

π−ζ

+ · · · . (97)

A conjecture for the non-universal correlation amplitudes A and Az can be found in
[95, 96, 97]. The exact value of the critical exponents in (96)-(97) was proposed for
the first time in [98].

However, there does not exist at the moment any direct derivation of these
predictions from the exact expressions of the correlation functions on the lattice. In
the last subsection we have shown how to determine, at least in the main order, the
asymptotic behavior of the emptiness formation probability using the saddle-point
method. We could expect to be able to apply the same technique to the new multiple
integral representation of the two-point function.

In particular, one can notice immediately that each term of the representation
of the generating functional 〈Qκ

1,m 〉 has a structure very similar to the one for the
emptiness formation probability. Indeed, it is possible to apply to the whole sum a
slight modification of the saddle-point technique presented here. It shows that, as it
should be, there is no contribution of order exp(αm2) when m→ ∞.

However, to obtain the precise asymptotic behavior of the two-point function,
one should be able to analyze sub-leading corrections to this saddle-point method,
which is technically quite difficult. It is not obvious in particular from these expressions
that, in the massless regime, the leading asymptotic behavior of the two-point function
is only of power-law order.

It is also quite interesting (and relevant experimentally) to consider other lattice
models such as spin chains with magnetic or non magnetic impurities [99, 100, 101]
or models with electrons (carrying both spin and charge) like the Hubbard model and
to compute in particular their transport properties.

Conclusion and perspectives

In this article, we have reviewed recent results concerning the computation of correla-
tion functions in the XXZ chain by the methods of the inverse scattering problem and
the algebraic Bethe ansatz. In conclusion, we would like to discuss some perspectives
and problems to be solved.

One of the most interesting open problems is to prove the conformal field theory
predictions [98, 93] concerning the asymptotic behavior of the correlation functions.
This is certainly a very important issue not only for physical applications but also
from a theoretical view point. Moreover, it also would open the route towards the
generalization of the methods presented here to quantum integrable models of field
theory. We have seen that in particular cases, the multiple integral representations
enable for a preliminary asymptotic analysis . Nevertheless, this problem remains one
of the main challenges in the topics that have been described in this article.

A possible way to solve this problem would be to find the thermodynamic limit of
the master equations (like the one obtained for the two point correlation functions).
It is natural to expect that, in this limit, one should obtain a representation for
these correlation functions in terms of a functional integral, which could eventually
be estimated for large time and distance.
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Note that the master equation shows a direct analytic relation between the
multiple integral representations and the form factor expansions for the correlation
functions. It seems likely that similar representations exist for other models solvable
by algebraic Bethe ansatz. It would be in particular very interesting to obtain an
analogue of this master equation in the case of the field theory models, which could
provide an analytic link between short distance and long distance expansions of their
correlation functions. Other models of interest include models with magnetic [99] or
non magnetic impurities, meaning different integrable boundary conditions [100, 101],
and also the Hubbard model the transport properties of which have high experimental
interest, see e.g. [102] and references therein.
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