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Abstract. With the recent detections of GW150914 and GW151226 we have
entered the era where we can begin to use gravitational waves (GWs) to ex-
plore the Universe. We will give a short overview of two mechanisms of GW
production that can give information unaccessible by electromagnetic observa-
tions. Namely, we will discuss GW emission by quasi-normal modes of black
holes, as well as stochastic GW backgrounds produced in the early Universe.

1 Introduction

The first direct detection of a GW event, GW150914, took place on Sept. 14, 2015,
when the Hanford and Livingston interferometers of the LIGO Observatory, at the
very beginning of the first science run in the advanced LIGO configuration, detected
the GWs emitted by the coalescence of a BH-BH binary. The result was announced
by the LIGO and Virgo collaborations on Feb. 11, 2016 [1–4] and represented the
culmination of efforts which had lasted for over 50 years, from a whole community.
During this first scientific run of the LIGO detectors, which continued until Jan.
2016, a second confirmed BH-BH coalescence, GW151226, was detected on Dec. 26,
2015. It was then announced in June 2016, together with a third plausible event,
whose statistical significance was however not sufficient to claim a third discovery [5].
The advanced LIGO detectors have not yet reached their target sensitivity, and will
alternate data-taking periods with commissioning periods. To have an idea of the
discovery potential at design sensitivity one can observe that GW150914, which was
detected at a combined signal-to-noise ratio ρ̂ ' 22.7 (corresponding to a significance
higher than 5.3σ [6]), at design sensitivity would have been observed with a signal-
to-noise ratio O(100). Advanced Virgo is expected to join data-taking in 2017 and
further advanced interferometers, such as KAGRA in Japan and LIGO-India (or
“Indigo”), are expected to join later, forming a network of advanced detectors, with
even better sensitivities and localization capabilities. Thus, we are indeed entering
the era in which we can start to explore the Universe using GWs.

Within the limited scope of my contribution to this Poincaré seminar, I will
restrict myself to two selected topics, which are particularly interesting because of
their complementarity with electromagnetic (or neutrino) observations. I will first
discuss the emission of GWs from quasi-normal modes (QNMs) of black holes. I will
then focus on what we know about stochastic backgrounds of GWs. More details on
these topics (and a more complete reference list), as well as an exhaustive discussion
of sources of GWs, will be presented in the second volume of my textbook on GWs.
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The first volume [7], which appeared in 2007, dealt with the theory of GWs (in Part
I) and the experiments (Part II). After 10 more years of work, the second volume [8]
is now basically finished (and even thicker than Vol. 1!), and should be available
by the end of 2017. It will cover astrophysical sources (Part III) and cosmological
sources (Part IV).

2 Black hole quasi-normal modes

Black-hole perturbation theory is by now a classic chapter of General Relativity.
The subject has a long history, going back to works of Regge and Wheeler (1957),
Zerilli (1970), Vishveshwara (1970), Press (1971), Teukolsky (1973), Chandrasekhar
(1975,1983), Chandrasekhar and Detweiler (1975) [9–16], and several others. The
subject remains extremely active to the present time, both because of the needs of
GW astronomy, and because the quasi-normal modes (QNMs) of black holes (BHs)
are a natural bridge between classical and quantum gravity, and even play a role
in the AdS/CFT correspondence (although these aspects will not be covered in our
talk). The subject also has a mathematical elegance, and I hope that it will be
interesting for the more mathematical part of the audience.

The fact that an elastic body, such as a rod or a string, has a set of normal
modes, is familiar from elementary mechanics and from every-day experience. It is
however much more surprising to discover that a BH is also characterized by a set
of normal modes (or, as we will see, more precisely, by quasi-normal modes). A
BH is a pure space-time configuration, with no matter left to sustain oscillations.
These QNMs are therefore proper vibration modes of space-time itself. A BH with a
given mass and angular momentum is characterized by an infinite set of such modes,
with calculable frequencies and damping times, into which it will ‘ring’ when it is
excited by an external perturbation, in order to get rid of the excess energy and
settle down to its equilibrium Kerr configuration. In the following we will see how
these quasi-normal modes emerge. For reasons of space, we will not discuss here the
normal modes of neutron stars, where the interplay between space-time and matter
oscillations makes the issue more complex, and which can be used to infer properties
such as the equation of state (EOS) of neutron stars. We will only give here the main
results. Detailed derivations, as well as a much more complete list of references, will
be provided in [8]. Several excellent reviews on QNM of BHs and neutron stars also
exist, see in particular [17–19].

2.1 Scalar perturbations in a BH background

Before moving to the study of gravitational perturbations of BHs, let us consider
scalar perturbations in a BH background. In a spacetime with background metric
ḡµν , a massless scalar field φ obeys the wave equation

�φ ≡ (−ḡ)−1/2∂µ
[
(−ḡ)1/2ḡµν∂ν

]
φ = 0 , (1)

where ḡ denotes the determinant of ḡµν . We consider a Schwarzschild black hole in
Schwarzschild coordinates, so the metric is given by

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (2)
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Figure 1: The potential V [r(r∗)] for scalar perturbations, and l = 2, 3, 4. We use units M = 1, so
RS = 2.

where

A(r) = 1− RS

r
, B(r) =

1

A(r)
, (3)

and RS = 2GM is the Schwarzschild radius (we set c = 1). Given the spherical
symmetry of the background metric, it is convenient to expand φ(t,x) in spherical
harmonics,

φ(t,x) =
1

r

∞∑
l=0

l∑
m=−l

ulm(t, r)Ylm(θ, φ) . (4)

Inserting this expansion into eq. (1) we get[
∂2

∂r2
∗
− ∂

∂t2
− Vl(r)

]
ulm(t, r) = 0 , (5)

where

Vl(r) = A(r)

[
l(l + 1)

r2
+
RS

r3

]
, (6)

and r∗ is the “tortoise coordinate”,

r∗ ≡ r +RS log
r −RS

RS

. (7)

Observe that r∗ ranges from −∞ to +∞ as r goes from the horizon r = RS to
r = +∞. It is convenient to perform a Fourier transform with respect to the time
variable, writing

ulm(t, r) =

∫ ∞
−∞

dω

2π
ũlm(ω, r)e−iωt . (8)

Then ũlm(ω, r) satisfies the equation[
− d2

dr2
∗

+ Vl(r)

]
ũlm = ω2 ũlm . (9)
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This has the form of a Schrödinger equation in one dimension, defined on the line
−∞ < r∗ < ∞, for a particle of mass m, written in units ~2/(2m) = 1, with
Vl(r) formally playing the role of the potential and ω2 formally playing the role
of the energy. This formal analogy will be useful in the study of the solutions of
this equation. The potential Vl(r) is shown in Fig. 1, as a function of r∗, for l =
2, 3, 4. Because of the spherical symmetry of the Schwarzschild metric, Vl(r) does
not depend on the index m of ulm.

We must now supplement eq. (5) with the appropriate boundary conditions. Of
course, the choice of boundary conditions depends on the physics of the problem.
To understand the possible choices and their physical meaning, let us first look at
the asymptotic behaviors of the solutions as r∗ → ±∞. The potential (6) vanishes
as 1/r2 for large r, so to leading order in 1/r eq. (5) becomes a free wave equation.
Its solution at r∗ → +∞ will therefore be a superposition of plane waves,

ulm(t, r)→
∫ ∞
−∞

dω
[
Aout
lm (ω)e−iω(t−r∗) + C in

lm(ω)e−iω(t+r∗)
]
, (r∗ → +∞) . (10)

The condition that ulm(t, r) is real implies

Aout
lm (ω) = [Aout

lm (−ω)]∗ , C in
lm(ω) = [C in

lm(−ω)]∗ . (11)

The solution proportional to exp{−iω(t− r∗)} is an outgoing radial wave, i.e. radi-
ation escaping to infinity, while the solution proportional to exp{−iω(t+ r∗)} is an
incoming wave, describing radiation coming from infinity toward the black hole.

To determine the possible solutions at r∗ → −∞, we observe that the potential
Vl(r) near the horizon vanish as A(r). Near the horizon the relation between r∗ and
r becomes

r∗ ' RS +RS log
r −RS

RS

, (12)

so
A(r) ' e(r∗−RS)/RS , (13)

which vanishes exponentially in r∗ as r∗ → −∞. Therefore, as r∗ → −∞ we have
again a free wave equation, and therefore we find again incoming and outgoing radial
waves,

ulm(t, r)→
∫ ∞
−∞

dω
[
Ain
lm(ω)e−iω(t−r∗) + Cout

lm (ω)e−iω(t+r∗)
]
, (r∗ → −∞) , (14)

with a similar reality condition on Ain
lm(ω) and Cout

lm (ω). The situation in which we
are interested is a Schwarzschild space-time plus a non-vanishing perturbation of
the scalar field, so at some time t0, that we take as an initial time for the subsequent
evolution, ulm(t0, r) is non-vanishing, and localized in space. We then ask how this
perturbation will evolve in time. In general, part of the perturbation will propagate
toward infinity, and part will propagate toward the BH horizon. Thus, at r∗ → +∞,
we will have a purely outgoing wave. We are not interested in the case where scalar
radiation is impinging on the BH from infinity, and we therefore set C in

lm(ω) = 0 in
eq. (10), so the boundary condition at r = +∞ is

ulm(t, r)→
∫ ∞
−∞

dω Aout
lm (ω)e−iω(t−r∗) , (r∗ → +∞) . (15)
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Similarly, we require that nothing is coming out from the BH horizon. Thus, near
the horizon we select purely incoming-wave boundary conditions

ulm(t, r)→
∫ ∞
−∞

dω Ain
lm(ω)e−iω(t+r∗) , (r∗ → −∞) . (16)

To show that the boundary conditions (15) and (16) pick out some discrete values
of ω, it is convenient to start from eq. (5) in the time domain and consider the
situation in which, at r∗ = −∞, we prepare a right-moving wave-packet

u0
lm(t, r∗) =

∫ ∞
−∞

dω

2π
A0
lm(ω) exp{−iω(t− r∗)} , (r∗ → −∞). (17)

This wavepacket will be partly reflected and partly transmitted by the potential
V (r∗). So, at r∗ = −∞ there will also be a reflected, left-moving, wavepacket

urefl
lm (t, r∗) =

∫ ∞
−∞

dω

2π
Arefl
lm (ω) exp{−iω(t+ r∗)} , (r∗ → −∞), (18)

while at r = +∞ there will be a right-moving wavepacket,

utrans
lm (t, r∗) =

∫ ∞
−∞

dω

2π
Atrans
lm (ω) exp{−iω(t− r∗)} , (r∗ → +∞) . (19)

Thus, in terms of the Fourier modes ulm(ω, r∗), the asymptotic solution at r∗ = −∞
will be

ulm(ω, r∗) ' A0
lm(ω)e+iωr∗ + Arefl

lm (ω)e−iωr∗ , (20)

while at r∗ = +∞ we will have

ulm(ω, r∗) ' Atrans
lm (ω)e+iωx . (21)

The conservation of probability requires |A0
lm(ω)|2 = |Arefl

lm (ω)|2 + |Atrans
lm (ω)|2. In this

equivalent one-dimensional scattering problem, the amplitude for reflection is

Slm(ω) =
Arefl
lm (ω)

A0
lm(ω)

. (22)

The boundary conditions (15) and (16) correspond to setting A0
lm(ω) = 0 with

Arefl
lm (ω) 6= 0, and therefore to poles of the scattering amplitude Slm(ω). So, the

imposition of the boundary conditions (15) and (16) selects some discrete values of
ω. In the language of scattering theory, these special frequencies are the resonances
of the system. These special values of ω, that we denote by ωQNM, are in general
complex, and we write them as

ωQNM ≡ ωR − i
γ

2
. (23)

This defines the normal-mode frequency of the Schwarzschild BH. For physical rea-
sons, we must have γ > 0,1 corresponding to the fact that these normal-mode
excitations are damped. To emphasize that these normal modes have a complex

1With the convention for the Fourier transform F (t) =
R∞
−∞

dω
2π

F̃ (ω)e−iωt .
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frequency, one rather talk of quasi-normal modes. Of course, in any realistic macro-
scopic system the normal mode frequencies always have an imaginary part, because
of dissipation. However, in normal macroscopic bodies the mechanisms responsible
for dissipation, and therefore for ωI , are partly independently of the mechanisms
giving rise to rigidity, i.e. to ωR, and we can tune the parameters of the system,
or external parameters such as the temperature, so that |ωI | � ωR. In contrast,
for BHs ωR and ωI are determined simultaneously by the same equation, and are
both a consequence of gravity. There is no parameter that we can tune to achieve
|ωI | � ωR.

The form (23) of the QNM frequencies has a peculiar consequence on the spatial
dependence of the function describing a quasi-normal mode (its “wavefunction”, in
the equivalent Schrödinger problem). By definition, at r∗ → ±∞, the quasi-normal
modes satisfy the boundary conditions (15) and (16), i.e.

ulm(ω, r∗) ∝ eiω|r∗| = eiωR|r∗|e+γ|r∗|/2 , (r∗ → ±∞) . (24)

Since γ > 0, the quasi-normal modes diverge exponentially, both at infinity and at
the horizon! This is a clear indication of the fact that QNM behave quite differently
from the usual normal modes. First of all, a QNM cannot represent a physical
state of the system at a given time, over all of space, since at any given time it
carries an infinite energy. Rather, it can at most describe the behavior of ulm(t, r∗)
at sufficiently large values of t, at a fixed value of r∗. The larger the value of |r∗|,
the larger is also the value of time at which this asymptotic behavior sets in, so the
exponentially growing factor e+γ|r∗|/2 is always compensated by the time dependence
e−γt/2. Another related aspect is that quasi-normal modes do not form a complete
set, see [8] for full details.

2.2 Tensor perturbations in a BH background

The above analysis refers to a BH space-time perturbed by the excitation of a scalar
field. We can now generalize it to perturbations of the metric itself. In this case we
consider the metric gµν = ḡµν + hµν , where ḡµν is the Schwarzschild metric, and hµν
a gravitational perturbation. The treatment is conceptually very similar to that of
a scalar field, except for a number of technical complications related to the tensor
nature of hµν and to diffeomorphism invariance. Full details will be found again
in [8], and here we only summarize the main points. First of all, the expansion is
spherical harmonics given in eq. (4) must be replaced by an expansion in tensor
spherical harmonics. Then one finds that the metric perturbations can be separated
into polar and axial perturbations,

hµν(x) = hpol
µν (x) + hax

µν(x) . (25)

For a Schwarzschild BH, to linear order in hµν , the perturbation equations for po-
lar and axial perturbations do not mix. The linearized theory is invariant under
infinitesimal coordinate transformations

xµ → x′
µ

= xµ + ξµ(x) . (26)

Under this transformation the background metric ḡµν is invariant while, to linear
order in D̄µξν , hµν transforms as hµν(x)→ h′µν(x

′), where

h′µν(x) = hµν(x)− (D̄µξν + D̄νξµ) . (27)
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This expresses the gauge invariance of the spin-2 field hµν on the fixed background
ḡµν . The next step is then to make use of this gauge freedom, to get rid of some
degrees of freedom. When perturbing over a BH space-time there is a convenient
gauge choice, known as the Regge-Wheeler (RW) gauge. Using this gauge, and the
explicit form of the tensor spherical harmonics, one finds that the most general
metric of a perturbed Schwarzschild black hole, gµν = ḡµν + hµν , can be written as

gµνdx
µdxν = −A(r)

[
1−

∞∑
l=0

l∑
m=−l

H
(0)
lm Ylm

]
dt2 + 2dtdr

[
∞∑
l=1

l∑
m=−l

H
(1)
lm Ylm

]

+B(r)dr2

[
1 +

∞∑
l=0

l∑
m=−l

H
(2)
lm Ylm

]
+ r2(dθ2 + sin2 θdφ2)

[
1 +

∞∑
l=2

l∑
m=−l

KlmYlm

]

−2dtdθ
1

sin θ

[
∞∑
l=2

l∑
m=−l

h
(0)
lm ∂φYlm

]
+ 2dtdφ sin θ

[
∞∑
l=2

l∑
m=−l

h
(0)
lm ∂θYlm

]

−2drdθ
1

sin θ

[
∞∑
l=1

l∑
m=−l

h
(1)
lm ∂φYlm

]
+ 2drdφ sin θ

[
∞∑
l=1

l∑
m=−l

h
(1)
lm ∂θYlm

]
, (28)

where A(r) and B(r) are given in eq. (3). The functions H(0), H(1), H(2) and K
describe polar perturbations, while h(0) and h(1) describe axial perturbations.

The next step is to show that the full set of perturbation equations for these
functions can be reduced to a single master equation in the polar sector and a
single master equation in the axial sector. In the axial sector one introduces the
Regge-Wheeler function

Qlm(t, r) =
1

r
A(r)h

(1)
lm(t, r) , (29)

Then one finds that Q̃lm(ω, r) satisfies an equation very similar to eq. (9)

∂2

∂r2
∗
Q̃lm +

[
ω2 − V RW

l (r)
]
Q̃lm = 0 , (30)

where as usual r = r(r∗) is obtained inverting eq. (7), and

V RW
l (r) = A(r)

[
l(l + 1)

r2
− 3RS

r3

]
(31)

is the Regge-Wheeler potential. Equation (30) is called the Regge-Wheeler equation.
The RW potential is qualitatively very similar to the potential found for scalar
perturbations. More generally, on the right-hand side we also have a source term
that comes from the linearization of the energy-momentum tensor. This source term
is important to study the amplitude of the excitation of the quasi-normal modes
in response to a specific perturbations. However, for determining the quasi-normal
mode frequencies we can set the source term to zero. Given the solution for Q̃lm,

and hence for h
(1)
lm(t, r), the remaining perturbation equations determine the other

functions describing axial perturbations.
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Similarly, for polar perturbations all dynamical equations collapse to a single
equation for a master function Z̃lm(ω, r), that satisfies the Zerilli equation

∂2

∂r2
∗
Z̃lm +

[
ω2 − V Z

l (r)
]
Z̃lm = 0 , (32)

where again we have set to zero the source term. The Zerilli potential is

V Z
l (r) = A(r)

2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2
, (33)

where λ = (l − 1)(l + 2)/2. Again, this potential is qualitatively very similar to the
potential for scalar field.

Thus, BH quasi-normal modes can be defined exactly as we have done above
for the scalar field, both in the axial and in the polar sector. A remarkable result
(valid only for non-rotating BHs) is that, despite the different form of the potentials,
the Regge-Wheeler and the Zerilli equations have exactly the same spectrum. This
can be shown as follows. Suppose that two operators L1 and L2 are related by the
relation

DL1 = L2D , (34)

where D is another operator. Let ψ by an eigenfunction of L1, L1ψ = ξψ. Then
eq. (34) gives L2(Dψ) = D(L1ψ) = ξ(Dψ), so for each eigenfunction ψ of L1 there
is an eigenfunction (Dψ) of L2 with the same eigenvalue. We now take as L1 the
Zerilli operator for the l-th multipole

(L1)l =
d2

dr2
∗
− V Z

l , (35)

and as L2 the Regge-Wheeler operator,

(L2)l =
d2

dr2
∗
− V RW

l . (36)

Then, one can check that eq. (34) admits a solution of the form

Dl =
d

dr∗
− gl(r) , (37)

for some function gl(r).
Several techniques have been developed for computing numerically the frequen-

cies and damping times of the quasi-normal modes. From Table 1 we see that the
least damped mode emits GWs at a frequency f = ωR/(2π) given by

f ' 0.747

2πRS

' 12 kHz

(
M�
M

)
. (38)

Thus, for a 10M� BH we get f ∼ 1 kHz, while a supermassive BH with M =
106M� rings at f ∼ 10 mHz. The ringdown signal vanishes exponentially with a
characteristic time τ = 1/|ωI | which, for the least damped mode, is

τ ' RS

0.178c
' 5.5× 10−5 s

(
M

M�

)
. (39)
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Table 1: The frequencies of the QNM of a Schwarzschild BH, for l = 2 and for l = 3, in units
RS/c = 1 (data from [21]).

l = 2 l = 3
n (ωR, ωI) (ωR, ωI)
1 (0.747343, −0.177925) (1.198887, −0.185406)
2 (0.693422, −0.547830) (1.165288, −0.562596)
3 (0.602107, −0.956554) (1.103370, −0.958186)
4 (0.503010, −1.410296) (1.023924, −1.380674)
5 (0.415029, −1.893690) (0.940348, −1.831299)
10 (0.126527, −4.605289) (0.647366, −4.290798)
50 (0.151216, −24.693716) (0.134153, −24.119329)

Thus, the ringdown signal from a 10M� BH vanishes exponentially in a time of order
the millisecond, while a supermassive BH with M of order a few 106M� rings for a
few minutes.

2.3 Kerr black holes

The above discussion only refers to perturbations of non-rotating BHs. For applica-
tion to GW astrophysics we need however to study perturbations of the Kerr solu-
tion. This introduces an extra layer of technical complexity, leading to the Teukolsky
equation. Once again, full details will be presented in [8]. The effect of rotation is
to remove the degeneracy of the frequency with respect to the quantum number m.
For GW emission the most relevant mode is the mode with n = 1, l = m = 2. The
spin S of a Kerr BH defines a dimensionless parameter

â ≡ S

GM2
. (40)

For the mode n = 1, l = 2,m = 2, the dependence of the frequency on â can be
fitted to better than 5% over a range â ∈ [0, 0.99] by the formula

GM(ωR)n=1,l=2,m=2 ' 1.5251− 1.1568(1− â)0.1292 , (41)

while for the imaginary part, defining the quality factor,

Qnlm ≡
(ωR)nlm

2|(ωI)nlm|
, (42)

one finds

Qn=1,l=2,m=2 ' 0.700 + 1.4187(1− â)0.4990 . (43)

Similarly, for the mode n = 1, l = 2,m = 0 an accurate fitting formula is [19, 20]

GM(ωR)n=1,l=2,m=0 ' 0.4437− 0.0739(1− â)0.3350 , (44)

Qn=1,l=2,m=0 ' 4.000− 1.9550(1− â)0.1420 . (45)
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2.4 BH quasi-normal modes and GW150914

It is quite exciting that now, with the first observations of coalescences of BH-BH
binaries, we can start to investigate these QNMs observationally. To observe this
ringing of space-time is by itself a remarkable fact. Furthermore, with the improved
sensitivity expected in the near future by advanced detectors, we can hope to test
quantitatively the predictions of GR for the BHs QNM. This would be a remarkable
test of GR in strong fields.2

As as been discussed by Thibault Damour in the previous lecture in this seminar,
the waveform for a BH-BH coalescence can be roughly divided into a long inspiral
phase, followed by merger and ringdown. The full evolution is by now under full
control thanks both to analytic breakthroughs such as the EOB technique [23, 24]
and breakthroughs in numerical relativity [25–27]. The two methods complement
each other very well. Numerical relativity provides more accurate waveforms, but
a single simulation typically takes months on a supercomputer. For detecting and
subsequently analyzing the signal at GW interferometers one needs to finely scan
the space of parameters parametrized by the masses and spins of the BHs. Even
assuming spins parallel to the orbital angular momentum, as done in the LIGO
discovery paper [2,5] still requires the use of about 250’000 templates, which can be
efficiently generated by tuning the analytic EOB waveform to numerical relativity.
The resulting templates are referred as “EOBNR” waveforms. Much work has been
done recently to implement efficiently these waveform in the LIGO data analysis
pipeline, to include spin, etc., see [8] for a full list of references.

The final part of these waveforms is the “ringdown” phase, given by the oscil-
lation of the final BH in its quasinormal modes, and the signal is a superposition of
damped sinusoids. As mentioned above, for GW emission the most relevant mode is
the mode n = 1, l = 2,m = 2, and its frequency (ωR)122 and damping time τ122 are
given in eqs. (41) and (42). Keeping for simplicity only this mode, in the ringdown
phase the waveform has the form

h+(t) = A e−(t−tM)/τ122 cos[(ωR)122(t− tM) + B] . (46)

where tM marks the end of the merger phase and this analytic form holds for t
sufficiently larger than tM . The constants constants A and B are determined from
the full numerical relativity evolution or, within the EOB approach, by matching
this solution to the EOB solution from the merger phase, by requiring the continuity
of h+(t) and of dh+/dt at t = tM. It is in principle straightforward to improve the
result including higher quasinormal modes.

One can now try to test this behavior against the observations. This test can be
performed with GW150914, since, given the masses of the initial BHs in this system,
the peak frequency of its GW amplitude falls in the frequency range where the LIGO
detectors have their best sensitivity, and it still has a relatively large amplitude even
in the ringdown regime. In contrast the second detected even, GW151226, because of
the smaller masses of the initial BHs and a similar distance, compared to GW150914,
has a smaller amplitude, and its ringdown phase is not really visible.

2It is also quite interesting to ask whether this would be an unambiguous proof of the fact that we are indeed
observing BHs, rather than other exotic compact objects that have been considered in the literature (e.g., boson
stars), which would not have a horizon. Actually, this is a non-trivial question, because the initial part of the
ringdown signal turns out to depend basically on the existence of a light-ring, rather than of a horizon, and could
be mimicked by objects without a horizon, while the late-time ringdown signal would be different, see [22].
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With GW150914 we can test the prediction of GR for the frequency and damp-
ing times of the lowest QNM as follows. The mass and spin of the final BH are
obtained from the reconstruction of the full waveform, identifying the EOBNR tem-
plate that matches best the signal. Then, as we have seen, GR predicts the frequency
and the decay time of the BH quasi-normal modes (QNMs) and in particular of the
dominant, least-damped, QNM, see eqs. (41) and (43). We can then compare this
prediction with the damped oscillating behavior of the final part of the waveform.
There is however a certain ambiguity as to the exact definition of the ‘final part’
of the waveform, which should be compared to the prediction (46). If we denote by
tM the time of merger, we can compare the predicted ringdown waveform to the
data starting from time t0 = tM + ∆t. If we take ∆t too small the signal is however
still dominated by the merger phase, rather than by ringdown. If we take ∆t too
large, we are indeed in the region dominated by ringdown, but the signal vanishes
exponentially, so the accuracy of the test quickly degrades. This study has then
been performed in the LIGO/Virgo paper on tests of GR [28] (see in particular their
Fig. 4), for different ∆t, comparing each time the frequency and decay time of the
dominant QNM, extracted by fitting the final part of the waveform to a damped
sinusoid, to the values obtained determining the final mass and spin from the full
waveform and then using the prediction (41) and (43) of BH perturbation theory.
The result is that, starting from ∆t = 3 ms, the 90% confidence region obtained by
fitting the waveform to a damped sinusoid overlaps with the 90% confidence region
obtained from BH perturbation theory. Thus, within the available accuracy, the GR
prediction for the frequency and decay time of the least-damped BH quasi-normal
mode is consistent with the data. A more stringent test would be obtained if, with
higher SNR, one could extract from the waveform the frequency and decay time of
two QNMs, since from these informations one could obtain an independent recon-
struction of the mass and spin of the final BH, and compare with the one obtained
from the full waveform. Such tests should be possible in the near future with the
continuous improving of the sensitivity of the advanced interferometers. Ideally, be-
side the mass and spin of the final BH, one would like to reconstruct from the QNM
even some higher multipole moments, which would allow us to test the no-hair the-
orem of GR. Such tests might in principle be done with the detection of extreme
mass ratio inspirals (EMRI) at a space-borne interferometer such as (e)LISA.

3 GWs and cosmology

As a second topic, we discuss stochastic background of GWs of cosmological origin
(we follow the discussion in refs. [7,8,29]). Once again, this is a possible signal that
would carry information unaccessible with other probes, and in particular it could
allow us to probe early Universe cosmology down to a primordial epoch unaccessible
to electromagnetic observations. The basic reason is that particles decouple from
the primordial plasma when the rate Γ of the processes that maintain them in
equilibrium with the rest of the plasma becomes smaller than the rate of expansion
of the Universe, which is given by the Hubble parameter H(t). In particular, photons
decouple from baryons at a temperature T = Tdec ' 0.26 eV. Indeed, at higher
temperatures photons are kept in equilibrium with electrons by Compton scattering,
and the electrons are tightly coupled to the protons via Coulomb scattering. At
recombinations, most free electrons combine with protons to form hydrogen atoms
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and the number density of free electrons, ne, drops. Thus, photons decouple from
electrons (and hence from protons) when Γ(T ) drops below H(T ), where Γ(T ) =
σTne, with σT given by the Thomson cross-section and ne the number density of
the remaining free electrons. The condition Γ(Tdec) = H(Tdec) gives the decoupling
temperature

Tdec ' 0.26 eV , (47)

corresponding to a redshift
zdec ' 1090 . (48)

At this point, photons start to propagate freely. This red-shift therefore defines the
last scattering surface of the CMB photons. Thus, the observation of the CMB
anisotropies give us a snapshot of the Universe at this epoch.

Let us next compute the epoch when neutrinos decouples from the primordial
plasma. For massless or light particles in equilibrium at a temperature T , the number
density n ∼ T 3. For neutrinos equilibrium is maintained by weak processes such as
electron-neutrino scattering and at energies below the W mass, the cross section
σ ∼ G2

F 〈E2〉 ∼ G2
FT

2 where GF is the Fermi constant and 〈E2〉 is the average energy
squared. The Hubble parameter during the radiation dominated era is related to the
temperature by H ∼ T 2/MPl. Therefore(

Γ

H

)
neutrino

∼ G2
FT

5

T 2/MPl

'
(

T

1MeV

)3

. (49)

Even the weakly interacting neutrinos, therefore, cannot carry informations on the
state of the Universe at temperatures larger than approximately 1 MeV.

If we repeat the above computation for gravitons, the Fermi constant GF is
replaced by Newton constant G = 1/M2

Pl, where MPl ∼ 1019 GeV is the Planck
mass. Thus, at energies below MPl,(

Γ

H

)
graviton

∼
(

T

MPl

)3

. (50)

Gravitons are therefore decoupled below the Planck scale. It follows that relic grav-
itational waves are a potential source of informations on very high-energy physics.
Gravitational waves produced in the very early Universe have not lost memory of
the conditions in which they have been produced, as it happened to all other par-
ticles, but still retain in their spectrum, typical frequency and intensity, important
informations on the state of the very early Universe, and therefore on physics at cor-
respondingly high energies, which cannot be accessed experimentally in any other
way.

In order to discuss stochastic backgrounds of GWs we need to introduce some
definitions. The metric perturbation hij can be written as a superposition of plane
waves coming from all directions n̂, as

hij(t,x) =
∑

A=+,×

∫ ∞
−∞

df

∫
d2n̂ h̃A(f, n̂) eAij(n̂) e−2πif(t−n̂·x/c) . (51)

We work in the TT gauge, so hii = and ∂jhij = 0. The polarization tensors eAij(n̂)
are given by

e+
ij(n̂) = ûiûj − v̂iv̂j , e×ij(n̂) = ûiv̂j + v̂iûj , (52)
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with û, v̂ unit vectors orthogonal to the propagation direction n̂ and to each other.
In a stochastic background, the amplitudes h̃A(f, n̂) are random variables, charac-
terized statistically by their ensemble averages. Assuming that the stochastic back-
ground is stationary, isotropic, unpolarized and Gaussian (all assumptions that, in a
second stage, it will be interesting to relax), it is fully characterized by its two-point
function, which can be written as

〈h̃∗A(f, n̂)h̃A′(f
′, n̂′)〉 = δ(f − f ′) δ

2(n̂, n̂′)

4π
δAA′

1

2
Sh(f) . (53)

The function Sh(f) is called the spectral density of the stochastic background. The
energy density is given by the standard formula (see e.g. eq. (1.135) of [7])

ρgw =
1

32πG
〈ḣijḣij〉 . (54)

(Recall that here we are using units c = 1). Inserting here the expression (51) for hij
one finds that, for a stochastic background, ρgw can be written as an integral over
frequencies, as

ρgw ≡
∫ f=∞

f=0

d(log f)
dρgw

d log f
. (55)

where
dρgw

d log f
=
πc2

2G
f 3Sh(f) . (56)

In cosmology there is a very natural unit of energy density, that is, the energy density
needed for closing the Universe. This critical energy density is

ρc =
3H2

0

8πG
, (57)

where H0 is the present value of the Hubble expansion rate, H0 = h0 × 100 km s−1

Mpc−1, where h0 ' 0.70 parametrizes the existing experimental uncertainty. It is
then natural to normalize ρgw to ρc, defining

Ωgw(f) ≡ 1

ρc

dρgw

d log f
=

4π2

3H2
0

f 3Sh(f) . (58)

It is actually customary to use the quantity h2
0Ωgw(f), which is independent on the

observational uncertainty on h0. The factor f 3 in eq. (58) has important conse-
quences for the limits that can be obtained observationally on Ωgw(f) at different
frequencies. The spectral density of the signal, Sh(f) is the quantity that will have
to be compared to the spectral density of the noise of a detector, Sn(f) (in a non-
trivial way, when performing the correlation between two or more detectors), to
determine the minimum value of Sh(f) that can be detected. Of course, the exper-
imental challenges for building detectors working on different range of frequencies
are very different. However, to determine the sensitivity to Ωgw(f), in general the
dominant effect is given by the f 3 factor in front of eq. (58). Indeed, the range of
frequencies explored by GW experiments is huge. CMB experiments are potentially
sensitive to GWs with wavelengths comparable to the present horizon size of the
Universe, corresponding to frequencies f of order 10−18− 10−17 Hz. In contrast, pul-
sar timing arrays are sensitive to stochastic backgrounds of GWs with a frequency
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Figure 2: Observational limits on h2
0Ωgw(f) (blue lines) and expected limits that should be obtained

from future observations (green lines).

of the order of the inverse observation time span, which is about 10 years, leading to
f of order 10−9 Hz. Ground-based GW interferometers have their best sensitivity at
f ∼ 102 Hz. Thus, the factor f 3 in eq. (58) can make a huge difference. To obtain a
good sensitivity to Ωgw(f) at high frequencies, one should be able to build a detector
with a much smaller noise spectral density.

3.1 Existing limits

Fig. 2 shows existing and forecasted limits on h2
0Ωgw(f). Observe that the horizontal

axis covers a huge range of frequencies. On the lower end, frequencies f ∼ 10−18 Hz
corresponds to wavelength of order of the horizon size today. Thus, these are the
longest possible wavelengths (and hence the smallest possible frequencies) which
are observable as GWs. Stochastic backgrounds of GWs with such small frequen-
cies are indeed in principle detectable through their effects on CMB temperature
anisotropies and polarization. The upper end of the horizontal axis, f ∼ 1012 Hz,
would correspond to the frequency of a graviton produced when the temperature
of the Universe was close to the Planck mass, redshifted up to the present epoch
neglecting any possible inflationary phase in between. These are the highest possible
frequencies that one can consider. More generally, consider the GWs produced by
some cosmological mechanism, when the Hubble parameter had a value H∗. Then
their characteristic wavelength λ∗ will be of order H−1

∗ . More precisely, we will have

λ∗ = εH−1
∗ , (59)

where ε ≤ 1 because of causality. During RD, H2
∗ = (8π/3)Gρrad, so

H2
∗ =

8π3g∗T
4
∗

90M2
Pl

, (60)

where T∗ and g∗ are the corresponding values of the temperature and of the effective
number of relativistic species. Then, after redshifting f∗ ≡ H∗/ε down to the present
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epoch, we find the the present value of the GW frequency, f0, is given by

f0 ' 1.67× 10−7 1

ε

(
T∗

1GeV

)( g∗
106.75

)1/6

Hz . (61)

This gives a first estimate of the typical frequency, today, of the GWs produced by
a cosmological mechanis acting when the temperature of the Universe was T∗.

We refer to [8] for a detailed discussion and derivation of the bounds shown
in Fig. 2. Here we just observe that the long horizontal blue lines correspond to
bounds on the total energy density ρgw at different epoch, hence are bounds on the
integral of h2

0Ωgw(f) over the range of frequencies that were inside the horizon at the
relative epoch. An example is given by the Big-Bang Nucleosynthesis (BBN) bound.
The outcome of BBN is fixed by a balance between the nuclear reaction rates and
the expansion rate of the Universe, which in turn is controlled by the total energy
density at time of BBN. The BBN bound then comes from the requirement that
there cannot be too much extra energy density at time of nucleosynthesis, compared
to that predicted by the particle content of the Standard Model, since otherwise this
would eventually spoil the success of the BBN prediction for the abundance of the
light elements. The bound has the form∫ f=∞

f=fBBN

d(log f) h2
0Ωgw(f) < 1.3× 10−6

(
Neff − 3.046

0.234

)
. (62)

The quantity Neff is called the ‘effective number of neutrino species”, and in the
Standard Model has the value Neff ' 3.046 (where the difference from the value
Neff = 3 reflecting the three neutrino species is due to the fact that neutrino decou-
pling is not instantaneous, and to finite temperature QED effects [30]). The most
recent bound on Neff is Neff − 3.046 < 0.234, obtained by combining measurements
of primordial abundances of light elements with the determination by Planck of the
baryon-to-photon ratio [31]. Note that this is a bound on the total energy density
in gravitational waves, integrated over all frequencies. However, only the frequen-
cies that were inside the horizon at time of BBN contribute to the expansion of
the Universe. The BBN bound is therefore a bound on the integral of h2

0Ωgw(f)
for f > fBBN. From the mathematical point of view one could of course imagine a
function h2

0Ωgw(f) with a very narrow peak in h2
0Ωgw(f) at some frequency f , with a

peak value larger than the right-hand side of eq. (62), but sufficiently narrow so that
its contribution to the integral could be small enough. However, all typical cosmo-
logical production mechanisms rather give a spectrum that, even in the most peaked
case, such as phase transitions, still covers at least one decade in frequency. For such
spectra, we can transform the bound in eq. (62) on a bound on h2

0Ωgw(f), requiring
that, if the integral cannot exceed a given values, even its positive definite integrand
h2

0Ωgw(f) cannot exceed it over an appreciable interval of frequencies ∆ log f ∼ 1,
so we can impose

h2
0Ωgw(f) < 1.3× 10−6

(
Neff − 3.046

0.234

)
, (for f > fBBN). (63)

This is the meaning of the bound marked as “BBN” in Fig. 2. A similar integral
bounds come from the limits on extra radiation at the CMB epoch, and differs
depending on whether tensor perturbations are homogeneous or adiabatic [32].
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Figure 3: The prediction for h2
0Ωgw(f) from single-field slow-roll inflation with a tensor-to-scalar

ratio r = 0.1, compared to the observational bounds.

The figure also shows the direct upper limits found by CMB experiments, by
pulsar timing arrays, and by the LIGO/Virgo collaboration with the initial interfer-
ometers, see again [8] for detailed derivations and discussions.

3.2 Production mechanisms

The crucial question is which mechanisms could produce sizable stochastic back-
grounds of GWs, and at which frequencies. In the last decades there has been much
activity in this direction. One of the best studied mechanisms is the production of
GWs because of amplification of quantum vacuum fluctuations in single-field slow-
roll inflation. This gives a result from h2

0Ωgw(f) whose functional form is fixed, with
a 1/f 2 behavior at very low frequencies, f < feq ' 1.6 × 10−17 Hz (corresponding
to frequencies that re-entered the horizon during matter dominance), followed by a
long almost flat part, h2

0Ωgw(f) ∝ f−r/8, where is the tensor-to-scalar ratio, which is
bounded observationally to r < 0.1. The overall amplitude depends indeed on r, and
in Fig. 3 we show it for the value r = 0.1 that saturates the CMB limit. Proposed
satellite experiments such as COrE and LiteBIRD aim at detecting primordial GWs
from B mode polarization, detecting values of r as low as r ' 0.001. In contrast,
we see that the signal is too small for the present and near-future generations of
ground-based and space-borne detectors.

Several other mechanism have been discussed in the literature. Alternatives to
inflation can produce spectra for h2

0Ωgw(f) growing with f , giving larger signals
at interferometer frequencies (an example is provided by the pre-big-bang scenario
inspired by string theory [33, 34], which predicts a spectrum h2

0Ωgw(f) ∝ f 3 at low
frequencies, which then saturates at the level of the BBN bound [35,36]). First-order
phase transitions in the early Universe would produce GWs through the nucleation
and collision of bubbles [37–40]. For a first-order phase transition at the electro-
wak scale (which requires extensions of the Standard Model) the signal could be
detectable at eLISA, depending on the parameters of the model [41–44]. Cosmic
strings, which again could be produced in extensions of the Standard Model, would
produce stochastic backgrounds of GWs through oscillating string loops [45] as well
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as from bursts due to cusps and kinks [46,47], in the frequencies of ground-based and
space-borne interferometers, as well as of pulsar timing arrays. Again, we refer to [8]
for detailed discussions and full reference list. Clearly, a detection of a stochastic
GW background of cosmological origin would open a window on the Universe, and
on high-energy physics, that would be quite unique.
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