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Abstract. The quantum Hall effect (QHE) provides an invariant reference for resistance linked to natural
constants. It is used worldwide to maintain and compare the unit of resistance. The reproducibility
reached today is almost two orders of magnitude better than the uncertainty of the determination of
the ohm in the International System of Units SI. This article is a summary of a recently published
review article which focuses mainly on the aspects of the QHE relevant for its metrological application.

1 Introduction

Parallel to the progress made in the physical sciences and in technology, the International System
of Units SI has evolved from an artefact based system to a system mainly based on fundamental
constants and atomic processes during the last century. The modern units have major advantages
over their artefact counterparts: they do not depend on any external parameters like the ambient
conditions and, most important, they do not drift with time. In addition they can be simultaneously
realized in laboratories all over the world which strongly simplifies and improves the traceability
of any measurements to the primary standards.

With the discovery of the Josephson and the quantum Hall effects (QHE), two electrical
quantum standards became available. As a first consequence, the worldwide consistency in the
realization and maintenance of the electrical units and the electrical measurements based on them
has improved hundredfold in the last decade. The two quantum effects will certainly also play a
major role in the next modernization of the SI when the last remaining unit in the SI still based
on an artefact, the kilogram, will be linked to fundamental constants.

The QHE was discovered on the night of February 5 1980, when Klaus von Klitzing was
investigating the transport properties of a Si-MOSFET device at very low temperature and high
magnetic field in Grenoble [1]. The discovery, which was totally unanticipated by the physics
community, relied on the existence of a two-dimensional electron gas (2DEG) in a semiconducting
device. The great technological progress that followed the invention of the transistor lead to the
realization of the first 2DEG in semiconducting devices in the middle of the sixties. The first
measurements performed with Si-MOSFETs at low temperature and high magnetic field were
done by Fowler et al [2] in 1966. Later on, due to improvements in device fabrication, Kawaji et
al [3] observed the dissipationless state in a Si-MOSFET. In 1978, Hall resistance plateaus were
observed in such inversion layers by Englert and von Klitzing [4]. However, the idea of analyzing
the Hall plateaus in terms of the fundamental value h/e2 emerged that particular night for the
first time. Further measurements [5] confirmed that the fundamental quantization relation for the
Hall resistance RH = h/ie2 was accurate to 10 parts in 106. Von Klitzing was awarded the Nobel
prize for his discovery in 1985 [6].

The aim of this article is to highlight the role of the QHE in metrology. It summarizes a review
article [7] recently published on this subject. Earlier review articles focusing on the metrological
aspects of the QHE may be found in [8, 9, 10].
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Figure 1: Experimental measurements of the Hall resistance RH and of the longitudinal resistance
Rxx for a GaAs/AlGaAs heterostructure at a temperature of 0.1 K.

2 Basic Principles

2.1 The Integer Quantum Hall Effect

The QHE is observed in a two-dimensional electron gas at low temperature and high magnetic
field. In figure 1, a typical resistance measurement made on a GaAs/AlGaAs sample is shown. A
current I flows in the 2DEG of width w, and a longitudinal voltage Vx is measured between two
contacts separated by a distance L. At the same time, the transverse voltage Vy is recorded. The
voltages and currents are related by

Vx = RxxIx + RxyIy (1)

Vy = −RxyIx + RxxIy, (2)

where Rxx is the longitudinal resistance and Rxy = RH is the Hall resistance. In figure 1 broad
steps can be observed in the Hall resistance. Simultaneously, the longitudinal resistance vanishes.
In a two-dimensional system, the Hall resistance is equal to the Hall resistivity ρxy = RH. The
longitudinal resistance is related to the longitudinal resistivity by ρxx = (w/L)Rxx. However, in
the quantum Hall regime, Rxx = ρxx = 0. Therefore, the resistances are as fundamental as the
resistivities in contrast to the three-dimensional case, where geometrical corrections are required.
On a plateau, the Hall sample is a perfect conductor with ρxx = 0. However, due to the tensorial
nature of the resistance in two dimensions, it is a perfect insulator as well: σxx = 0. This can be
seen from the relation between the resistivities and the conductivities

ρxx =
σxx

(

σ2
xx + σ2

xy

) ρxy =
−σxy

(

σ2
xx + σ2

xy

) (3)
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A large number of books [11, 12, 13, 14] and review articles [6, 15, 16, 17, 18, 19] is available,
which can more deeply introduce the interested readers to the physics of the QHE.



Vol. 2, 2004 The Quantum Hall Effect as an Electrical Resistance Standard 41

2.2 Landau quantization

The 2DEG needed to observe the QHE can be realized in various types of semiconducting het-
erostructure devices where the electrons can be confined in a plane. In a high magnetic field, the
eigenenergies of the 2D gas of electrons are quantized in so called Landau levels. The unavoidable
disorder caused by the impurities present in the system broaden the Landau levels in Landau sub-
bands. A fundamental consequence of the presence of these impurities is to create two different
kinds of electronic states: localized and extended states. When the electron density is increased,
the various electronic states are gradually filled up. This is equivalent to shifting the Fermi energy
EF through the density of states. When EF moves in a mobility gap (region where the electronic
states are localized), the occupation of the extended states does not change and, since only these
states carry the current, the Hall resistance will not change either, giving rise to a Hall plateau. It
is crucial that the energy of the extended states in the middle of this plateaus is well away from
EF. In this way, inelastic processes like phonon absorption do not change the occupation of the
extended states. Simultaneously to the occurrence of the Hall plateau, the longitudinal resistance
vanishes since only localized states are in the vicinity of EF. As soon as EF approaches the next
Landau level, dissipation appears in the system and the Hall resistance makes a transition to the
next plateau. Therefore, the QHE can be understood as a succession of localization-delocalization
transitions when the Fermi energy EF moves across the density of states.

2.3 The edge-state model

An alternative approach to the quantum Hall effect is based on a formalism developed by Landauer
[20] where the current is taken as the driving force for the electronic transport rather than an
external field. This model [21] takes into account that under quantum Hall conditions a current
can flow through the device only if the source and drain contacts are connected by a common
edge. The net current is given by the electrochemical potentials of all the terminals and it is the
electrochemical potential which is measured in a real experiment at a voltage probe.

For a finite sample width, the Landau levels are bend at the edges of the sample. For each
Landau level intercepting the Fermi energy, a one-dimensional channel -called edge channel- is
formed. Classically this corresponds to the trajectories of an electron moving along the edge of a
device in a magnetic field (skipping orbits).

Büttiker has developed a formalism [21] to describe transport in one-dimensional channels.
For the description of the quantum Hall effect, it can be shown that the backscattering in the
sample (scattering from one edge to the other) is suppressed and that there is ideal transmission
from one contact to the other. Under these conditions it is found that the longitudinal resistance
vanishes and the Hall resistance is given by:

RH =
h

ie2
. (5)

The edge state picture has been successfully used to explain many experiments in connection
with the QHE (see e.g.[22] for a review). The model allows a realistic description of the electronic
transport in high magnetic fields at least in the domain where the difference in the electrochemical
potentials is small compared to the Landau level spacing. For large current densities, however, the
current flows mainly in the bulk and an extension of the edge state model is needed to explain
the QHE in this regime. However, in metrology the edge-state model is important since it allows
a modeling of the contacts.

3 Measurement techniques

Soon after the discovery of the QHE, metrologists started to use the effect as a resistance standard
and to study its limitations. For the accurate measurement of resistance, mainly two techniques
are in use today: the potentiometric method and the current comparator bridge technique.

The principle of the potentiometric set-up is shown in figure 2. The two resistances RH and
Rs to be compared are connected is series and driven by the same dc current source. The voltage
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Figure 2: Schematic circuit diagram for a potentiometric resistance bridge. The voltage across the
resistors to be compared is closely adjusted against the voltage Vp generated by the potentiometer.
The remaining voltage difference is sensed by a high impedance voltage detector.
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Figure 3: Schematic circuit diagram for a dc current comparator bridge. A servo circuit operating
from the output of the magnetometer establishes the zero-flux condition in the magnetic core and
accurately sets the current ratio Ip/Is to the winding ratio Ns/Np.

drop VH across RH is compared against a closely adjusted voltage Vp generated by a potentiometer
using a high impedance voltage detector. After this first measurement, Vp and the detector are
switched to Rs using a low thermal switch and the second voltage difference Vs − Vp is measured.
The difference measurements are repeated for the reversed current polarity. The sequence of current
reversals and change of measurement positions is chosen such that linear drifts of the current sources
and the thermal voltages are eliminated. The detector D should have a high input impedance and
the linearity of the potentiometer has to be checked to allow for a reasonable deviation of the
resistance standards from nominal.

A significant improvement of the 1:1 potentiometric bridge is possible by using a Josephson
array voltage standard (JAVS) [23] to realize the auxiliary voltage Vp. Modern JAVSs allow the
generation of any voltage between 0 V and 10 V. It becomes thus possible to compare e.g. RH(2)
against a 10 kΩ standard. Such measurement systems were first described in [24, 25]. The relative
uncertainty reported by the authors was a few parts in 108.

Because of the sequential measurements, the potentiometric method is mainly limited by the
short term stability of the source. This disadvantage can be eliminated when the two resistance
standards to be compared are in two separate current loops which track one another. The set-
up of the current comparator bridge is schematically shown in figure 3. The ratio of the two
currents is controlled by a dc comparator first realized by Kusters [26, 27]. The two windings
Np and Ns are wound on a high permeability toroidal core. The difference of the magnetomotive
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Figure 4: The cryogenic current comparator. (a) Illustration of the principle: a shielding current
equal to I is induced on the external surface of the superconducting tube. (b) Set-up of the
ratio coils: The windings of the current comparator form a toroidal coil which is enclosed in a
superconducting shield. The shield overlaps itself like a snake swallowing its tail. The ampere-
turns balance is sensed by measuring the magnetic flux in the pick-up coil using a SQUID.

forces (NpIp − NsIs) can be measured using a second-harmonic flux-gate magnetometer. If an ac
modulation is applied to the magnetic core, harmonic components of the modulation are generated
if a dc flux is present in the core. A zero-flux condition (NpIp = NsIs) is achieved by means of a
servo circuit operating from the output of the magnetometer. Now Np is adjusted such that the
voltage drops across the two resistors Rp and Rs are the same (detector D balanced). Finally, if
the flux and voltage balance are met simultaneously, then Rp/Rs = Np/Ns. An accuracy of a few
parts in 108 can be achieved for the measured ratio.

The best ratio accuracy and the lowest random uncertainty are attained with the cryogenic
current comparator (CCC) proposed and first realized by Harvey in 1972 [28]. The principle of the
method is shown in figure 4 (a). If a current carrying wire is passed through a superconducting
tube, a shielding current is induced on the surface of the tube such that a zero magnetic flux
density is maintained in the interior of the superconductor (Meissner effect). The shielding current
runs in the same direction as the initial current on the outside of the tube. The current density
is uniform over the hole surface and thus independent on the geometrical position of the wire
inside the tube. This principle is put in practice in a CCC as illustrated in figure 4 (b). In an
arrangement introduced in [29], the superconducting tube is bent to a torus with overlapping ends
like a snake swallowing its tail. The overlapping ends are electrically insulated, the length of the
overlap has to be > 2 turns to keep the end effects on an acceptable level. Several windings, e.g.
Np and Ns with currents Ip and Is, respectively, are placed inside the torus. The magnetic flux
created by the shielding current on the torus is proportional to NpIp + NsIs. This flux is sensed
by a superconducting quantum interference device (SQUID) through a pick-up coil placed in the
flux. With a CCC, current ratios Is/Ip = Np/Ns with a relative accuracy of 10−12 can be realized.

The CCC bridge arrangement is similar to the classical current comparator (figure 3). A
stabilized voltage source steers the primary and the secondary current sources. The ratio Np/Ns

of the windings is set as close as possible to the nominal ratio of the two resistors Rp/Rs to be
measured. The output voltage of the SQUID system regulates the secondary current source in a
closed feedback loop. The resolution of a CCC bridge is mainly given by three factors: The SQUID
noise, the thermal noise of the resistors and the detector noise.

Typical parameters for a comparison of the QHR for i = 2 (RH(2) = 12.9 kΩ) against a
100 Ω standard are: Np = 2065, Ns = 16 and Ip = 50 µA. For this configuration, the total rms

voltage noise typically amounts to 7 nV/
√

Hz. It is dominated by the detector noise because Rp

is at 1 K. According to this figure, a type-A relative uncertainty of 1 nΩ/Ω is expected within a
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measurement time of 2 min. In reality, slightly worse performance is achieved because of 1/f noise
components (fluctuations of thermal voltages, detector and SQUID).

Today, the lowest uncertainties in resistance comparisons for 1 Ω ≤ R ≤ 100 kΩ are obtained
using CCC bridges (see e.g. [30, 31, 32, 33]).

4 Universality of the QHR

An incomplete quantization of a plateau due to high current through the device or due to increased
temperature leads to a finite ρxx. A linear relationship exists between the deviation in the measured
Hall resistance from the expected value and ρxx. Finite longitudinal voltages can also be measured
as a result of non-ideal contacts. The question is whether the extrapolated value RH (i, ρxx → 0) is
the same irrespective of the device geometry, material and fabrication process, the carrier mobility
and density, the plateau number or other factors. Due to absence of quantitative theoretical models,
this question has essentially been approached experimentally.

Already in 1987 an experimental study [34] has shown that the QHRs observed in four different
GaAs devices were in agreement at the level of 5×10−9. The search for possible differences between
the QHR realized in a GaAs heterostructure and a Si-MOSFET, respectively, was of special interest.
In a direct comparison Hartland et al [35] found that the difference between the QHR in the two
device types was smaller than 3.5 parts in 1010. However, at about the same time, several other
groups [36, 37, 38] reported anomalous values of the QHR measured in a particular Si-MOSFET
device. The authors claimed to see differences in RH up to several parts in 107 despite the absence
of any measured dissipation within the experimental resolution. Subsequently, a theoretical model
[39] was presented which explains such deviations by the presence of short-range elastic scatterers
located at the edges.

A more recent experimental study [40] included devices from the same wafer as those for
which the deviant data were obtained. In this case, an agreement between Si-MOSFET and GaAs
was found at the level of the experimental uncertainty of 2.3 parts in 1010. The study demonstrated
that, due to edge effects, the longitudinal voltage measured along one side of a device can be quite
different from the value on the other side. The measurement of zero dissipation at one device side
only does, therefore, not guarantee zero Vxx values on both sides which is a prerequisite to measure
a fully quantized value of RH.

In the same work [40], it was also shown that the extrapolated Hall resistance value
RH (i = 2, 4, ρxx → 0) does not depend on the device mobility (13 T−1 ≤ µ ≤ 135 T−1) and
the fabrication process (MBE or MOCVD) within 3 parts in 1010.

As for the plateau number i, the results confirm that in GaAs devices no dependence on this
quantum number can be seen:

i · RH (i)

2 · RH (2)
= 1 − (1.2 ± 2.9) · 10−10, i = 1, 3, 4, 6, 8. (6)

Among the large number of theoretical papers on the QHE, a few address the question of
size effects, including the width dependence of the QHR. Although based on different approaches
[41, 42, 43, 44], the majority of these models find that the relative variation of RH(i) should scale
like the inverse square of the device width w, more precisely

∆RH (i)

RH (i)
= α

(

l

w

)2

(7)

where ∆RH (i) = RH (i, w) − RH (i, w = ∞), l is the magnetic length and α is the parameter
reflecting the strength of the size effect. In measurements carried out using GaAs Hall bars of widths
varying from 10 to 1000 µm [45] no size effect was observed within the experimental uncertainty
of 1 part in 109. The values for the parameter α are: (1.8 ± 1.8)10−3 and (0.7 ± 5.0)10−3 for the
i = 2 and i = 4 plateau respectively.

These results clearly show that possible size effects are totally negligible for the sample sizes
presently used in metrology.
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5 The resistance unit in the international system of units SI

The QHE can be used to realize very reproducible resistance values which, to our knowledge,
depend only on natural constants. To be used as a practical standard, the value of the QHR has
to be known in SI units. In the SI, the electrical units are defined in terms of the mechanical base
units metre, kilogram and second through the definition of the ampere and the assumption that
electrical power and mechanical power are equivalent. To put the concept of the electrical units
in the SI in practice, it is sufficient to realize two electrical units in terms of the m, kg and s.
At present, the ohm and the watt are the two chosen units, since they are the most accurately
determined.

The realization of the ohm is based on an electrostatics theorem discovered in 1956 by Thomp-
son and Lampard [46]. If we assume an infinitely long conducting pipe of constant cross section in
vacuum and divide it into four segments, the theorem states that the cross capacitance per unit
length C ′

1 and C ′

2 between two opposite segments is given by

exp

(

−πC ′

1

ε0

)

+ exp

(

−πC ′

2

ε0

)

= 1. (8)

In a real experiment, the electrodes consist of four cylinders made as symmetrical as possible to
make the two cross capacitances C ′

1
and C ′

2
agree as closely as possible. The experiment allows the

determination of a capacitance change ∆C on the order of 0.1 to 1 pF with a relative uncertainty
of <10 nF/F through a single length measurement. Using ac bridge techniques, the capacitance
of the calculable capacitor is scaled to a value which can be compared to the resistance of an ac
resistor using a quadrature bridge. After proper scaling, this ac resistor is compared to another ac
resistor which has a small and calculable ac/dc difference. Dc techniques are finally applied to link
the calculable resistor to the QHR.

Despite the long and complicated measurement chain, an accuracy of a few parts in 108 is
reached using this method [47, 48, 49].

The discovery of the QHE has opened another route for the realization of the ohm. The von
Klitzing constant R

K
is related with the fine structure constant through the simple relation

RK ≡
h

e2
=

µ0c

2α
. (9)

In the SI, the permeability of vacuum µ0 and the speed of light c are fixed quantities with µ0 =
4π × 10−7 NA−2 and c = 299 792 458 m s−1. The fine structure constant can thus be used
to determine RK and test possible corrections to the QHR. Conversely, if RK is assumed to be
identical to i ·RH(i), the QHE opens up an additional route to the determination of α which does
not depend on QED calculations. In figure 5 all the results are shown which contributed to the least
square adjustment of α, as given in the 1998 set of fundamental physical constants recommended
by the CODATA task group [50].

At present, the most accurate value for α is derived from the anomalous magnetic moment ae

of the electron. A relative experimental uncertainty of 3.7 × 10−9 has been reached so far [50]. A
value for the fine structure constant can be obtained from the experimental value of ae by comparing
it to the theoretical value which can be, up to some insignificant correction terms, expressed in the
framework of quantum electrodynamics as a power series in α. The most important terms in the
series can be calculated analytically, but for some of the higher order terms extensive numerical
calculations are necessary [51]. The uncertainty of the theoretical calculation of ae is estimated to
be 1 part in 109 [50].

The second most important result taken into account in the calculation of the actual value for
α comes from the realization of RK through the calculable capacitor assuming RH(i = 1) = RK.
As the comparison shows, there is no disagreement between the RK and the ae derived value for
α within the experimental uncertainty.

As we have seen, the best realization of the ohm in the SI is about two orders of magnitude
less accurate than the reproducibility of the QHR. A similar situation is found in the case of the
volt where the Josephson effect represents a voltage standard which is far more reproducible than
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Figure 5: Values for the fine structure constant taken into account in the 1998 adjustment of
fundamental constants [50]. The vertical lines indicate the value corresponding to RK-90 and its
uncertainty. Γ′

90
is the value from the measurement of the gyromagnetic ratio of the shielded proton;

∆νMu is related to the muonium ground-state hyperfine splitting, ae to the anomalous magnetic
moment of the electron and h/mn to the ratio of the Planck constant and the neutron mass.

the realization of the SI voltage unit. Two electrical units realized in terms of the non-electrical SI
units metre, kilogram and second are needed to make the other electrical units measurable in the SI.
With the QHE and the Josephson effect, two fundamentally stable standards are available and thus
it was realized the world-wide consistency of electrical measurements could be improved by defining
conventional values for RK and for the Josephson frequency to voltage coefficient KJ ≡ 2e/h. It
was the task of the Comité Consultatif d’Électricité (CCE) to recommend such values based on
the data available. All the values for RK and KJ available by June 1988 in units of the SI were
analyzed and the following conventional values were proposed [52]:

RK-90 = 25812.807 Ω

KJ-90 = 483597.9 GHz/V.

Relative uncertainties with respect to the SI of 2×10−7 and 4×10−7 respectively were assigned to
the two values. The conventional values were accepted by all member states of the Metre Convention
and came into effect as of January 1, 1990.

In the case of RK-90, the chosen value is essentially the mean of the most accurate direct
measurements of RK based on the calculable capacitor and the value from the calculation of the
fine-structure constant based on the anomalous magnetic moment of the electron [52]. In the most
recent least-square adjustment of fundamental constants carried out by the CODATA Task Group
on Fundamental Constants [50], RK = 25812.807572 Ω with a relative uncertainty of 3.7 parts
in 109 was evaluated. This new value is in good agreement with the conventional value, RK-90.
Figure 5 shows the results that were taken into account in the calculation of the new RK value
and consequently the new recommended value for α.

5.1 The use of the QHR as a standard of resistance

Since January 1, 1990, most major national metrology institutes are using the QHE to realize a rep-
resentation of the SI-unit ohm on the basis of the conventional value RK-90. There is overwhelming
experimental evidence that the value of RK is independent of the experimental conditions as long
as the QHE device is fully quantized. Temperature, current or contact effects may cause deviations
from the correct value. Most important, however, test measurements can reveal whether the device
is in a proper state or not. This means that the value of the QHR can be made as reproducible as
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Figure 6: Tracking of a 100 Ω standard resistor measured in terms of RK-90. The triangles (right
scale) indicate the deviations of the measured data points to the fit function. Data taken at the
Swiss Federal Office of Metrology and Accreditation (METAS).

today’s measurement techniques allow without making reference to an external standard. These
are the criteria a standard has to fulfill to be accepted as primary standard.

To guarantee the accuracy and reproducibility of the QHR standard, the QHE device, the
measurement system and the procedures have to meet a number of strict requirements. A group
of experts under the auspices of the CCE has put together the “Technical Guidelines for Reliable
Measurements of the Quantized Hall Resistance” [53] which, when correctly applied in practice,
assure correct QHR measurements.

The resistance bridges of the type briefly introduced in section 3 are used to calibrate tra-
ditional room temperature resistance standards in terms of the QHR. As an example, figure 6
shows the measurements carried out at METAS to determine the drift behavior of a temperature
stabilized wire-wound 100 Ω resistor. The standard is kept under constant ambient conditions. As
the results show, its resistance can be described with high accuracy by a smooth fitting function,
which makes it usable as a transfer standard at the level of 1 nΩ/Ω.

To check the world-wide consistency of the QHR measurements at the highest accuracy level,
the BIPM has started in 1993 to perform on-site comparisons of resistance ratio measurements
using a transportable QHE standard and resistance bridge. The results of the bilateral compar-
isons (see e.g. [54]) are made public by the BIPM in a database which is accessible by internet
(www.bipm.org). The comparison results obtained so far are shown in figure 7. The agreement
between each laboratory and the BIPM for the RH(2)/100 Ω is on the order of one part in 109

which is well within the combined standard uncertainty of the comparisons.

6 Conclusion

Many systematic studies have been carried out in the last two decades to assess the accuracy of
the QHR. There is now overwhelming experimental evidence that the QHR is a universal quantity.
It is independent of host material, device and plateau number at the level of a few parts in 1010

which is the resolution of today’s measurement techniques. As a consequence, the QHR is used
by all the major national metrology institutes as a dc standard for resistance. The reproducibility
of this quantum standard is two orders of magnitude better than the absolute realization of the
ohm in the SI. By fixing conventional values for the von Klitzing constant RK and the Josephson
constant KJ, the worldwide consistency of the electrical measurements has improved considerably
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Figure 7: Results of on-site comparisons of three different resistance ratios using the BIPM trans-
portable QHE system.

during the last decade.
Despite the successful application of the QHE in metrology, our understanding of the effect

is still incomplete. The many theoretical models explain various aspects of the QHE, at least in
a qualitative way. A complete theory which conclusively explains e.g. the remarkable accuracy of
the QHR is still missing.

References

[1] G. Landwehr, The discovery of the quantum Hall effect, Metrologia 22, 118–127 (1986).

[2] A.B. Fowler, F.F. Fang, W.E. Howard, and P.J. Stiles, Magneto-oscillatory conductance in
silicon surfaces, Phys. Rev. Lett. 16, no. 20, 901–903 (1966).

[3] S. Kawaji, T. Igarashi, and J. Wakabayashi, Quantum galvanometric effect in n-channel silicon
inversion layers under strong magnetic fields, Prog. Theor. Phys. Suppl. 57, 176–186 (1975).

[4] T. Englert and K. von Klitzing, Analysis of ρxx minima in surface quantum oscillations on
(100) n-type silicon inversion layers, Surf. Sci. 73, 70–80 (1978).

[5] K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of
the fine structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, no. 6,
494–497 (1980).

[6] K. von Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58, no. 3, 19–531 (1986).

[7] B. Jeckelmann and B. Jeanneret, The quantum Hall effect as an electrical resistance standard,
Rep. Prog. Phys. 64, 1–53 (2001).

[8] M. Cage, The quantum Hall effect, ch. Experimental aspects and metrological applications,
pp. 37–67. Springer Verlag, 2nd edition, 1990.

[9] A. Hartland, The quantum Hall effect and resistance standards, Metrologia29, 175–190 (1992).

[10] T.J. Witt, Electrical resistance standards and the quantum Hall effect, Rev. Sci. Instrum. 69,
no. 8, 2823–2843 (1998).



Vol. 2, 2004 The Quantum Hall Effect as an Electrical Resistance Standard 49

[11] R.E. Prange and S.M. Girvin, eds., The Quantum Hall Effect, 2nd edition. Springer-Verlag,
New-York, 1990.

[12] H. Kamimura and H. Aoki, The Physics of Interacting Electrons in Disordred Systems. Oxford
University Press, New York, 1989.

[13] M. Janssen, O. Viehweger, U. Fastenrath, and J. Hajdu, Introduction to the Theory of the
Integer Quantum Hall Effect. VCH Verlagsgesellschaft, Weinheim, 1994.

[14] T. Chakraborty and P. Pietilainen, The Quantum Hall Effect, vol. 85. Springer-Verlag, New-
York, 1995.

[15] T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev.
Mod. Phys. 54, no. 2, 437–672 (1982).

[16] H. Aoki, Quantised Hall effect, Rep. Prog. Phys. 50, 655–730 (1987).

[17] D.R. Yennie, Integral quantum Hall effect for nonspecialists, Rev. Mod. Phys. 59, no. 3, 781–
824 (1987).

[18] S. Kawaji, Quantum transport in semiconductors surface and interface channels, Surf. Sci.
299/300, 563–586 (1994).

[19] B. Huckestein, Scaling theory of the integer quantum Hall effect, Rev. Mod. Phys. 67, no. 2,
357–396 (1995).

[20] R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philos. Mag.21, 863–
867 (1970).
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