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aUniversit�a di Roma \La Sapienza"P.le Moro 200185 Roma, ItaliaAbstra
t. Renormalization group methods are illustrated via examplesIntrodu
tionIn theoreti
al physi
s, problems in whi
h singular quantities appear in the basi
 equations,or problems in whi
h the basi
 equations are apparently free of singularities but their solutions arenevertheless singular are among the most interesting. For instan
e(a) The Coulomb potential is singular at 
onta
t (i.e. at zero distan
e: an \ultraviolet singularity")(b) The ele
tri
 potential is singular also at in�nite distan
e be
ause it de
ays too slowly to zero(an \infrared singularity").(
) The gravitational potential is as singular.(d) In an in
ompressible Euler 
uid the singularity manifests itself be
ause any nontrivial motiongenerates 
uid velo
ity �elds that involve phenomena observable on length and time s
ales as smallas wished (again an ultraviolet singularity).(e) In relativisti
 quantum �eld theory the relativisti
 
ovarian
e is implemented through a require-ment of a \lo
al intera
tion", whi
h implies that physi
al quantities show interesting phenomenaon all short length and time s
ales, again an ultraviolet singularity.(f) In statisti
al me
hani
s even short range intera
tions generate phenomena that involve manylong length s
ales (
riti
al phenomena: an infrared singularity as it 
on
erns large spa
e s
ales).(g) In me
hani
s systems able to os
illate with few frequen
ies generate, when intera
ting, motionsin whi
h all harmoni
s of the basi
 frequen
ies are present and in whi
h some may be
ome soimportant to 
hange 
ompletely the behavior in 
omparison with the unperturbed one.The list 
ould 
ontinue for a while (to in
lude Fermi liquids and super
ondu
tivity, Bose 
on-densation and super
uids, for instan
e). Similar questions appear also in other �elds of S
ien
e;an egregious example is the mathemati
al theory of Fourier transforms: a fun
tion 
an be re
on-stru
ted from its Fourier transform via a 
onvolution with a singular kenel K(x� y) (typi
ally theDiri
hlet kernel) whi
h is singular at x = y. Therefore the 
onvolution probes the behavior of thefun
tion on all s
ales and the question of the (pointwise) 
onvergen
e of the Fourier series be
omesan analysis of an ultraviolet singularity.The reason for the su

ess of the \renormalization group" is that it is a method that attemptsto study problems of the above kinds from a uni�ed viewpoint. It is remarkable that sometimesthe attempts really solve the problems or, when the problem reamins open, at least provide newinsights into it.The method 
an be loosely de�ned as follows: one �nds an expli
it solution of the problemwhi
h, of 
ourse, involves quantities that one 
annot really 
ompute. A typi
al 
ase is when theproblem admits a perturbative solution, although this is not always the 
ase: in any event theformal solution involves the analysis of singular integrals, i.e. of integrals involving fun
tions withsingularities.The singular fun
tions, we 
all them generi
ally C(x), are then expressed as sums of many
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ar�every regular nonsingular fun
tions ea
h of whi
h \lives on a �xed s
ale', whi
h means that theregular \pie
e" of the singular fun
tion that lives on a s
ale l0 is a smooth fun
tion of the forml�0C(x l�10 ) where C is a smooth fun
tion rapidly de
aying at in�nity and � is a 
onstant. Therenormalization method is e�e
tive when the regular pie
es into whi
h C(x) is de
omposed di�eronly by the s
ale on whi
h they live, possibly apart from a �nite number of them. One says thatin su
h 
ases the singlularity is \s
ale invariant" and the singularity is a power law behavior injxj, and the exponent � is related to the value of the power. For instan
e this is for the Coulombpotential whi
h 
an be written (\resolution of the ultraviolet singularity")1jxj = (1� e�jxj2)jxj + 1Xk=1 (e�(
hjxj)2 � e�(
h+1jxj)2)jxj = (1� e�jxj2)jxj + 1Xk=1 
hC(
hx)where C(x) = e�jxj2�e�(
jxj)2jxj ; here l0 = 1 and 
 > 1 
an be (arbitrarily) taken to be 
 = 2.1 Thenone tries to show that the formal solution 
an be studied by breaking it into a sum of terms thathave all the same stru
ture apart form a 
hange of s
ale: by summing in�nitely many fun
tionswhi
h are regular on in�nitely many s
ales one 
an 
onstru
t (hopefully in a 
ontrollable way)the singularities and the properties of the quantities that are formally expressed in terms of theoriginal singular (often a priori even possibly meaningless) integrals.Breaking a singular expression into many (in�nitely many) parts allows to disentangle andto exhibit deli
ate 
an
ellation phenomena whi
h may allow us to give a meaning too expressionsthat seem meaningless at �rst. Sometimes the 
an
ellations may be so e�e
tive that the apparentsingularities are in fa
t not there.A typi
al example is the KAM theory where in the end no singularities are really there.Another ar
hetypal example of su

ess of the approa
h is the quantum theory of �elds in dimensionsd = 2; 3.Here I sele
t the latter two examples as their similarity is striking. Both are problems thatarise in systems that are perturbations of simple systems (integrable systems in the �rst 
ase andfree �elds in the se
ond). However the singularities do not allow us to pro
eed straightforwardly.The interest of the problems and their physi
al relevan
e is well known. For instan
e the�rst arose histori
ally from the famous remark by Poin
ar�e that the pertubation analysis, used inastronomy sin
e Lapla
e and 
rowned by the well known su

esses of the theory of pre
essions,
ompilation of ephemeral tables, dis
overy of asteroids (Ceres) or major planets (Neptune) ..., 
ouldnot be an approximation in the naive sense of the term be
ause stri
tly speaking the series used
ould not possibly be 
onvergent. It surfa
ed again in Fermi's juvenile work on the equipartitionproblem and again in his last work (the \in
ompiuto" and postumously published Fermi,PastaUlam experiment) on the same matter; and many still re
all the frustration felt in trying tounderstand seemingly simple problems su
h as the 
omputation of the error in the small os
illationsthoery or in motions that are small perturbations of simple integrable ones: like two point masseson a 
ir
le intera
ting via a small mutual potential and subje
t to an external small potential,i.e. a system des
ribed by two angles � = (�1; �2) 2 T 2 � [0; 2�℄2 and a total potential fun
tion"f(� ) with equation of motion �� = �" � � f(� )The motions of assigned angular velo
ities ! 0 = (!1; !2) of su
h a system exist and remain similarto the 
orresponding free motions if the equation (3.1) below has a solution, as an elementary 
he
kwould allows us to see. An existen
e proof is, however, ri
h of 
on
eptual diÆ
ulties.The se
ond problem addresses the basi
 question of the very possibility of existen
e of aquantum theory of intera
ting parti
les whi
h is, at the same time, relativisti
ally 
ovariant.1 The reason for this (almost universal) 
hoi
e seems to be, a

ording to G. Parisi, that it is the only 
hoi
ewhi
h does not generate the question \why is 
 
hosen = 2?": the 
hoi
e 
 = � would be equally good but it wouldinevitaly raise uninteresting questions.
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t Renormalization Group 33The approa
h allows us to solve 
ompletely the �rst problem (Se
. 3-6) at least for a large
lass of motions (the \non resonant" ones). For the se
ond problem in the 
ases of spa
e-timemodels of dimension d = 2; 3; 4 even the existen
e of a formal perturbative solution is not 
lear:but it 
an be established by the renormalization group method (Se
. 8,9). In the 
ases d = 2; 3the renormalization approa
h be
omes the basis for 
ompleting the solution of the problem (i.e.to go beyond the formal level) and thus it is a fundamental building blo
k of the proof that, atleast in dimensions d = 2; 3, quantum �elds and spe
ial relativity are 
ompatible even in presen
eof nontrivial intera
tions.2We 
hoose the above two problems be
ause of the elegan
e of their solution and of theirpedagogi
al value: however they were not originally solved by the method dis
ussed here. Thereare a number of other problems whi
h have been �rst solved via a renormalization group methodof the type we 
onsidered in the present review: the 
riti
al point of various 
lasses of statisti
alme
hani
s models or the theory of the ground state of one dimensional spinless Fermi systems, thetheory of the 
onvergen
e of Fourier series, dipole gases, Anderson lo
alization to mention a few.Mu
h larger is the set of problems that have been studied only heuristi
ally in the physi
sliterature: a permanent 
hallenge is to understand them fully.We shall introdu
e the KAM problem and the �eld theory renormalization in d = 2; 3 fors
alar �elds (typi
al multis
ale problems) by �rst dis
ussing their single s
ale 
ounterparts (Se
.1,2,7): this should indu
e appre
iation of the power of a method to redu
e a multis
ale problem toa single s
ale one.Sometimes the problems that are studied at a heuristi
 level involve drasti
 and un
ontrolledapproximations: therefore many physi
ists 
onsider important to gain some 
ontrol on what onewould like to negle
t. For this reason the appli
ations of the renormalization group in whi
hthe results are obtained without 
on
essions to un
ontrolled approximations are 
alled \exa
trenormalization group" results while the others do not re
eive the quali�
ation of \exa
t" eventhough they are 
onsidered \better" than the results of perturbation theory (when possible) whi
hin the Physi
s literature seems to be regarded with undeserved 
ontempt. They are 
alled \nonperturbative": a name well deserved be
ause they usually are (
onsidered) reliable and are 
ertainlyremarkably di�erent from predi
tions obtained by naively trun
ating perturbation series. The latterfa
t is in itself a really non trivial a
hievement as those working on the subje
t before the work ofWilson, Fisher, Kadano�, Jona-Di Castro immediately realized.Consistently I try here to keep the exposition essential but 
omplete and self 
ontained;
ertain really te
hni
al details are in Se
.6 and in the appendi
es. Commented referen
es to the(immediately relevant) literature 
an be found in the �nal pages.1. Nonsingular perturbation theoryExamples of perturbation analysis abound: the simplest are the \single s
ale" problems. Theseare problems in whi
h no \singularities" appear and, as a 
onsequen
e, the perturbation expansions
onverge, or are at least asymptoti
, for small pertubations. An example is the following impli
itfun
tions equations h ( ) = " �f� � ( + h ( )) (1:1)where  2 T ` is a point on the `{dimensional torus T ` = [0; 2�℄` and f(� ) is a trigonometri
polynomial f(� ) =Pj � j�N ei � �� f � of degree N , j � j def= P j�j j. The problem posed is to showthe existen
e of a solution h analyti
 for j"j small and in  . It is not the simplest of its kind butit is general enough to be useful also in the 
ase of harder problems.32 In dimension d = 4 the problem is still open, although via the renormalization group method one 
an showthe existen
e of a well de�ned perturbative solution.3 The simplest equation of the kind would be h = "f(h) with h 2 R: i.e. a \zero" dimensional version of (1.1),whi
h 
ould be studied by the same methods that we dis
uss below but whi
h is too simple for our purposes.
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ar�eA se
ond example of the same type is the fun
tional integralE�("f) = R P (d')e� R� dd x (�'4x+�'2x+"' x f(x ))R P (d')e� R� dd x (�'4x+�'2x ) (1:2)where f(x ) is a generi
 smooth test fun
tion, P is the Gaussian probability distribution on Rd,d = 2; 3, with 
ovarian
eC(x � y ) def= h'x' y iP = 1(2�)d Z ei p �(x� y ) 1( p 2 + 1)2 dd p (1:3)and � is a �nite 
ubi
 box.The problem is to show that E� is a smooth fun
tion of �; �; " for all test fun
tions f and for� � 0; �; " small enough. The fun
tional derivatives with respe
t to "f(x ) of logE�("f) are 
alledthe \S
hwinger fun
tions" of the fun
tional integral in (1.2).2. Tree expansions. Can
ellationsHere we illustrate a te
hnique to study the above problems. The te
hnique is 
alled \renor-malization method": the appropriateness of the name is made manifest by its appli
ations to theless trivial problems that will be dis
ussed after Se
. 3 below.Consider equation (1.1): we write the solution ash ( ) = " h (1)( ) + "2 h (2)( ) + "3 h (3)( ) + : : :and note that the 
oeÆ
ients h (k) satisfy an equation like h (k) = ��� f( + h ( ))�(k�1) where[�℄(k) denotes the k-th Taylor 
oeÆ
ient of an expansion in powers of " of the fun
tion inside thesquare bra
kets. Hen
e h (k)( ) = �Xs�0 1s ! �  � s f( )h s �(k�1) == Xs�0 1s ! XP kij=k�1 �  � s f( )Ỳi=1 siYj=1 h (kij ) (2:1)where s = (s1; : : : ; s`) is a multi{index with si � 0 integer, and we de�nes ! def= Yi si! ; � s �(�s1 1�s2 2 : : :) ;the indi
es of the 
omponents of h are 
ontra
ted with the 
orresponding indi
es of the 
omponentsof � s as usual in a Taylor expansion.Clearly the expression (2.1) is intri
ate: however we 
an �nd a qui
k graphi
al representationfor it: the fun
tion h (k) will be represented by (k)Fig.1: Representation of h (k): adding a label j = 1; : : : ; ` on the line will indi
ate the j-th 
omponent of h (k).Therefore we shall represent the relation (2.1) as (k1)(k2)j v j1jj s jXs (kj s j)
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t Renormalization Group 35Fig.2: Representation of (2.1); here k � 1 = k1 + : : :+ kj s j. The \root" line 
arries the label j and the other lines
arry the labels jq 
orresponding to the 
omponents of h(kq)jq for q = 1; : : : ; j s j. The latter labels will not, in thefollowing �gures, 
ontinue to be marked (being dummy labels). The \node" v represents the derivatives �  � s .Double 
ounting is avoided by using the 
onvention of assigning the label 1 to the �rst s1 lines from top to bottom,the label 2 to the next s2, and so on until all the j s j derivation label are 
onsideredThe re
ursive nature of (2.1) is 
lear and it is also quite 
learly re
e
ted in Fig.2 above. Theiteration of (2.1) will terminate in �nitely many steps and the result 
an be naturally expressedgraphi
ally as in Fig.3 below.
X# v00 v0 v

Fig.3: Representation of h (k) as a sum of tree graphs # with k nodes. Two pairs of 
onse
utive nodes v < v0 andv0 < v00 are also represented; the node v00 in the pi
ture happens to be what we shall 
all the �rst or highest nodeof #. With ea
h tree graph # a \value" hj(#) is assigned (see below) and the sum of the values of all trees with knodes and root line bearing the label j yields h(k)j . A pair of 
onse
utive nodes will be 
alled a \line".We imagine to draw the trees in Fig.3 with lines of equal length and \
oherently oriented"(i.e. the endpoint of an oriented line 
an only merge into the initial point of another oriented line)by assigning the line labels (not marked in the �gures) as explained in the 
aption to Fig.2: inthis way one sees that the number of unlabeled distin
t trees # with k nodes does not ex
eed thenumber of 
losed 2k{steps paths starting at the origin of a one dimensional latti
e Z1, i.e. it is� 22k. A pair of 
onse
utive (in the partial order �xed by the lines orientations) nodes � = (v0v)will also be 
alled a \line" and it will also be denoted by �v if v < v0: the orientation of the linesallows us to say that a line follows another or that two lines are 
omparable, or that a node pre
edesanother node or a line. On ea
h line � we atta
h a label j� = 1; : : : ; ` that we 
all a 
omponentlabel.We 
all the highest line (i.e. the leftmost in the above �gures) the \root" line but do not
ount the highest extreme of the highest line as a node and we may 
all it the \root": we shall 
allthe number of nodes (hen
e of lines) k the \degree" deg(#) of #.Sin
e the fun
tion h ( ) is periodi
 it is 
onvenient to look for its Fourier 
oeÆ
ients h �with � = (�1; : : : ; �`) 2 Z`. A simple graphi
al representation 
an be given to the 
oeÆ
ients. ItsuÆ
es to add to ea
h node v of the trees in Fig.3 a label � v, whi
h we 
all a \node momentum",and to attribute to ea
h line � = (v0v) a \line 
urrent" � (�) de�ned as the sum of all the nodemomenta of the nodes w < v: � (�) = Xw<v � w (2:2)Then if the root line start at the node denoted v0 and 
arries a label j we de�ne \value" of su
hlabeled trees as i( � v0)j Y��(v0v)2# �(i � v)j� i( � v0)j�)�Yv2# f � vsv! (2:3)and we obtain h(k)j; � by summing over all trees with k nodes and with 
urrent � 
owing on thehighest line. In (2.3) we 
an imagine to have performed the summations over the labels j� assigned
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ar�eto the internal lines, thereby 
onveniently suppressing all of them ex
ept the label j on the rootline, so that the summation of the values (2.3) is performed over the trees with k nodes v intowhi
h sv lines merge and whi
h 
arry a momentum label � v over every node v.4 Double 
ountingis avoided by 
onsidering distin
t any pair of trees that 
annot be trivially superposed by pivotingthe lines around the nodes into whi
h they merge but avoiding, in the pivoting operations, line
rossings.However it will be 
onvenient to remark that we may imagine that all the lines of su
h a treeof degree k bear a \number label" 1; : : : ; k (whi
h will never be expli
itly marked in the �gures) thatdistinguishes them. Regard as di�erent two trees that 
annot be superposed (all labels in
luded)by the operation of pivoting the lines around the nodes into whi
h they merge while, this time,allowing 
rossing of the lines merging into the same node. Then we get many more trees and sin
ewe still require that the sum of the values of all trees is h(k)j � the de�nition of value has to bemodi�ed to avoid double 
ountings intoVal(#) = i( � v0)jk! Y��(v0v)2#(i � v � i � v0)Yv2# f � v (2:4)With the new way of labeling the number of trees greatly in
reases, by a fa
tor of order k! beingnow bounded by k!22k, but the 
ombinatori
s be
omes simpler for our purposes (even though thesum of the values of all trees is performed with great redundan
y). Therefore we shall de�ne thelabeling of the trees by imagining that ea
h line 
arries a number label that distinguishes it fromthe others.Note that the node momenta 
an be supposed bounded by j � j � N i.e. by the degree of f ,
fr the fa
tors f � v in (2.4). However the line 
urrents � (�) 
an only be bounded by j � (�)j � kNin a tree of degree k. This means that the number of trees with non zero value and degree k is�nite and bounded by 22k(2N +1)k`; the momentum that 
ows in ea
h line 
an be as large as kN .We 
an say that the value of a tree is the produ
t of node fa
tors (the f � v in (2.3)) or\
ouplings" and of line fa
tors (the � � � � � v0 and (i � v0)j) or \propagators". The perturbativeseries for h (k)� a
quires in this way the 
avor of a Feynman graphs expansion, see Se
.7.Convergen
e for small j"j of the expansion for h � is immediately proved by bounding thesum of the values of the trees of degree k byX#;deg(#)=k jVal(#)j � 22k(2N + 1)`kF k(`N2)k (2:5)in fa
t there are at most 22kk! trees and the s
alar produ
ts � v0 � � v give at most `k terms of sizeN2, while the � v 
an be 
hosen in a number of ways bounded by (2N + 1)`k < (3N)`k.Taking into a

ount that there are at most (2Nk + 1)` harmoni
s (all of whi
h � kN) forwhi
h h (k)� is not obviously zero we see thatX� e�j � jjh (k)� j � (2Nk + 1)`((2N + 1)`(`N2)Fe�N )k (2:6)so that the fun
tion h is holomorphi
 in " and in = j for j= j j < � and for j"j < "0 = ((2N +1)``N2e�NF )�1. This 
on
ludes the \theory" of (1.1) by a \renormalization group approa
h".Before passing to study less trivial problems it is worth remarking and stressing that thereare important 
an
ellations that o

ur in summing the trees values. A 
an
ellation, noted in adi�erent 
ontext by Lindstedt and New
omb in parti
ular 
ases and by Poin
ar�e in general, showsthat we 
an \just" 
onsider trees in whi
h no line 
arries a zero 
urrent. In fa
t if the 
urrent
owing through the root line of a tree # is zero we 
an 
onsider the 
olle
tion of trees obtainedfrom the given one by \deta
hing" the root line from the node v0 (\root node" or \�rst node") fromwhi
h it emerges and by atta
hing it su

essively to the other k � 1 nodes: in this way we form a4 Note that now sv is just an integer � 0 rather than a multiindex: this is due to the summation and to the
onsequent elimination of the 
omponent labels.
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olle
tion of k trees whose values di�er only be
ause the fa
tor i( � v0)j 
hanges as the root nodev0 varies among the tree nodes; therefore the sum of their values is proportional to iPv( � v)j� 0 .The just exhibited 
an
ellation implies that h 0 = 0 , i.e. h has zero average. In fa
t by asimilar argument we see that h (k) 
an be 
omputed by 
onsidering only the sum of the values oftrees in whi
h no line is 
rossed by a zero 
urrent (in a di�erent 
ontext this result was establishedby Poin
ar�e, see below).Other 
an
ellations are possible: for instan
e 
onsider a tree # whi
h 
ontains two 
omparablelines �+ < �� (i.e. two lines on the same path to the root) on whi
h the same 
urrent 
ows.This means that if v1; : : : ; vs are the nodes that pre
ede �� but whi
h do not pre
ede �+ it isPsp=1 � vp = 0 . Then we form the 
olle
tion of trees obtained by deta
hing the entering line �+and atta
hing it su

essively to the nodes v1; : : : ; vs: we see that the values of all the trees di�eronly be
ause they 
ontain the fa
tor asso
iated with the propagator of the line �+, i.e. � � vp � � +(if vp is the node to whi
h the line �+ is atta
hed and � + is the node momentum of the other nodeof �+). Therefore the sum of the values of the 
olle
tion of trees is proportional toPj � vp � � �� 0 .Of 
ourse the same argument applies if we use the line ��.The latter 
an
ellations do not imply that we 
an 
ompute h by summing only the valuesof trees in whi
h no pair of 
omparable lines 
arry zero 
urrent: the reason is that the same treemay be ne
essary to a
hieve the 
an
ellation relative to \overlapping pairs" of 
omparable lines,i.e. pairs of lines su
h that the paths joining them along the tree lines overlap. In the 
ase ofmore diÆ
ult problems this is an important obsta
le whose proper understanding has been one ofthe 
entral problems of renormalization theory: in the above 
ase it is not ne
essary to understandhow to disentangle and turn into a useful tool the \overlapping 
an
ellations".3. Infrared singularities: the problem of KAM theoryUsing the terminology of �eld theory the above is a \one s
ale problem" be
ause the propa-gators � � v � � v0 are bounded.The matter be
omes mu
h more interesting if one studies what we shall 
all \Lindstedtequation" (! 0 � �  )2 h ( ) = �"(�� f)( + h ( )) (3:1)where h ; f; " are as in Se
. 1,2 above and ! 0 = (!1; : : : ; !`) 2 R` is a Diophantine ve
tor, i.e. ave
tor with the property that there exist two 
onstants C; � > 0 su
h that for all non zero integer
omponents ve
tors � 2 Z` it isj! 0 � � j > 1Cj � j� ; 0 6= � 2 Z` (3:2)Equation (3.1) is substantially more diÆ
ult than its \naive" version (1.1). It admits, however, avery similar formal solution: namely h (k)� is given by a \tree expansion" in terms of all the trees(with the same labels and the same 
ounting) 
onsidered in the previous 
ase dis
arding the treeswhi
h 
ontain a line with zero 
urrent; the di�eren
e just 
onsists in a di�erent de�nition of thepropagators whi
h 
hange, if � = (v0v) is a line 
arrying a 
urrent � (�), so that� � v � � v0 ! � � v � � v0(! 0 � � (�))2 ; i( � v0)j ! i( � v0)j(! 0 � � )2 (3:3)where � is the the root line 
urrent. The new \value" of the labeled trees is, therefore,Val(#) = 1k! i( � v0)j(! 0 � � )2 Y��(v0v)2# � � v � � 0v(! 0 � � (�))2 Yv2# f � v (3:4)and the new diÆ
ulty is easily seen. The Diophantine inequality 
ould be \saturated" for largevalues of the 
urrents � (�) without any of the 
ouplings f � v vanishing (i.e. j � (�)j 
an be verylarge, of order kN in trees of degree k): therefore if many, say bk for some b > 0, lines \resonate"
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ar�ein the sense that ! 0 � � (�) is of the order of a power k�� the bound on the tree value 
an be
omegreater, by a fa
tor k�b0k ' k!b0� for some b0 > 0, than the estimate in (2.5) and the bound is nolonger suÆ
ient to a
hieve a 
onvergen
e proof no matter how small " is.The just des
ribed diÆ
ulty is 
alled an \infrared" problem as it arises from propagators withdenominators being too 
lose to zero at small frequen
ies: the quantities ! � � (�)=2� have theinterpretation of frequen
ies that 
an arise in the Fourier transform of solutions of the me
hani
alproblem that is behind the equation (3.1), 
fr introdu
tion. It 
ontrasts with ultraviolet problemswhi
h arise, on the 
ontrary, from propagators with denominators whi
h are away from zero butnot large enough at large frequen
ies: an example of su
h problems is the theory of the boundednessof the fun
tional integral in (1.2) and it will be dis
ussed later.The key idea for showing that the sum of the tree values in (3.4) over all trees of degree k
an still be bounded by Bk for some B > 0 is to show that whenever a tree graph appears whi
h
ontains too many small divisors then 
an
ellations similar to the ones exhibited at the 
on
lusionof Se
.2 take pla
e almost exa
tly and make the value of the graph small enough for 
onvergen
eto follow.It is interesting to 
he
k �rst that the problem really exists. For the purpose it is suÆ
ient toexhibit a single graph of degree k whose value has a
tually size of order of a power of a fa
torialof k. The graph is drawn in Fig.4.� � �v1 v01 v2 v02 v k3 v0k3 w w1w2w0k3�1Fig.4: An example of a resonant graph. The graph 
onsists of k3 nodes v1; : : : ; v k3 , drawn on a horizontal line, ea
hatta
hed by a line to a side node, v01; : : : ; v0k3 respe
tively, and the last k3 nodes are the initial nodes w1; w2; : : : of abun
h of k3 � 1 lines merging into the node w where the horizontal lines begin. The last k3 � 1 nodes 
arry momenta� w1 ; : : : ; � w k3�1 (not marked in the �gure) whi
h together with the momentum � w generate at the beginning ofthe horizontal stre
t
h a 
urrent � suitably 
onstru
ted to resonate maximally in the sense that ! 0 � � ' ak��=3for some a > 0. The nodes v1; : : : ; v k3 
arry a small momentum � 0 while the 
orresponding nodes v01; : : : ; v0k3 
arrymomentum � � 0 so that the 
urrent 
owing in the k3 + 1 horizontal lines is steadily � , i.e. steadily resonant.The value of the tree in Fig.4 
an be immediately written down from (3.4) (a useful exer
ise)and one readily sees that there are so many small divisors that the value has size of the order of apower of k!.Formula (3.4) would provide immediately a proof of 
onvergen
e for small " if 
ertain trees,among whi
h the one in Fig.4, were not present. The idea, realized in the later se
tions, is thatthe \unwanted" trees 
an
el ea
h other to the extent that their sums behave well enough for notspoiling the bounds.4. Exhibiting 
an
ellations. The overlapping problem.To 
larify the last paragraph of Se
. 3, for the purpose of illustration, we shall �rst restri
tthe sum of the 
ontributions (3.4) to h (k)� to a sum over trees whi
h, besides the property that forall lines one has � (�) 6= 0 (as dis
ussed above), satisfy the property(P) � (�v) 6= � (�v0 ) for all pairs of 
omparable nodes v; v0 (not ne
essarily next to ea
h other inthe tree order), with v0 > v.There are at most 22kk! trees (as in the simple 
ase of Se
. 2) and the s
alar produ
ts � v0 � � vgive at most `k terms of size N2, while the � v 
an be 
hosen in a number of ways bounded by
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t Renormalization Group 39(2N + 1)`k < (3N)`k. Therefore, if F = max � jf � j,���h (k)� ��� � (3N)`k22k`k F kC2kN2k�1 max#2�k; � Y�2V (#)(C ! 0 � � (�))�2� (FC2)kN (`+2)k�1(4`3`)kM; (4:1)where M is an estimate of the indi
ated maximum whi
h is over the k-th degree trees # verifyingproperty (P) above. Hen
e the whole problem is redu
ed to �nd an estimate for M .Let q be large. By the Diophantine 
ondition in (3.2) one has Cj! 0 � � j � q�1 if 0 < j � j �q1=� : we say that the harmoni
 with Fourier label � 2 Z` is \q{singular" if Cj! 0 � � j < q�1 andthe following (extension) of a lemma by Bryuno holds for trees of degree k verifying property (P)above:Fixed q � 1 let N(k; q) be the number of \q{singular lines" (i.e. of lines 
orresponding toq{singular harmoni
s) in a tree # with k nodes. ThenN(k; q) � 
onst kq1=� ; (4:2)and the 
onstant 
ould be taken 2N23=� .Remark. The intuition behind (4.2) is very simple. In order to a
hieve a 
urrent � = � (�v) withC ! 0 � � of size q�1 one needs at least j � j � q1=� , i.e. by (3.2) the node v must be pre
eded byat least N�1q1=� nodes. On
e a q{singular line � has been generated the following lines �0 willhave non-q{singular momentum until the number of lines not pre
eding � and pre
eding �0 hasgrown large of the order of q�1=� , i.e. we must 
olle
t about as many new nodes (i.e. O(q1=� )) togenerate a se
ond q{singular line and so on, at least if the new singular line �0 does not have thesame momentum (a 
ase ex
luded by hypothesis). The latter event would mean that the nodes thatpre
ede �0 but do not pre
ede � have node momenta adding exa
tly to 0 ; their presen
e wouldinvalidate the argument as this is a situation whi
h 
an be realized already with just 2 intermediatenodes as in the 
ase of Fig.4. Sin
e the total number of nodes is k it follows that the number ofq{singular lines is bounded proportionally to k=q1=� . The a
tual estimate of the 
onstant in (4.2)is irrelevant for our immediate purposes.To pro
eed we shall assume, for simpli
ity, that f � = f� � , i.e. that f is an even fun
tion. Fixan exponentially de
reasing sequen
e 
n, n = 1; 0;�1;�2; : : :; we shall make the 
hoi
e 
 = 2, whi
hre
ommends itself. The number of 2�n{singular harmoni
s whi
h are not also 2�(n�1){singularis bounded by 2N23=� k 2�n, (by (4.2), being trivially bounded by the number of 2�n{singularharmoni
s!). Hen
eY�2# 1(C ! 0 � � (�))2 � 1Yn=�1 2�(n�1)4N23=�2n=�k = e
N�k�M; (4:3)where 
 > 0 is a suitable 
onstant (�{independent); therefore the series for the approximationto h (k)� , that we are 
onsidering be
ause of the extra restri
tion (P) on the sum, has radius of
onvergen
e in " bounded below by "00 given by("00)�1 = (FC2J�1)kN (`+2)(4`3`)e
N� : (4:4)The key remark in order to take into a

ount the trees that we have ex
luded by imposingthe unphysi
al property (P) above is that they 
an
el almost exa
tly. The reason is very simple. Let� (�v) = � (�0) with �0 
oming out of a node following v and ending in the node v0 then we 
animagine to deta
h from the tree # the subtree #2 with last node v. Then atta
h it, su

essively, to
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ar�e+v0 w1 w2 v v0 w1 w2 v
Fig.5: The simplest 
an
ellation: the 
ir
le represents a violation of property (P) (whi
h we shall 
all later a self-energy graph), provided � w1 + � w2 = 0 . The parts of the tree # above v0 and below v are not drawn. Imagine thatthe line momentum � of the line 
oming out of v is very large so that Æ�! 0 � � is very small and note that in thetwo trees one has (! 0 � � (�w2 ))2 = (! 0 � � w2 )2 and (! 0 � � (�w2 ))2 = (! 0 � � w2 + Æ)2, respe
tively. If the signsof the node momenta of w1; w2 are simultaneously 
hanged and the values of the four trees obtained in this way aresummed we obtain an even fun
tion of Æ.all the remaining nodes w whi
h pre
ede �0 but do not pre
ede v. The simplest 
ase is illustratedin Fig.5 with �0 = (v0; w1).We obtain a family of trees whose 
ontributions to h (k)� di�er be
ause(1) some of the lines below �0 
hanged the 
urrent by the amount � � � (�v): this means that someof the denominators (! 0 � � (�w))�2 have be
ome (! 0 � � (�w) + Æ)�2 if Æ�! 0 � � (see the line�w2�w1w2 in Fig.5) and:(2) the s
alar produ
t � v � � w 
hanges be
ause of the su

essive 
hanges of the fa
tor � w, wherew 2 #=#2 is the node to whi
h the line �v is reatta
hed.Hen
e the sum of the values of all the trees 
onsidered plus those obtained by a simultaneous
hange of the signs of the node momenta of the nodes w pre
eding �0 but not pre
eding v wouldbuild a quantity whi
h is even in Æ. Fa
toring the 
ommon Æ�4 due to the propagators of thelines �v and �0 the remaining sum is a fun
tion of Æ whi
h for Æ = 0 would be proportional to:P � w = � (�0) � � (�v) whi
h is zero (note that the simplifying parity in � assumed on f � hasto be used here). Sin
e Æ 6= 0 we 
an expe
t to see that it has order Æ2 whi
h would \
an
el" oneof the divisors of the lines �0; �v.This is indeed true in the 
ase of Fig.4: by performing the operation depi
ted in Fig.5 forea
h of the k3 pairs of nodes following the initial bun
h of k=3 nodes one 
he
ks that the result ofthe sum of the values of the 2 2 k3 trees thus obtained is bounded proportionally to Æ2 k3 (i.e. weget a Æ2 from the 
an
ellation in Fig.5 for ea
h pair of nodes) whi
h 
ompensates the division byÆ2 k3+1 due to the small divisors at the 
ost of adding a fa
tor exponential in k (harmless for thepurposes of 
onvergen
e as it a�e
ts only the size of the 
onvergen
e radius estimate). Thereforealthough there are too many small divisors things go as if the whole 
hain in Fig.4 had only one!In general this 
an be true only if jÆj � j! 0 � � (�)j for all lines � between �v and �0. If thelatter property is not true then Æ must be small of order ! 0 � � (�) at least and, hen
e, this meansthat there are many nodes w with v0 < w but not � v: indeed in a number of the order needed to
reate a momentum with small divisors of order ! 0 � � (�).The intuitive argument about Bryuno's lemma following (4.2) shows that su
h an extreme
ase would be also treatable: after all also in this 
ase the repetition of the small divisor in thelines �0; �v is a

ompanied by a great number of nodes w between v and v0 so that the argumentgiven in the remark for estimate (4.2) remains valid. Therefore the problem is to show that thetwo regimes just envisaged (and their \
ombinations") do exhaust all possibilities.5. Multis
ale de
omposition. Clusters and self energy graphs. Hierar
hi
alorganization of 
an
ellations and overlapping 
ontrol.Su
h problems are very 
ommon in renormalization theory where they are 
alled overlap-ping divergen
es problems. Their systemati
 analysis is made through the \renormalization groupmethods".We �x a s
aling parameter 
, and we take 
 = 2 for 
onsisten
y with (4.3) (see also the
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t Renormalization Group 41footnote 1 in the introdu
tion); we also de�ne !�C ! 0: it is a dimensionless frequen
y. Then wesay that a propagator � � v0 � � v=(! 0 � � (�))�2 is on s
ale n if 2n�1 � j! � � (�)j < 2n, for n � 0,and we set n = 1 if 1 � j! � � (�)j.We make at this point a se
ond simplifying assumption (whi
h 
an be removed easily, asdis
ussed in the literature quoted below). Namely we want to suppose more than the Diophantine
ondition (3.2): the 
ondition will be the existen
e of 
onstants C; �; 
 > 1 su
h that(1) C j! 0 � � j � j � j�� ; 0 6= � 2 Zl; (5:1)(2) min0�p�n ��C j! 0 � � j � 
p�� > 
n+1 if n � 0; 0 < j � j � (
n+3)���1 ;where we shall again take 
 = 2. The property in (5.1) will 
alled the strong Diophantine 
ondition.One 
an 
he
k that the set of strongly Diophantine ve
tors 
ontained in any ball �r of radius rin R` has measure whi
h tends to volume(�r) for C ! 1, i.e. the set of strongly Diophantineve
tors has full volume.
v1 v2v3 v5v6v4T

T 0T 00 v7Fig.6: An example of three 
lusters symboli
ally delimited by 
ir
les, as visual aids, inside a tree (whose remaininglines and 
lusters are not drawn and are indi
ated by the bullets); not all labels are expli
itly shown. The s
ales (notmarked) of the lines in
rease as one 
rosses inward the 
ir
les boundaries: re
all, however, that the s
ale labels are� 0. If the mode labels of (v4; v5) add up to 0 the 
luster T 00 is a self-energy graph. If the mode labels of (v4; v5; v2; v6)add up to 0 the 
luster T 0 is a self-energy graph and su
h is T if the mode labels of (v1; v2; v7; v4; v5; v2; v6) add upto 0 . The 
luster T 0 is maximal in T .Given a tree # and 
alling �(#) the set of its lines in
luding the line ending in the root, we 
anatta
h a s
ale label to ea
h line � 2 �(#): it is equal to n if n is the s
ale of the line propagator. Notethat the s
ale labels thus atta
hed to a tree are uniquely determined by the other tree labels: theywill have only the fun
tion of help in visualizing the orders of magnitude of the divisors asso
iatedwith the various tree lines.Looking at su
h labels we identify the 
onne
ted 
lusters T of s
ale nT formed by a set oflines(i) 
onne
ted by a 
ontinuous path in the tree 
onsisting of lines with s
ale labels � nT ,(ii) whi
h 
ontain at least one line of s
ale nT(iii) and whi
h are maximal with the latter two properties.We shall say that the \
luster T has s
ale nT ".We shall denote by V (T ) the set of nodes in T , and by �(T ) the set of lines 
onne
ting them.We also denote by �1(T ) the set of lines in �(T ) plus the entering and exiting lines of T . Finally
all T (#) the set of all 
lusters in #.Among the 
lusters we 
onsider the ones with the property that there is only one tree lineentering them and only one exiting and both 
arry the same momentum. Here we re
all that thetree lines 
arry an arrow pointing to the root to give a meaning to the words \entering" and\exiting".If T is one su
h 
luster and �T is the line entering it we say that T is a self-energy 
luster ifthe number M(T ) of lines 
ontained in T is \not too large"M(T ) def= number of lines 
ontained in T � E 2�n�; (5:2)
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ar�ewhere n = n�T , and E; � are de�ned by:5 E�2�3�N�1; � = ��1. We 
all n�T the self-energy-s
aleof T , and �T a self-energy line.To refer to self-energy 
lusters T we need some terminology(a) we denote �T�(w�T v�T ) the entering line: its s
ale n = n�T is smaller than the smallest s
alenT of the lines inside T ; likewise we denote �+T�(v+Tw+T ) the exiting line. Hen
e w�T is the nodeinside T into whi
h the entering line �T ends.(b) Let eT be the set of nodes of V (T ) outside the self-energy 
lusters 
ontained in T (if any).(
) Denote by �( eT ) the set of lines � 
ontained in T and with at least one point in eT , and by�1( eT ) the set of lines in �( eT ) plus the lines entering and exiting T ; note that all lines � 2 �( eT )have a s
ale n� � nT .Remarks. (1) The self-energy 
lusters are 
alled resonan
es in Eliasson's terminology, see refer-en
es.(2) Note that the self-energy-s
ale n of a self-energy 
luster T (i.e. the s
ale of the entering line)is di�erent from the s
ale nT of T as a 
luster (i.e. the lowest s
ale of the lines inside the 
luster):one has n < nT .Let us 
onsider a tree # and its 
lusters. We wish to estimate the number Nn(#) of lines in�(#) with s
ale n � 0.Denoting by T a 
luster of s
ale n let qT be the number of self-energy 
lusters of self-energy-s
ale n 
ontained in T (hen
e with entering lines of s
ale n), we have the following inequality.For all trees # 2 �k; � one hasNn(#) � 4kE 2��n + XT2T (#)nT=n (�1 + qT ); (5:3)with E = N�12�3�; � = ��1.Remark. This is a version of Bryuno's lemma; a proof is given for 
ompleteness in the Appendixbelow. Intuitively the above inequality has the same 
ontent as (4.2): if there are self energy 
lustersone simply adds to the bound (4.2) (�rst term in the r.h.s. of (5.3)) the number of su
h graphs(i.e. the sum in (5.3)). For the apparently \extra �1" see appendix A1.Consider a tree #1; we de�ne the family F(#1) generated by #1 as follows. Given a self-energy
luster T of #1 we deta
h the part of #1 whi
h has �T as root line and atta
h it su

essively to thepoints w 2 eT (note that the endpoint w1 2 V (T ) of �T is ne
essarily among them).The above pro
edure is then repeated for all self-energy 
lusters in #. For ea
h self-energy
luster T of #1 we shall 
all VT the number of nodes in eT , i.e. VT = jV ( eT )j. To the just de�nedset of trees we add the trees obtained by reversing simultaneously the signs of the node modes � w,for w 2 eT : the 
hange of sign is performed independently on the various self-energy 
lusters. Thisde�nes a family of Q 2VT trees that we 
all F(#1) (the produ
t is over all self-energy 
lusters in#). The number Q 2VT will be bounded by expP 2VT � e2k.It is important to note that the de�nition of self-energy graph is su
h that the above operation(of shift of the node to whi
h the line entering the self-energy 
luster is atta
hed) 
annot 
hangetoo mu
h the sizes of the propagators of the lines inside the self-energy 
lusters.This is 
alled the \non overlapping lemma" and the reason behind its validity is simplythat inside a self-energy 
luster of self-energy-s
ale n the number of lines is not very large, being� Nn�E 2�n�.Indeed let � be a line 
ontained inside the self-energy 
lusters T = T1 � T2 � : : : of self-energy-s
ales n = n1 > n2 > : : :; then the shifting of the lines �Ti 
an 
ause a 
hange in the sizeof the propagator of � by at most5 This is just a 
onvenient de�nite 
hoi
e.
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t Renormalization Group 432n1 + 2n2 + : : : < 2n+1: (5:4)For any line � in �(T ) the quantity ! 0 � � � has the form ! 0 � � 0� + �� ! 0 � � (�T ) if � 0�is the momentum of the line � \inside the self-energy 
luster T", i.e. it is the sum of all thenode momenta of the nodes pre
eding � in the sense of the line arrows, but 
ontained in T ; and�� = 0; 1.Therefore not only j! � � 0(�)j � 2n+3 (be
ause � 0(�) is a sum of � Nn node momenta, sothat j � 0(�)j � NNn) but ! � � 0(�) is \in the middle" of the diadi
 interval 
ontaining it and,by the strong Diophantine property(5.1), does not get out of it if we add a quantity bounded by2n+1 (like �� ! 0 � � (�T )). Hen
e no line 
hanges s
ale as # varies in F(#1), if ! 0 veri�es (5.1).By the strong Diophantine 
ondition (5.1) on ! 0 the self-energy 
lusters of the trees in F(#1)all 
ontain the same sets of lines, and the same lines enter or exit ea
h self-energy 
luster (althoughthey are atta
hed to generally distin
t nodes inside the self-energy 
lusters: the identity of the linesis here de�ned by the number label that ea
h of them 
arries in #1). Furthermore the s
ales of theself-energy 
lusters, and in fa
t of all the lines, do not 
hange.Let #2 be a tree not in F(#1) and 
onstru
t F(#2), et
, obtaining in this way a 
olle
tionfF(#i)gi=1;2;::: of pairwise disjoint families of trees. We shall sum all the 
ontributions to h (k)�
oming from the individual members of ea
h family and then sum over the families. This is arealization of Eliasson's resummation: it is more detailed than his original one, where no subdivisionof the trees in 
lasses was 
onsidered and the 
an
ellation implied by the one that we exhibit inSe
. 6 was derived from an argument involving all graphs at the same time. Thus the Eliasson
an
ellation 
an be regarded as a 
an
ellation due to a spe
ial symmetry of the problem (analogousto the Ward identities of �eld theory) and the above analysis shows that more symmetry is presentas the 
an
ellation takes pla
e already at a lower level in whi
h less trees are added together.This 
ompletes the organization of the tree values whi
h makes evident the 
an
ellationsne
essary to show, see Se
.6, that not only the problem asso
iated with the tree in Fig.4 but alsothe analogous problem in the most general graph 
an be solved by the above 
onsiderations.6. Can
ellations and dimensional bounds.The above hierar
hi
al organization of the sum of the terms giving rise to the k{th order
ontribution h(k)j is suÆ
ient for our purposes. One 
an pro
eed to bound the sum of the 
ontribu-tions from ea
h 
olle
tion of terms straightforwardly by using repeatedly the maximum prin
iple(namely the bound of the value of an analyti
 fun
tion at a point by its maximum modulus in a(
omplex) region around the point divided by the distan
e to the boundary of the region).Referring to the notions asso
iated with the self energy 
lusters, see items a,b,
 following(5.2), we 
all �T the quantity ! 0 � � (�T ) asso
iated with the self-energy 
luster T . If � is a line in�( eT ), de�ned after (5.2), we 
an imagine to write the quantity ! 0 � � (�) as ! 0 � � 0(�) + ���T ,with �� = 0; 1: the produ
t of the propagators of the lines inside eT isY��(v0v)2�(eT ) � � v � � v0(! 0 � � 0(�) + ���T )2 : (6:1)For simpli
ity we do not expli
itly distinguish the possibility that � is the root line: in that 
asethe 
orresponding fa
tor in (6.1) has the slightly di�erent form �i( � v0)j=(! 0 � � (�))2.If the tree does not 
ontain any self-energy 
lusters, we say that it has height 0; if the onlyself-energy 
lusters do not 
ontain other self-energy 
lusters, we say that the tree has height 1, seeFig.4 for an example; more generally if the maximum number of self-energy 
lusters that 
ontain agiven self-energy 
luster is p, we say that the tree has height p. Similarly we say that a self-energy
luster has height p if it 
ontains at least one self-energy 
luster that is 
ontained in exa
tly pself-energy 
lusters and none whi
h is 
ontained in more (p = 0 
orresponds to a self-energy 
luster
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ar�ewhi
h does not 
ontain any other self-energy 
lusters). Given a tree #, 
all V (#) the set of allself-energy 
lusters in #, and set�(V (#)) = [T2V (#)�(T ); �1(V (#)) = [T2V (#)�1(T ): (6:2)Of 
ourse in (6.2) the union 
ould be restri
ted only to the maximal self-energy 
lusters.First 
onsider the simple 
ase of a tree # of height 1 and let us denote by T any of its self-energy
lusters: if we regard the quantities �T as independent variables we see that (6.1) is holomorphi
 in�T for j�T j < 2nT�3. While �T varies in su
h 
omplex disk the quantity j! 0 � � 0(�) + ���T j doesnot be
ome smaller than 2nT�3.6 The main point here is that the quantity 2nT�3 will usually be� 2n�T whi
h is the value that �T a
tually 
an rea
h in every tree in F(#); this is what happensin the spe
ial 
ase of Fig.4 and it 
an be exploited in applying the maximum prin
iple, as donebelow.Note that the quantities �T do not depend on the element of the family F(#) so that we 
ouldfa
tor out of the sum of the values of the graphs in F(#) the fa
tors ��2T ; we 
an write the produ
tof the propagators of any tree as� Y�2�(#)n�1(V (#))��(v0v) � � v0 � � v(! 0� � (�))2 � � � YT2V (#) Y�2�(T ) � � v0 � � v(! 0 � � 0(�) + ���T )2 ��� �Q+T2V (#)� � v+T � � w+T�2T � � �Q�T2V (#)� � w�T � � v�T�2T � (6:3)where the �rst produ
t is over the lines � whi
h neither enter nor exit nor are inside a self-energy
luster of # (so that their momentum is the same in all trees of the family F(#)), the se
ondprodu
t is over the lines � 
ontained in V (#), the third produ
t is over the self-energy 
lustersT 2 V (#) and takes into a

ount the lines exiting T but not entering another self energy 
lusterand the last produ
t is over the lines that enter the self energy 
lusters.As said above the denominators �2T fa
tor out of the sum of the values of the trees in F(#)at �xed #. We 
an therefore 
onsider the sum of the Q 2VT � e2k values of the graphs membersof the family F(#) divided by the produ
t of the fa
tors ��2T asso
iated with the lines entering orexiting the self energy 
lusters, i.e. we 
onsider the sum of the values in (6.3) 
omputed withoutthe denominators in the last two produ
ts.Ea
h su
h sum is holomorphi
 in the region j�T j < 2nT�3 and in the latter region it is boundedby Q 2�2(n��3) � 26kQ� 2�2n� , if n� the s
ale of the line � in # and if the produ
t is over thelines neither entering nor exiting a self-energy 
luster. This even holds if the �T are regarded asindependent 
omplex parameters.By 
onstru
tion the just 
onsidered sum of the Q 2VT � e2k terms from the trees in F(#),vanishes to se
ond order in ea
h of the �T parameters (by the approximate 
an
ellation dis
ussedabove due to the fa
t that the sum Pw2T � w = 0 and to the parity property supposed forf � ). By the maximum prin
iple this means that if we bound the sum by the number of termstimes the maximum among them (whi
h is easy to estimate be
ause the propagators have all wellde�ned seizes �xed by their s
ales) we 
an multiply the result by a further fa
tor of the order of22n�T =22(nT�3) and still obtain a valid bound.Hen
e by the maximum prin
iple and, re
alling that ea
h � v 
an be bounded by N , we 
anbound the 
ontribution to h (k)� from the family F(#1) byh 1k!�FC2N2�k26ke2k Yn�0 2�2nNnih Yn�0 YT2T (#)nT=n qTYi=1 22(n�ni+3)i; (6:4)6 In fa
t j! 0 � � 0(�)j � 2n+3 be
ause T is a self-energy 
luster; therefore j! 0 � � (�)j �2n+3�2n+1 > 2n+2 so that nT � n+3. On the other hand we note that j! 0 � � 0(�)j > 2nT�1�2n+1,so that it follows that j! 0 � � 0(�) + ���T j � 2nT�1 � 2n+1 � 2nT�3 � 2nT�3, for j�T j < 2nT�3.
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t Renormalization Group 45where(1) Nn = Nn(#) is the number of propagators of s
ale n in #1 (n = 1 does not appear be
ausej! � � j � 1 in su
h 
ases);(2) the �rst square bra
ket is the bound on the produ
t of individual elements in the family F(#1)times the bound e2k on their number: this takes into a

ount also the last produ
t in (6.3);(3) the se
ond square bra
ket is the part 
oming from the maximum prin
iple, applied to boundthe resummations, and is explained as follows.(4) The dependen
e on the variables �Ti��i relative to self-energy 
lusters Ti � T with self-energy-s
ale n�Ti = n is holomorphi
 for j�ij < 2ni�3, if ni�nTi , provided ni > n+ 3 (see above).(5) The resummation says that the dependen
e on the �i's has a se
ond order zero in ea
h. Hen
ethe maximum prin
iple tells us that we 
an improve the bound given by the third fa
tor in (6.3)by the produ
t of fa
tors (j�ij 2�ni+3)2 as ni � n+3 whi
h yield the produ
t in the se
ond squarebra
ket.The above would be suÆ
ient if there were no trees of height higher than 1. In fa
t substituting(5.3) into (6.4) we see that the qT is taken away by the �rst fa
tor in 22n2�2ni , while the remaining2�2ni are 
ompensated by the �1 before the +qT in (5.3), taken from the fa
tors with T = Ti,(note that there are always enough �1's). It follows that the produ
t (6.4) is bounded by1k! (C2FN2)ke2k212k Yn�0 2�8nkE�1 2�n � 1k! Bk0 ; (6:5)with B0 suitably 
hosen.To sum over the trees we note that �xed # the 
olle
tion of 
lusters is �xed. Therefore weonly have to multiply (6.5) by the number of tree shapes for #, (� 22kk!), by the number of ways ofatta
hing momentum labels, (� (3N)`k), by the number of ways of 
ontra
ting the tensor labels,(� `k), so that we 
an bound jh (k)� j by"�k0 �(b`C2FN2+`e
N )k; (6:6)with b` suitably 
hosen.To treat the general 
ase we 
an pro
eed indu
tively and suppose that the bound in (6.4)holds for trees of height 1; 2; : : : ; p�1 and for values of the �T = ! 0 � � (�T ) of the lines that enterthe maximal self-energy 
lusters T whi
h are in the 
omplex disk j�T j < 2nT�3, see Appendix.7. Feynman graphs for the integral in (1.2).The analysis of the problem (1.2),(1.3) is started by 
he
king the existen
e of a formal seriesexpansion in �: whi
h, of 
ourse, has to be followed by the study of the 
onvergen
e (in fa
t of theasymptoti
ity) properties of the series.The �rst problem is an easy one and its solution is 
lassi
al: it is most easily des
ribed interms of graphs: 
onsider the following graphi
al elementsxj12 34 yj1 2 ujFig.7: The three graphi
al elements for the Feynman graphs expansion of logE�;�("f). The labels 1; 2 : : : signifythat the lines of a single graph element must be 
onsidered as distin
t.The 
oeÆ
ient of �k4�k2"k1 in the expansion of logE�;�("f) is obtained by 
onsidering the
onne
ted graphs � that 
an be formed with k4 graph elements of the �rst type in Fig.7, i.e. with4 lines, and with k2 graph elements of the se
ond type and k1 elements of the third type and thenmerging pairwise the solid lines to form a 
onne
ted graph with k1 wiggly lines left unpaired. Oneoften refers to lines obtained by merging a pair of lines by 
alling it a \
ontra
tion" so that the
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ar�evarious graphs are obtained by 
ontra
ting pairwise the non wavy lines of the graph elements inFig.7. With ea
h su
h Feynman graph we asso
iate an \amplitude" whi
h is simplyZ (��)k4(��)k2(�")k1 Y(�i�j )2�C(�i � �j) Q d�jk4!k2!k1! (7:1)where (�1; : : : ; �k4+k2+k1) = (x1; : : : ; xk4 ; y1; : : : ; yk2 ; u1; : : : ; uk1).For instan
e for k2 = 1; k1 = 2; k4 = 0 and k2 = 0; k1 = 2; k4 = 2 we get, respe
tively, graphslike x z y x z w yFig.8: two graphs 
ontributing to the orders �"2 and �2"2, respe
tively, to logE�;�("f).Many graphs whi
h di�er only by the identity of the lines that are 
ontra
ted yield thesame value. If we do not write the identity labels on the lines then ea
h graph � has to bemultiplied by a suitable 
ombinatorial fa
tor n(�) for an appropriate 
ount. The total numberP� labeled 1 =P� unlabeled n(�) is of the order of (2(k4 + k2 + k1))!.Sin
e the propagator C(x � y ) in (1.2) is a 
ontinuous fun
tion whi
h de
ays exponentiallyas jx � y j ! 1 it is 
lear that the integrals in (7.1) are �nite for all graphs: hen
e the formalpower series for the generating fun
tion logE�("f) of the S
hwinger fun
tions is well de�ned to allorders.In the present 
ase we 
ertainly 
annot have 
onvergen
e of the latter well de�ned expansionfor the obvious reason that the integral in (1.2) is (almost) obviously divergent for � < 0; �; " = 0(divergen
e 
an be established be
ause in this 
ase all integrals are non negative and admit a lowerbound Bk that grows exponentially in k so that the order k 
oeÆ
ient grows as Bk(2k)!=k!, i.e.too fast).Nevertheless 
onvergen
e of the integral 
an be proved as well as the asymptoti
ity of theformal power series to whi
h it is formally equal: this is a 
onsequen
e of an important inequalitydue to Nelson. However here we shall not dis
uss this point further.8. An ultraviolet problem: '4d for d = 2; 3. Multis
ale de
omposition anddimensional estimates.One of the most studied problems in renormalization theory is the analysis of the integral(1.2) in whi
h the probability distribution P (d') is Gaussian with a 
ovarian
e di�erent from (1.3)and given by C(x � y ) def= h'x' y iP = 1(2�)d Z ei p �(x� y ) 1p 2 + 1 dd p (8:1)We see that C(x ) de
ays exponentially as jx j ! 1 but C(0) = 1 whi
h means that with P -probability 1 the fun
tions 'x are in fa
t rather singular and, more pre
isely, are distributions.The rate of divergen
e of C(x ) as x ! 0 is ' � log jx j if d = 2 and ' jx j�1 if d = 3.Therefore not only the problem is harder, but it is not even 
lear whether it makes sense atall sin
e the fun
tion in the exponent in (1.2) is no longer meaningful.The logarithmi
 divergen
e in d = 2 is \very weak" that one 
he
ks that all graphs withoutself 
ontra
tions, i.e. without any pairing of lines emerging from the same graph element, are �nite.However in general su
h 
ontra
tions o

ur and therefore yield fa
tors C( 0 ) = +1. Hen
e, 
learly,the problem is not well posed.The physi
al interpretation of the integral (1.2) with P with 
ovarian
e (8.1) does not requirethat the integral be well de�ned for all �; � small but \just" that there is a fun
tion �(�) (possiblydepending also on x ) su
h that the integral is meaningful. In other words one asks whether one
an �nd �(�) su
h that the logE�("f) is well de�ned and smooth in �; " for � > 0 small and� = �(�). It is not surprising that the �(�) if at all existent should be in�nite! Of 
ourse the fault
an be attributed to the fa
t that the integrand itself is not well de�ned.
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h a meaning to the integral by repla
ing the probability distribution P (d')by a regularized distribution PN (d') where N is a \
ut{o�" parameter and PN is a Gaussianfun
tional integral with 
ovarian
eC(N)(x � y ) = 1(2�)d Z ei p �(x� y )1 + p 2 �N ( p ) dd p (8:2)where �N ( p )����!N!1 1. Possible 
hoi
es are�N ( p ) = � 1 if j p j � 2N0 if j p j > 2N or �N( p ) = 22N � 122N + p 2 (8:3)where the �rst 
hoi
e is is perhaps the most natural while the se
ond might be the easiest te
h-ni
ally. The matter is debated: the two 
hoi
es however lead to the same result in the limit asN ! 1 (i.e. to the same N = 1 limit value for the integral (1.2)). Here I shall follow thetraditional approa
h that uses a smooth 
ut{o�, e.g. the se
ond 
hoi
e in (8.3), for expositoryreasons (brevity): however the �rst 
hoi
e is gaining grounds in the re
ent resear
h works on \exa
trenormalization group".If C is repla
ed by C(N) as de�ned by the se
ond of (8.3) the integral be
omes well de�nedessentially be
ause it be
omes like the one studied in Se
. 4: the Fourier transform of the propagatorgoes to 0 as p�4 and C(N)(x ) is a 
ontinuous exponentially de
reasing fun
tion so that all integralsin the perturbative expansion for logZ are �nite and Z itself is well de�ned thanks to the Nelsoninequality.The possibility of taking advantage of the freedom of the 
hoi
e of �(�) then leads to 
onsiderthe integral E�;N ("f) = R PN (d')e� R (VN ('x)+"' x f(x ))dd xR PN (d')e� R VN ('x)dd xVN ('x) = �'4x + �N (x )'2x (8:4)and the problem is to �nd �N so that the limit as N !1 of (8.4) exists and is smooth in �; "; f .The quantity � is allowed to depend on �;N; x (but not 'x ) with the only 
ondition that it shouldbe bounded uniformly in x at �xed N so that at �xed N the formal perturbation expansion is wellde�ned.If d = 2 the above remark that the only divergent (as N !1) graphs are the ones with self
ontra
tions leads immediately to try to determine �N in su
h a way that all su
h graphs 
an
elea
h other.From the theory of Gaussian integrals it is well known that elimination of the graphs withself 
ontra
tions is possible simply by requiring that VN be a linear 
ombination of \Wi
k monomi-als" de�ned as : 'nx := p2C(N)(0)nHn( ' xp2C(N)(0) ) where Hn(x) is the n{th Hermite polynomial(H4(z) = z4 � 3z2 + 32 , H2(z) = z2 � 12 ; : : :) and C(N)(0) = h'2x iPN .It is therefore very 
onvenient to start with a VN of the formVN (') = � : '4x : +�N (x ) : '2x : ��� ('4x � 6C(N)(0)'2x ) + �N(x )'2x + 
onst (8:5)and in the 
ase d = 2 one 
an simply take �N�0 whi
h in terms of the notation in (8.4) means�N (x ) = �6�C(N)(0) (whi
h diverges as N !1 as expe
ted and depends on �). The perturba-tive analysis is 
omplete and gives a �nite result (uniformly in N) order by order: it remains thehard part of the job whi
h is to prove the existen
e of the limit as N !1 of E�;N ("f), (8.4). Thisis not dis
ussed here be
ause we only want to show the analogy between the KAM and the �eldtheory problems. Therefore we shall eventually 
on
entrate attention on the mu
h more interestingproblem of the perturbation analysis of (8.4) in the d = 3 
ase.Of 
ourse, even with the 
hoi
e in (8.5) if d = 3 all integrals depend on N with divergen
eso

urring as N ! 1 at least if one does not attempt to use the freedom in the 
hoi
e of �(�).
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ar�eNevertheless at �xed N we 
an write the perturbation expansion, or better its formal 
oeÆ
ients,just as in the 
ase dis
ussed in Se
. 4 and we therefore imagine to have written the expansion oflogE�;�("f) in powers of �; �; " via exa
tly the Feynman graphs of Se
. 4 with the new propagatorC(N) and with the 
onstant � allowed to depend on N; x ; � and no Feynman graphs with self
ontra
tions.Sin
e C(N) is the Fourier transform of the fun
tion 22N�1(22N+ p 2)(1+ p 2)� 11+ p 2 � 122N+ p 2 we 
anwrite C(N)(x � y ) = 1(2�)d Z dd p ei p �(x� y ) N�1Xh=0 ( 122h + p 2 � 122(h+1) + p 2 ) == 1(2�)d Z dd p ei p �(x� y ) N�1Xh=0 22h 3(22h + p 2)(22(h+1) + p 2) == N�1Xh=0 2(d�2)hC(2h(x � y )) def= N�1Xh=0 Ch(x � y ) (8:6)
where C has a Fourier transform 3=(1 + p 2)(4 + p 2), whi
h gives a \multis
ale de
omposition" ofthe \ultraviolet" singularity of the propagator in the limit as N !1.The \s
ale 
ovariant" representation of the propagator a
hieved by the de
omposition in (8.6)
an be used to de
ompose �nely the integrals 
orresponding to the Feynman graphs and de�ningthe perturbation expansion 
oeÆ
ients and to rearrange the sums of the terms thus obtained in away that exhibits the remarkable 
an
ellations that will allow us to show that if �N (�) is suitablyde�ned then the perturbation expansion of E�("f) (de�ned as the limit of E�;N ("f)) is well de�nedorder by order in �; " thus proving renormalizability (and performing renormalization).The latter result will not be suÆ
ient yet to show that the generating fun
tion of the S
hwingerfun
tions is a
tually well de�ned and de�nes a new non trivial (i.e. non Gaussian) probabilitydistribution over the �elds 'x : again the reason is that we 
annot expe
t that the perturbativeseries be 
onvergent sin
e the expressions that they should de�ne are not de�ned for � < 0 alreadyfor N < 1. Nevertheless renormalizability is a key ingredient and a �rst step in the proof ofexisten
e of the no 
ut{o� limit of the generating fun
tion for the S
hwinger fun
tions.We imagine to asso
iate with ea
h line ` = (x ; y ) of the Feynman graphs a \s
ale label"h` = N;N � 1; : : : ; 0 and we shall de�ne its value by repla
ing the propagator C(N)(x � y ) withCh`(x � y ) = 2(d�2)h`C(2h`(x � y )), i.e. with the propagator on s
ale h`.Fixed a Feynman graph � of the latter type we 
an asso
iate with it a tree graph #: we de�ne�rst the \
lusters" of lines in �: a \
luster of s
ale h" will be a 
onne
ted subset of lines whoses
ales are � h whi
h, furthermore, 
ontains at least one line of s
ale h and whi
h is a maximal setwith the latter two properties.It will be 
onvenient and natural to regard ea
h vertex of the Feynman graph as a 
luster,in fa
t as a 
luster of s
ale h + 1 if h is the highest s
ale of the graph lines that merge into thevertex, even though they 
ontain no lines. In this way the number of verti
es of a Feynman graphand the number of nodes of the 
orresponding tree are equal.The 
lusters are by de�nition arranged hierar
hi
ally and are naturally partially ordered byin
lusion: therefore they 
an be represented by the nodes of a tree #. The set of all graphs whi
hgive rise to the same tree will be 
alled the set of graphs � 
ompatible with # and we shall write,somewhat improperly, � � #.Note that the lines of the tree have nothing to do with the lines of the Feynman graph. Anillustration of the above de�nitions is provided by the following Fig.9 (with a Feynman graph with7 verti
es).Instead of thinking the 
oeÆ
ient of orders k4; k2; k1 in �; �; " as a sum of values of Feynmangraphs we 
an think of it as a double sum over all trees with k4+k2+k1 nodes and over all graphs
ompatible with ea
h tree.
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1 2
4 3Fig.9: An example of a Feynman graph � with its 
lusters. The 
luster stru
ture uniquely identi�es a tree #. Thenodes a; b; 
 are supposed to represent the �rst graph element of Fig.7 while the nodes 1; 2; 3; 4 represent the thirdgraph element: altogheter su
h seven verti
es 
orrespond to the seven lowest nodes of the tree, i.e. they are theinnermost 
lusters. The 
lusters are here represented by dashed re
tangles (rather than by ellipses as in Fig.5,6, toavoid 
onfusion with the graph loops). The three unlabeled nodes of # 
orrespond to the three dashed re
tangles.It is instru
tive to draw the 
orresponding, quite di�erent, pi
ture in the 
ase the line 1a (for instan
e) has a s
alelarger than all the others.Given a tree # and a graph � 
ompatible with it(1) we say that a graph vertex v belongs to a 
luster if at least one of the lines that end in it ispart of the 
luster;(2) we say that a node v 2 # 
orresponding to a 
luster of s
ale hv has degree pv if there are pvlines \emerging" from it, i.e. pv lines of the graph have an extreme vertex in the 
luster v buthave s
ale h < hv. It is possible that both ends of the line are verti
es in a 
luster but the linehas s
ale lower than that of the 
luster: in this 
ase the line 
ounts twi
e in the de�nition of pv(be
ause we imagine that two lines emerge from the 
luster and are then 
ontra
ted on a lowers
ale).(3) the number pv of lines external to the 
luster v should not be 
onfused with the number svde�ned as the number of tree nodes that pre
ede v or, equivalently, as the number of 
lusters
ontained in the 
luster v but not in smaller 
lusters.The 
luster stru
ture sets a natural order in the integrations ne
essary to evaluate the graphvalue. Taking into a

ount the expression of the graph values in (7.1) and the form2(d�2)hC1(2h(x � y )) of the propagator on s
ale h we 
an bound the graph value simply bybounding the propagators on s
ale h by B02(d�2)he��2hjx� y j, for some B0; � > 0, and use theexponential de
ay to bound the results of the integrals.Let h0 be the s
ale of the root line. Let M4;v;M2;v;M1;v be the numbers of verti
es of thegraph elements in the 
luster v whi
h 
orrespond, respe
tively, to the �rst, se
ond and third graphelement in Fig.7 and letm4;v;m2;v;m1;v be the numbers of verti
es in the 
luster v of s
ale hv whi
hare not 
ontained inside inner 
lusters and whi
h 
orrespond to the mentioned graph elements.One remarks thatXv (hv � h0)(sv � 1) =Xv (hv � hv0)(M4;v +M2;v +M1;v � 1) (8:7)and it follows that the bound on the value of a graph � 
ompatible with the given tree # isj�jBk�1j�M4�M2max"M1 j, with k =M4 +M2 +M1, �max = maxx j�N (x )j and B depending on B0and R e��jx jdd x , timesYv 2hv(d�2) 12 (4m4;v+2m2;v+m1;v�nev+Psvj=1 nevj )2�hvd(sv�1) == 2h0((d�4)M4�2M2�(d�d�22 )M1+d)��Yv 2(hv�hv0 )((d�4)M4;v�2M2;v�(d�d�22 )M1;v�nev d�22 +d) (8:8)
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ar�ewhere M4;M2;M1 are the total number of graph elements of the �rst,se
ond and third type inFig.7, M4;v;M2;v;M1;v are the total number of graph elements of the �rst,se
ond and third typein Fig.7 
ontained in the 
luster v, and nev are the total number of lines emerging from the 
lusterv. Having obtained the above dimensional estimates we must sum over the graphs and trees,whi
h essentially means summing over the s
ales hv , and show that the sum 
onverges as N !1:this will be true but only for 
ertain 
hoi
es of �N , as di
ussed in Se
.9 below. The 
ase d = 2 isvery simple (and in any event we have already shown the existen
e of the perturbation analysis sothat dis
ussing the bound (8.8) is not ne
essary): therefore we 
on
entrate attention on the moreinteresting d = 3 
ase.9. Determination of the 
ounterterms and renormalizability (d = 3).Sin
e we 
onsider 
ontributions withM1 > 0 (M1 = 0 
orresponds to \va
uum graphs" whi
hdo not 
ontribute to the S
hwinger fun
tions) the exponent in the �rst fa
tor is always < 0 so thatthe sum over h0 (whi
h has to be performed together with the sum over the other s
ales to takeinto a

ount all graphs) 
onverges; noting that M1;v has to be even (otherwise not all lines 
an bepaired) the exponents in the produ
t are also < 0 unless(1) nev = 0 whi
h also 
orresponds to a va
uum graph(2) nev = 2 if M2;v = 1;M1;v = M4;v = 0 whi
h would give an exponent 0 but whi
h 
annot arisein a 
luster(3) nev = 4 if M4;v = 1;M1;v = M2;v = 0 whi
h would give an exponent 0 but whi
h 
annot arisein a 
luster(4) nev = 2 if M4;v = 1;M1;v =M2;v = 0 whi
h gives an exponent 1(5) nev = 2 if M4;v = 2;M1;v =M2;v = 0 whi
h gives an exponent 0.Therefore we only have to study the 
ases (4) and (5) whi
h 
orrespond to graphs 
ontaininga subgraph like the ones in Fig.10 below.
x z yh0 h00hv x z w yh0 h00hvabFig.10: The two subgraphs for whi
h the estimate above diverges, as N ! 1, when summed over the s
ales: wesuppose h0 � h00 < hv � a; b.By our 
hoi
e (8.5) of the intera
tion VN the �rst graph in Fig.10 
ontains a self 
ontra
tionand therefore does not arise (as 
ommented above). Furthermore we 
an asso
iate the se
ondgraphs with the subgraph x h0 h00z yFig.11: The subgraph whose 
ontribution will be summed to the one of the se
ond subgraph in Fig.10.and their 
ontribution to a graph value will be respe
tively�Ch0(x � z )Ch00( z � y )6�2 Chv ( z � w )Ca( z � w )Cb( z � w )Ch0(x � z )Ch00(w � y ) (9:1)whi
h, if summed together, exonerate us from 
onsidering Feynman graphs 
ontaining 
lusters likethe se
ond one in Fig.10.It will be useful to rewrite the sum of the two terms in (9.1) as the sum of
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t Renormalization Group 51��+ 6�2 Xhv>h00;a;b�hv Z ddw Chv ( z � w )Ca( z � w )Cb( z � w )��� Ch0(x � z )Ch00( z � y ) (9:2)and of 6�2 Xhv>h00;a;b�hv Z dd wChv ( z � w )Ca( z � w )Cb( z � w )�� Ch0(x � z )�Ch00(w � y )� Ch00( z � y )� (9:3)Therefore we 
an imagine to 
onsider graphs without subgraphs like the ones in Fig.10 but whi
h
an instead 
ontain subgraphs of the two formsx z y , x z yh0 h00 h0 h00(L) (R)Fig.12: The two subgraphs into whi
h the sum of the 
ontributions from the se
ond subgraph in Fig.9 and fromthe one in Fig.11 is de
omposed.whi
h 
ontribute to the value of a graph in whi
h they appear, respe
tively, a fa
tor given by (9.2)or by (9.3).Note that in (9.3) the di�eren
e � def= �Ch00(w � y ) � Ch00( z � y )� appears multiplied bythe fa
tor Chv ( z � w ): therefore the points z ; w 
an be 
onsidered to be at distan
e O(2�hv )typi
al of the s
ale of the lines linking z ; w . However the 
ovarian
e Ch00 \lives" on s
ale h00 sothat the di�eren
e � 
an be bounded proportionally to 2�(hv�h00).The fa
tor (9.3) will yield in the bound (8.8) an extra fa
tor 2�(h00�hv) while if �N (�; x ) isde�ned as �N (�; x ) = ��6�2 NXh=0;a;b�h Z dd w Ch( z � w )Ca( z � w )Cb( z � w )� (9:4)then the �rst graph in Fig.12 will 
ontribute to the bound (8.8) an extra fa
tor��6�2 h00Xh=0;a;b�hZ dd w Ch( z � w )Ca( z � w )Cb( z � w )� (9:5)whi
h is bounded proportionally to h00: i.e. in the bound 
orresponding to (8.8) there will be anextra power of hm2;vv whi
h does not a�e
t 
onvergen
e of the sums over the s
ales.Thus we see that formal perturbation theory 
an be well de�ned at ea
h order so that thetheory is \renormalizable", i.e. it admits a formal power series in �; " for the S
hwinger fun
tionsgenerator E�("f) with 
oeÆ
ients uniformly bounded as N ! 1: the harder problem of showingthat, with the 
hoi
e (9.4) for �(x ; �), the limit as N ! 1 exists and the perturbation seriesis asymptoti
 to it is of 
ourse far more interesting: the above analysis is an essential tool forobtaining the result but new ideas need to be introdu
ed, see referen
es.Note that the dependen
e of � on x is essential (it 
an be avoided only if periodi
 boundary
onditions on � are adopted): a point that is often not mentioned in the literature.The 
ase d = 4 
an only be studied in perturbation theory and often it is 
onje
tured thatthere is no way to �nd a probability distribution over the �elds 'x whi
h 
an be asso
iated withthe formal perturbation series (however the problem is wide open).It be
omes ne
essary, however, to allow also the 
oeÆ
ient of '4x to depend on the 
ut{o�N and to add another \
ounterterm" �N : ( � x'x )2:VN ('x ) = �N (x ) : '4x : +�N(x ) : '2x : +�N (x ) : ( � x'x )2 : (9:6)
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ar�eand the question is whether one 
an �nd fun
tions �N ; �N ; �N of a parameter � su
h that the limitof E�;N ("f) as N !1 exists and is smooth in �; " as well as non trivial, i.e. not quadrati
 in f .The problem remains physi
ally interesting be
ause the physi
al interpretation of the theory as aquantum �eld model would allow su
h an extension of the problem.The method followed in dimension d = 2; 3 
an also be applied to show renormalizability inthe 
ase d = 4 with, however, some rather major modi�
ations that we 
annot dis
uss here: seethe referen
es.The reader should not be surprised that the analysis of the quantum �elds models is apparentlysimpler than the one met in studying the KAM theory. The reason is simply that while in the KAM
ase we have presented a 
omplete dis
ussion in the 
ase of quantum �elds we only presented a
omplete solution to problem of the existen
e of a formal perturbation series. As already stressedanother very important (and not easy) part of the work remains to be done and it is to showthat the fun
tions E�;N ("f) really have a limit as N ! 1 and that the limit admits the formalpertirbation series as an asymptoti
 series: this problem is often 
alled the large �elds problem andit 
an be solved in dimension d = 2; 3 by a deeper use of the multis
ale analysis, see the literaturebelow.Appendix A1: Siegel-Bryuno bound on the number of self-energy 
lusters.Call N�n(#) the number of non-self-energy lines 
arrying a s
ale label � n in a tree # with knodes. We shall prove �rst that N�n(#) � 2k(E2��n)�1� 1 if Nn(#) > 0 (re
all that E = N�12�3�and � = 1=�). We �x n and denote N�n(#) as N�(#).If # has the root line �0 with s
ale > n then 
alling #1; #2; : : : ; #m the subtrees of # emergingfrom the last node of # and with kj > E 2��n lines, one has N�(#) = N�(#1) + : : :+N�(#m) andthe statement is indu
tively implied from its validity for k0 < k provided it is true that N�(#) = 0if k < E2��n, whi
h is is 
ertainly the 
ase if E is 
hosen as in equation (5.3).7In the other 
ase, 
all �1; : : : ; �m the m � 0 lines on s
ale � n whi
h are the nearest to �0:8su
h lines are the entering lines of a 
luster T on s
ale nT > n. If #i is the tree with �i as rootline one has N�(#) � 1 +Pmi=1N�(#i), and if m = 0 the statement is trivial, while if m � 2 thestatement is again indu
tively implied by its validity for k0 < k.If m = 1 we on
e more have a trivial 
ase unless the order k1 of #1 is k1 > k � E 2�n�=2.Finally, and this is the real problem as the analysis of a few examples shows, we 
laim that in thelatter 
ase either the root line of #1 is a self-energy line or it 
annot have s
ale � n.To see this, note that j! 0 � � (�0)j � 2n and j! 0 � � (�1)j � 2n, hen
e Æ�j(! 0 � ( � (�0) �� (�1))j � 2n+1, and the Diophantine 
ondition implies that either j � (�0)� � (�1)j > 2�(n+1)� or� (�0) = � (�1). The latter 
ase being dis
arded as k� k1 < E 2�n�=2 (and we are not 
onsideringthe self-energy 
lusters), it follows that k � k1 < E 2�n�=2 is in
onsistent: it would in fa
t implythat � (�0)� � (�1)) is a sum of k�k1 node momenta and therefore j � (�0)� � (�1)j < NE 2�n�=2,hen
e Æ > 23 2n whi
h 
ontradi
ts the above opposite inequality.A similar, far easier, indu
tion 
an be used to prove that if N�n(#) > 0 then the number pn(#)of 
lusters of s
ale n veri�es the bound pn(#) � 2k (E2��n)�1 � 1. Thus equation (5.3) is proved.Remark. The above argument is a minor adaptation of Bryuno's proof of Siegel's theorem, asremarkably exposed by P�os
hel.Appendix A2: The KAM bound for graphs 
ontaining overlapping selfenergy graphs.Let # be a tree with height p: then ea
h of its maximal self-energy 
lusters V 
ontains a tree7 Note that if k � E 2�n� one has, for all momenta � of the lines, j � j � NE 2�n� , i.e. j! 0 � � j �(NE 2�n�)�� = 23 2n so that there are no 
lusters T with nT = n and N�(#) = 0. The 
hoi
e E = N�12�3� is
onvenient: but this, as well as the whole lemma, remains true if 3 is repla
ed by any number larger than 1. The
hoi
e of 3 is made only to simplify some of the arguments based on the self-energy 
luster 
on
ept.8 i.e. su
h that no other lin along the paths 
onne
ting the lines `1; : : : ; `m to the root is on s
ale � n.
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t Renormalization Group 53of height < p. We imagine that all the resummations relative to the lines that enter the self-energy
lusters that are not maximal have been performed so that we only have to 
onsider the trees thatare obtained by atta
hing the lines that enter the maximal self-energy 
lusters T to the nodes ineT . Suppose for simpli
ity that there is only one maximal self-energy 
luster T of height p. Thenthe sum of the values of the trees of the family F(#) obtained by shifting the entran
e node intothe self-energy 
lusters of lower height will have the form� Y�2�(#)n�1(T ) � v0 � � v(! � � (�))2 ��� � Y�2�(eT ) � v0 � � v(! � � 0(�) + ���T )2� � 1�4T � �YTi F (Ti; � vi ; � v0i)�; (A2:1)where � is 1 if the lines entering and exiting the 
luster the last produ
t is over all the maximalself-energy 
lusters Ti 
ontained in T , v0i and vi are the nodes in eTi from whi
h exits (or enters,respe
tively) the line that enters (or exits) the self-energy 
luster Ti, and F (Ti; � vi ; � v0i) is thesum of the values of all the trees that we have to sum in shifting the entran
e node of the lines thatenter the self-energy 
lusters of lower order inside Ti. Note that the lines � in the �rst produ
t arethe lines external to T (but neither entering or exiting T ), while the ones in the se
ond produ
tare the lines internal to T (i.e. lines 
onne
ting to nodes in eT ).We 
an then remark that when �T varies in the 
omplex disk j�T j � 2nT the divisors of thelines that enter the inner self-energy 
lusters T 0 (of any height) do not ex
eed in modulus 2n�T 0 .Therefore we 
an bound the quantities F (Ti; � vi ; � v0i) via the indu
tive bound and obtain that(6.4) is valid also for trees of height p whi
h 
ontain only one maximal self-energy 
luster.The 
ase in whi
h there are many self-energy 
lusters of height p is redu
ible to the 
ase inwhi
h there is only one su
h 
luster, see referen
es, the 
on
lusion is the validity of the inequality(6.4) in general. It would also possible to give a proof of the inequality that is not based on anindu
tive argument but we leave it as a problem for the reader.A
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