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“He who is deficient in the art of selection may, by showingiag but the truth, produce
all the effects of the grossest falsehoods. It perpetuapplens that one writer tells less

truth than another, merely because he tells more ‘truth’.
(T. Macauley, ‘History’, inEssaysVol. 1, p 387, Sheldon, NY 1860)

Dedicated to the memory dfl. Fierz, R. Jost L. Michel andV. Telegdi teachers, col-
leagues, friends.

1 Introduction to ‘Spin’ !

It appears that the 21Century is witnessing a strong decline in Society’s (thdligigh the
politicians’, . . .) interest in fundamental science, in particular in fundataktheoretical
science based on precise mathematical reasoning. It istbamthgine that a discovery
like the deflection of light in the gravitational field of thars along with the underlying
theory — general relativity — and a photograph of its creatirert Einstein would make
it onto the front pages of major daily newspapers, as it ditlhih9.

While it is admitted that the 20Century was theCentury of Physicsit is often
argued that the 21Century will be the Century of the Life Sciencesvhose theoretical
foundations are much shakier, at present, than those ofigshys hundred years ago).
This development is not accidental: The quotient betweersignificance of a discovery
in physics and the (technical, financial and intellectutires necessary to achieve it has
become quite small, as compared to what it was a hundred ggars at least in average.
Moreover, the number of physics discoveries with strondprietogical, industrial and
economical impact has declined in comparison to what it \easundred or fifty years
ago. One might just think of the huge impact of the discoweoid-araday, Maxwelband
Hertz, of controlled nuclear fission, of semiconductors, supaidcgtors and lasers, of
magnetic spin resonance, etc. Nothing quite comparableasppo be happening, these
days.

At the theoretical front, we physicists appear to be somewtuak: We do not have
a clear idea of particle theory beyond the standard modelideas about the nature and
origin of dark matter and dark energy and about a satisfastlution of the cosmologi-
cal constant problem remain tentative and vague, our utadetisig of strongly correlated
many-particle systems continues to be rudimentary, andt mgportantly, we still do not

*Notes prepared with efficient help k}y K. Schnelli and E. Szabo
TLouis-Michel visiting professor at IBS / email: juerg@itp.phys.ethz.ch
11 have to refrain from quoting literature in this introdustesection — apologies!
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see a really compelling synthesis of quantum theory andrgeredativity in a consistent,
unified theory of space, time and matter. We are punishedéiiulge success of physics
in the past Century. While the amount of economic wealth aluedd value that have been
and are still being created on the basis of physics-distewef the 19' and 2¢" Century

is truly gigantic, fundamental physical science is confeohnwith a lack of public interest
and a decline in public funding. Physics appears to haveeshebaroque state, with all
the beauty that goes with it.

It is therefore laudable that our French colleagues aregdeamething to stem the
tide: ‘Bourbaphy! I hope it is not the only activity of this sort, and that it \be accom-
panied by activities aimed at a broader public.

This time, the topic of the Bourbaphy Seminar &pin (and Quantum Statistics)
This choice of topic is not unreasonable, because, on ong, tainvolves some inter-
esting and quite fundamental experiments and theory antheoother hand, it is con-
nected to breathtakingly interesting and important pcattapplications. The scientific
community sees me in the corner of mathematical physicstand, | have been asked
to present an introductory survey of, primarily, the mathéoal aspects of ‘Spin and
Quantum Statistics’. | am only moderately enthusiastiasboy assignment, because, as
| have grown older, my interests and activities have shiftede towards general theoret-
ical physics, and, moreover, | have contributed a varietsestilts to, e.g., the theory of
magnetism and of phase transitions accompanied by vamoossfof magnetic order that
| cannot review, for lack of space and time.

In this short introduction, | attempt to highlight the impamce of ‘Spin and Quan-
tum Statistics’ for many phenomena in physics, includinmetous ones that have found
important technological applications, and | wish to dratemtion to some of the many
unsolved theoretical problems.

Our point of departure is found in the facts that electroosjtpons, protons and neu-
trons are particles withpin% and have aon-vanishing magnetic dipole momestd that
they obeyPauli’'s exclusion principleMoreover, those particles that carry electric charge
experience Coulomb- and Lorentz forces. In a magnetic fiedat magnetic moments and
spins precess (like tops in the gravitational field of thetlai hese facts, when exploited
within the framework of quantum theory, are at the core wast number of phenomena
some of which we will now allude to. They are, in their majgribot very well under-
stood, mathematically.

(1) Chemistry That electrons have spig and obey the Pauli principle, i.e., are
fermions is one of the most crucial facts underlying all of chemiskgr example, it is
at the core of our understanding of covalent bonding. Ifteters werespinlesfermions
not even the simplest atoms and molecules would be the wayatteein Nature: Only
ortho-helium would exist, and the hydrogen molecule woultlaxist.

If electrons we not fermions, but bosons, there would exissiof large negative
electric charge, matter would form extremely dense clurapsd, bulk matter would not
be thermodynamically stable; (see section 3).

Incidentally, the hydrogen molecule is the only moleculeosdn stability has been
deduced directly from the Schrodinger-Pauli equatiorhviitll mathematical rigout
Hund’s ' Rulein atomic physics, which says that the total spin of the edestin an only
partially filled p-, d-, . .. shell of an atom tends to be as large as possible, is veryypoorl

2pby G.M. Graf, J.M. Richard, M. Seifegnd myself.
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understoodmathematicallyon the basis of the Schrodinger-Pauli equation. We do not
understand howrystallineor quasi-crystalline ordecan be derived as a consequence of
equilibrium quantum statistical mechani@dl! this shows how little we understand about
‘emergent behavior’ of many-particle systems on the badism@lamental theory. We are
not trying to make an argument against reductionism, but onavour of apragmatic
attitude: We should be reductionists whenever this attitude is adecural productive to
solve a given problem and ‘emergentists’ whenever thituali promises more success!

(2) The ‘chemistry of hadronsHow far are we in understanding, on the basis of
QCD, that a color-singlet bound state of three quarks (fensiwith spin%), held together
by gluons, which forms a proton or a neutron, has %p'irh—low, in the world, can we reli-
ably calculate the magnetic dipole moments (the gyromagfeattors) of hadrons? How
far are we in understanding theladronic Chemistrypredicted by low-energy QCD?
These are questions about strongly coupled, strongly letekephysical systems. They
are notoriously hard to answer. Equally hard or harder —ghdess topical nowadays —
is to understand ‘nuclear chemistry’.

(3) Magnetic spin-resonancé&he fact that electrons and nuclei have spin and mag-
netic dipole moments which can precess is at the basi&aith’s spin-resonance phe-
nomenonwhich has breathtakingly important applications in thieisce and technology
of imaging (Nobel Prizes foiFelix Bloch, Richard ErnsandKurt Wathrich). Of course,
in this case, the basic theory is simple and well understood.

(4) Stern-Gerlach experimerd direct experimental observation of the spin and mag-
netic moment of atoms. Theory quite easy and well understood

(5) Spin-polarized electron emission from magnetic materighss is the phenomenon
that when massaged with light certain magnetic materiais gpm-polarized electrons
It has been discovered and exploitedHigns-Christoph Siegmarand collaborators and
has important applications in, e.g., particle physics.

(6) Electron-spin precession in a Weiss exchange.flten a spin-polarized elec-
tron beam is shot through a spontaneously magnetized icolalt or nickel film the
spins of the electrons exhibitraigeprecession. This effect has been discovered by H.-C.
Siegmann and his collaborators and might have importariicgpipns to ultrafastmag-
netic switching Theoretically, it can be described with the help of the Zaerooupling
of the electrons’ spin to th@/eiss exchange fielenhuch largerthan the magnetic field)
inside the magnetized film. This is a fairly direct maniféista of the SU(2)spi-gauge-
invarianceof Pauli’s electron equation; (see also section 3.3).

Related effects can presumably be exploited for the prastucif spin-polarized
electrons and for a Stern-Gerlach type experiment for ielast

(7) MagnetismThere are many materials in Nature which exhibit magnetieng
at low temperatures or in an external magnetic field, oftecambination with metal-
lic behavior. One distinguishes betwegesramagnetism, diamagnetism, ferromagnetism,
anti-ferromagnetisiretc. In the context of the quantum Hall effect, the occureeoichi-
ral spin liquidsand of chiral edge spin currents has been envisaged,;

The theory of paramagnetism is due to Pauli; it is easy. Tleer#tical basis of
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diamagnetism is clear. The theory ati-ferromagnetisnrand Néel orderat low tem-
peratures in insulators is relatively far advanced. Butthe®ry of ferromagnetism and
the appearance of spontaneous magnetization is disdgtioasly understoodmath-
ematically Generally speaking, it is understood that spontaneouso{fer anti-ferro-)
magnetic order arises, at low enough temperature, by a cangmwf electron spin, the
Pauli principle and Coulomb repulsion among electrons. 8drdiest phenomenological
description of phase transitions accompanied by the appearof magnetic order goes
back toCurie andWeiss Heisenbergroposed a quantum-mechanical model inspired by
the idea of direct electron exchange interactions betweeghboring magnetic ions (e.g.
Fe) in a crystalline back ground. While it has been shownheragtically, that the clas-
sical Heisenberg model (large-spin limit) and tHeisenberg anti-ferromagnetxhibit

the expected phase transitidnso precise understanding of the phase transition in the
Heisenberg ferromagnétinite spin) has been achieved, yet.

Most of the time, the microscopic origin ekchange interactionisetween spins in
magnetic materials remains poorly understood, matheaititNo mathematically pre-
cise understanding of ferromagnetic order in modelgionérant electronssuch as the
weakly filled one-bandHubbard modelhas been reached, yet. However, there is some
understanding of Néel order in the half-filled one-band bard model (Anderson mech-
anism) and of ferromagnetic order in Kondo lattice models with aakly filled con-
duction band Zener's mechanismof indirect exchangg which is mathematically rather
precise azerotemperature.

Realisticspin glasseare extremely poorly understood, theory-wise.

Alltogether, a general theory of magnetism founded on begiglibrium quantum
statistical mechanics still remains to be developed!

Of course, magnetism has had enormously important apjoliain magnetic data
storage, used in computer memories, magnetic tapes argl disk This brings me to the
next point.

(8) Giant and colossal magneto-resistan€le discoverers of giant magneto-resistance,

Albert FertandPeter Giinberg have just been awarded the 2007 Nobel Prize in Physics.
Their discovery has had phantastic applications in the afrélata storage and -retrieval.
It will be described at the Bourbaphy seminar by Fert andataltators. Suffice it to say
that electron spin and the electron’s magnetic moment amngrthe main characters in
this story, and that a heuristic, but quite compelling tleéoal understanding of these
phenomena is quite advanced.

(9) Spintronics This is about the use of electron spin and multi-spin erleangnt
for the purposes of quantum information processing and tguagcomputing. Presently,
it is a hot area in mesoscopic physics. Among its aims mighhbée&onstruction of scal-
able arrays of quantum dots (filled with only few electrorm)the purposes of quantum
computations; (the spins of the electrons would store thsb

(10) The Ble of electron spin and the Weiss exchange field in electronhole —
pairing mechanisms at work in layered high-temperatureescgnductors This is the
idea that the Weiss exchange field in a magnetic material cadupe a strong attractive
force between two holes or electrons (introduced by dogmg)spin-singlet state, lead-

3in work by Simon, Spenceand myself, and bfPyson, Lieband Simon; and followers.
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ing to the formation of Schafroth pairs, which, after corgbgion, render such materials
superconducting.

(11) The Ble played by spin and by particle-pairing in the miraculqisse diagram
of *He and in its theoretical understandinghis is a complicated topic which several fat
books have been written about.

(12) The Ble of the Pauli principle (and spin, in particular neutropis) in the
physics of starsThe theory of the Chandrasekhar limit for white dwarfs aadtron stars
is based on exploiting the Pauli principle for electrons eatnons in an important way.
The superfluidity expected to be present in the shell of aroewgtar is a phenomenon
intimately related to the spin of the neutron, neutron pgiand pair condensation.

Many of these topics have been close to my heart, over the yaad | have written
hundreds of pages of scientific articles that have been reanhlly few people. It would
be useful fun to offer a one-year course on these mattersirBilte following sections, |
really have to focus on just a felasicaspects of ‘Spin and Quantum Statistics’.

Acknowledgmentsthank C. Bachas, B. Duplantier and V. Rivasseau for ingitime
to present a lecture at the Bourbaphy Seminar and my teaghdrsumerous collabora-
tors for all they have taught me about ‘Spin and Quantum Siedi, over many years. |
am very grateful to Kevin Schnelli for his help.

Remark. These notes have been written at a ‘superluminal’ speedranttherefore
likely to still contain errors and weaknesses, which | wisloffer my apologies for.

2 The Discovery of Spin and of Pauli’s Exclusion Principle, Htorically Speaking

My main sources for this section are [1-6]. Let us dive intittkelhistory of science, right
away.

2.1 Zeeman, Thomson and others, and the discovery of the etean

Fairly shortly before his death, in 186Nichael Faradaymade experiments on the in-
fluence of ‘strong’ magnetic fields on the frequency of lightitted by excited atoms or
molecules. He did this work in 1862 and did not find any posiwidence for such an
influence. In the 1880’s, the American physidinry Augustus Rowlankivented the
famous ‘Rowland gratings’, which brought forward much heglprecision in measuring
wave lengths of spectral lines.

In 1896,Pieter Zeemaya student oKamerlingh OnneandHendrik Antoon Lorentz
took up Faraday’s last experiments again, using Rowlanihgia He found that the two
sodium D-lines are broadened when the magnetic field of atrefaagnetis turned on.
He proposed to interpret the effect in terms of Lorentz’ tigeaf charges and currents
carried by fundamental, point-like particles. In 1895, ¢tz had introduced the famous
Lorentz forceacting on charged particles moving through an electromagfeld. When

4Concerning electromagnets, one could embark on a repoheoiportant contributions and inventions Rierre Weissonce
upon a time a professor at ETH Zurich.
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Zeeman had discovered the effect named after him Lorenfroenl a model of harmon-
ically bound charged particles of chargeWhen a magnetic field/ is turned on in a
direction perpendicular to the plane of motion of such aiplarthe angular frequency of
its motion changes by the amount

Aw = =—|H,
2me

wherem is its mass and is the speed of light. Using Lorentz’ formula, Zeeman irdelrr
from the broadening of the sodium lines that

S 10"emu/g (1.76 x 107emu/qg) .
m

In 1897, Zeeman discoveredsglitting of the blue line of cadmium, in rough agree-
ment with Lorentz’ theoretical expectations. From polatian effects he inferred that
is negative George Stonepad earlier provided an estimate for the elementary etectri
chargee. Thus, Zeeman could have predicted the mass of the chargecgthat emits
electromagnetic radiation from the ‘interior’ of an atomnoolecule, theslectron

In the same year, the quotiefitwas measured in experiments witiithode raysfirst
by Emil Wiecherf who conjectured that such rays consist of charged partidtésa very
small massn (=mass of an electron); then - with very high accuracy Wslter Kauf-
manand, more or less simultaneously, by. Thomsonwho also proposed Wiechert’s
charged-particle picture. In 1899, Thomson measured the\af e by cloud chamber
experiments, and, in 1894, he had obtained some bounds apé#esl of propagation
of cathode rays, showing that this speed is considerablylanthan the speed of light.
This combination of accomplishments led to the common vieat §.J. Thomson is the
discoverer of thelectron

After the discovery of relativistic kinematics in 1905, Binstein experiments with
electrons became the leading tool to verify the kinemapcadlictions of thespecial the-
ory of relativity.

2.2 Atomic spectra

“Spectra are unambiguous visiting cards for the gases vemahthem”. (Abraham
Pais [1])

Spectroscopy started in Heidelberg with the worlGafstav Kirchhoff(1859) andRobert
Bunsen Against the philosophical prejudices siiguste ComteKirchhoff concluded
with the help ofabsorption spectroscopat the solar atmosphere must contain sodium
Kirchhoff and Bunsen are the fathers of modern optical spscbpy and its application
as an exploratory tool.

The first three lines of thieydrogen spectrunwere first observed byulius Plickerin
1859, then, more precisely, B\ndersAngstbmin 1868. Searches for patterns in spectral
lines started in the late 1860’s. The first success came Stitheyin 1871. The break-
through was a famous formula,

50f fame also in connection with the Liénard-Wiechert ptitds.
6“It's not philosophy we are after, but the behaviour of rémhgs.” (R.P. Feynman)
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where the)\,, are wave lengths of light emitted by hydrogen, C is some emisand
n = 3,4,..., discovered bylohann Jakob Balmein 1885. In 1892 Carl Rungeand
Heinrich Kaysemade precise measurements of spectral lines of 22 elenrantgeand
Friedrich Pascherdiscovered the spectra of ortho- and parahelium. A precufkthe
Rydberg-Ritz combination principleas discovered in 1889 bjohannes Rydberdts
general form was found by/alther Ritan 1908.

Precursors oRutherford’s planetary modelf the atom (1911) can be found in re-
marks byHeinrich Hertz(lectures about the constitution of matter in Ki¢flgermann von
Helmholtz Jean Perrin(1901),Hantaro Nagaokg1903), andl.J. Thomsoi{1906).

In 1913,Niels Bohrcame up with his quantum theory of the hydrogen dtomith
the idea that spectra are due to photon emission duringiticarssof an electron from
one ‘stationary state’ (a term introduced by Bohr) to angtéwed with theBohr frequency
condition which has a precursor iginstein’swork of 1906 on Planck’s law for black-
body radiation. Bohr’s results provided a quantum-thecaétexplanation’ of Balmer’s
formula and of a special case of the Rydberg-Ritz combingirinciple.

Subsequent to Bohr’s discoveries, in attempts to intefeiso-called ‘fine struc-
ture’ of atomic spectra discovered Bybert Michelsor(1892) and Paschen (1915), Bohr’s
guantum theory was to be married with the special theory lafivity. The pioneer was
Arnold Sommerfel@1916). He introduced thigne structure constant

62

o= —.
he
Sommerfeld’s formula for the relativistic hydrogen enesggctrum is
1 a? 1 3
E = _ 4= _ 4 2.1
ni = —Ry {n2+n3 <l+1 4n)]+0(a)7 (2.1)

wheren = 1,2,3,...,1=0,1,...,n — 1 and Ry is the Rydberg constant. Of courge
with |L| ~ A(l + 1), is the (quantized) angular momentum of the electron orithe
nucleus.

In trying to explain experimental results of PaschBahr and, independenty\oj-
ciech Rubinowicta collaborator of Sommerfeld) found teelection rule

Al = +1 (2.2)

for transitions between stationary states.

This idea did not work perfectly. In 1925, in their first pudation and after ground-
breaking work ofWolfgang Pauli George Uhlenbeckand Samuel Goudsmjiroposed a
modification of the Bohr-Rubinowicz selection rule: In (B.&rite

1
l+1:j+§, (2.3)
with j half-integer, and replace (2.2) by
Aj=0,+1. (2.4)

This reproduced data for the fine structure of the Idpectrum perfectly. Here, the half-
integer quantum numberappears. Similar ideas were proposed independentiohy
Slater.

"His theory has a more incomplete precursor in the worRrtiiur Erich Haas(1910).
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Of course, the half-integer nature ¢f(for atoms or ions with an odd number of
bound electrons) is related &ectron spin as everybody knows nowadays. Actually,
half-integer quantum numbers were first introduced systieally by Alfred Lancin an
analysis of the Zeeman effect and correctly interpretedP@éyli, as “due to a peculiar
classically not describable two-valuedness of the quarihearetical properties of the
valence electron”, in 1924.

We have now reached the period whalactron spinenters the scene of physics. |
shall briefly sketch how it was discovered by Pauli towardsehd of 1924.

2.3 Pauli's discovery of electron spin and of the exclusionmnciple

Pauli’s papers on electron spin and the exclusion prinapée[7,8,10]. In [7], he an-
alyzes what is known as tHanomalous Zeeman effectiamely the Zeeman effect in
weakmagnetic fields (when relativistic spin-orbit terms donténaver the Zeeman term
in the atomic Hamiltonian). This theme is taken up again idQBand leads him to dis-
cover electron spin and the exclusion principle. Let us ssethis happened!

In [7], Pauli started from the following facts and/or assuimps; (I follow modern
notation and conventions).

(1) Spectral terms (energy eigenvalues correspondingtiosary states) can be labeled
by ‘quantum numbers’:
(i) A principal quantum number,, (labeling shells).
(i) L=0,1,2,3,...(S,P,D, F,...)with L < n— our orbital angular momentum
quantum number — andl/;, = —L, —L + 1,..., L — the magnetic quantum
number.

(i) S=0,1/2,1,..,andMg= -8, -S+1,..., S.

(iv) The terms of a multiplet with givelh and S are labeled by a quantum number
J (our total angular momentum quantum number), whose p&ssdiles are
J=L+S L+S—-1,....,|L-S5|.

(2) There areselection ruledor the allowed transitions between stationary states:
AL =41, AS =0, AJ =0, %1 (with J = 0 — J = 0 forbidden).
(3) For a given atomic numbef (of aneutralatom) one has theorrespondence
Z even «—— S, Jinteger

Z odd «—— S, Jhalf-integer

(4) Bohr’s frequency conditiorfThe formula for the frequency of light emitted in a
transition from one stationary state to a lower-lying one.)

(5) Line splittings in a magnetic fieldi. If Zeeman splitting dominates fine structure
splitting (Paschen-Back effédhen the energy splitting is given by

AE ~ (Mg + 2Ms)M0|H| , (2.5)

wherey, = - is Bohr's magnetorgactually introduced by Pauli in 1920).

2mce
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If fine structure (spin-orbit interactions) dominates oZeeman splittinggnoma-
lous Zeeman effect term with quantum numbef splits into2J + 1 equidistant
levels labeled by a ‘magnetic quantum numbef’'= —J, —J + 1,..., J, and the
energy splitting for a term with giveh, S, J andM is given by

AE = Mgpo|H]|
whereg is theLance factor,

3 S(S+1)—L(L+1)
9=3+ 2J(J +1) ' (2.6)

The selection rules for transitions are given by

AM =0, +1.

Starting from the Paschen-Back effect, Pauli postulatasttte sum of energy lev-
els in a multiplet with given, and M is alinear function of\ﬁ\ when one passes from
strong to weak magnetic fields. He then determines Lang&stors uniquely from the
energy splittings in large fields and the ‘sum rule’ justesttNowadays, these calcula-
tions are an elementary exercise in the algebra of quanteofamical angular momenta
(see, e.g., [6]), which | will not reproduce. Pauli conclades paper [7] with prophetic
remarks that a derivation of the ‘laws’ he discovered witthia principles of the (old)
guantum theory then known, does not appear to be possiblethd connection between
angular momentum and magnetic moment predicted by Larrtteesrem does not gen-
erally hold(¢ge = 2!); and that the appearance of half-integer valued/oénd J goes
beyond the quantum theory of quasi-periodic mechanicaésys

Soon afterwards, Pauli started to think about the problecoaipletion of electron
shells in atoms and the doublet structure of alkali spe@iné led him to his important
paper [8]. Before | sketch the contents of [8], | recall a d&nd calculation of the gyro-
magnetic ratio between magnetic momént and angular momentut. We consider a
distribution of rotating, charged, massive matter. If weuase that the charge and mass
densities are proportional to each other then

M

M} _ dal 2.7)
|L| 2mc

whereq is the total charge andh the total mass. Apparently, the Landé factogds= 1.

If the same calculation is done using relativistic kinemwaas Pauli did in [8]) one finds

that

MY _ Jal o1 (2.8)

| 2mc
wherey = (1 — Z—i)‘m, v is the speed of a mass element, dnddenotes a suitable
average. Note thdty) ! < 1!

When Pauli worked on paper [8] the prejudice was that, faalalle metals, the quan-
tum numbelS was related to the angular momentum of toee (filled shells) of an atom.
It was then to be expected that it would correspond to a magmetment)/ with
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& (=
2mc(v) S

Thus, the Landeé factor of the core should have come out to be

Gcore = (7)_1 <1. (2.9)

Since the electrons in the core of largeelements are relativistic, the prediction of the
‘core model’ would have been thad,e is measurably smallethan 1.

However, formula (2.5), well confirmed, for Iargé7\, in experiments by Runge,
Paschen and Back for largeelements, and Landé’s formula (2.6) were only compatible
with

| M| =

Gcore = 2.

Pauli concluded that' could not have anything to do with the angular momentum of
the core (filled shells) of an atom. He goes on to propose thed §hells have angular
momentum 0 and daot contribute to the magnetic moment of the atom. By studying
experimental data for the Zeeman effect in alkali atoms,rhges at the followingkey
conclusion

“The closed electron configurations shall not contributéhi® magnetic mo-
ment and angular momentum of the atom. In particular, forahalis, the
angular momenta of, and energy changes suffered by, theiatamexternal
magnetic field shall be regarded exclusively as an effechefvalence elec-
tron (‘Leuchtelektron’), which is also the source of the metp-mechanical
anomaly. The doublet structure of the alkali spectra, as well as thiation
of the Larmor theorem are, according to this point of viewesuit of a classi-
cally not describable two-valuedness of the quantum-#tesal properties of
the valence electron.”

Thus, Pauli had discovered tlspin of the electrorand the‘anomaly’ in its g-factor,
ge — 2.

Soon,Ralph Kronigand, independentlyJhlenbeckand Goudsmitinterpreted the
guantum numbefF as due to an intrinsic rotation of electrons, picturing thasnlittle
charged balls. Kronig explained his idea to Pauli, who thdugwas nonsende and
Kronig did not publish it. Uhlenbeck and Goudsmit were confed with objections by
Lorentzagainst their idea related to the fact thhat= 2, and wanted to withdraw their
paper from publication, buEhrenfestonvinced them to go ahead and publish it.

Now comes the problem of tHEhomas precessiors had been discovered by Ein-
stein and explained by him to his colleagues working on trentjum theory, an electron
traveling through an electric fiel# with a velocityv feels a magnetic field

= /17 — /U2 —
B=-YAEt0O (—2|E|) (2.10)
C C

in its rest frame. If its magnetic moment in the rest framedaated by) one expects
that its spinS, will exhibit a precession described, in its rest frame, by

8/, — 921
ge = 2!
90ne might saycorrectly, (sinces = % is far away from the classical limit = o)
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as -
— =MADB 2.11
— =N A (2.11)
corresponding to a magnetic energy
U=-M-FB. (2.12)
For an electron in the Coulomb field of a nucleus
- 7d
o= TV (2.13)
r dr

wherer is the distance to the nucleus, ands the Coulomb potential. Plugging (2.13)
into (2.10) and (2.10) into (2.12), we find that

where L is the orbital angular momentum, the well-known spin-orbieraction term.

If this formula is taken literally and compared with Somneduifs calculation of the fine
structure (see eq. (2.1)) one finds thaimust be 1. This is a contradiction to the value
ge = 2 found in the analysis of the Zeeman effect for alkali atoms.

This contradiction vexed many people, foremost Pauli, Hegsenbergcommuni-
cated it to Uhlenbeck and Goudsmit when he saw their papére(nutige Note”). It
was resolved by.lewellyn Thomasin February 1926. Thomas pointed out that the rest
frame of an electron moving in the Coulomb field of a nuclewisiallyrotating relative
to the laboratory frame. The angular velocity of that ratatis denoted by. Then the
equation for the precession of the electron’s spinmoa-rotatingframe moving with the

electron is given by
ds ds L =
(E) | = (E) +wr A S, (214)
non-rotating rest frame

with (‘il—*f given by (2.11). The ‘magnetic energy’ in the non-rotatiranie is then

given by

) rest frame

U=U+5 -&r. (2.15)

The problem now boils down to calculating-. This is an exercise in composing Lorentz
boosts whose solution can be looked up, e.g., in [9]. The dtarfor U is

lany v?
szi > <1+(’)<C—2)), (2.16)

whered is the acceleration of the electron, which, in an electrildfies given by—%ﬁ,
up to correction® (£). ThenU is given by

U:M@(%E), (2.17)

2me c

which, in the Coulomb field of a nucleus, becomes
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(ge—1)e = =1dV

2me 5 Lr dr
This expression reproduces the correct fine structure.ésspon (2.16) for the Thomas
precession frequency and the second term on the R.S. of) (2a¥B been verified, exper-
imentally, in data for spectra of nuclei (where the Lagefactor doesot take the value
g =2).

Thomas’ observations convinced people, including Einsaéeid Pauli, and boosted
the acceptance of the naive interpretation of electron ppaposed by Uhlenbeck and
Goudsmit in the physics community.

| conclude my excursion into the history of the discoverymihsvith comments on
precursors.

U ~ (2.18)

In 1900, George Francis FitzGeralchad raised the question whether magnetism
might be due to a rotation of electrons. In 192kthur Comptonproposed that “it is
the electron rotating about its axis which is responsibleféoromagnetism”; (see [1],
page 279). The same idea was proposedbégnard who also argued (independently
of Abrahan), that g, could have the value 2. In 1924 (before he wrote the papers [8]
and [10]), Pauli proposed that the atomic nucleus must, nege, have a non-vanishing
angular momentum, which was relevant for an explanatiolypéHine splitting. (Whether
his idea influenced Uhlenbeck and Goudsmit, or not, is untletrather unlikely.) Inde-
pendently of (and priorly to) Uhlenbeck and Goudsidipnig andUrey anticipated their
idea, andBosehad the idea that photons carry an intrinsic ‘spin’ (or hljas we would
call it nowadays).

Almost all these ideas were somewhat flawed or incompleteekample, we un-
derstand — since Heisenberg’s proposal of a model of fegoetésm — that théauli
principle plays as important a role in explaining ferromagnetismlasten spin.

Thus, let me briefly recall the history of the discoveryR#uli’'s exclusion prin-
ciple®. This discovery was made on the basis of Bohr's work on thégier table of
elements, in particular hipermanence principle{electrons in the shell of an ion keep
their quantum numbers when further electrons are added)pfan important paper by
Edmund Stondfl1]. Stoner classified electron configurations correspuantb given val-
ues of the quantum numbeksand.J and found, for alkali atoms, that thetal number of
electrons in such a configuration is identical to the numlbéerons in the Zeeman spec-
trum of these atoms, namey2L + 1), for every L < n (=principal quantum number).
Pauli accidentally came across Stoner’s paper. Consglatkali spectra, Pauli notices
that “the number of states in a magnetic field for given vahfes and.J is 2J + 1, the
number of states for both doublets together, witfixed, is2(2L + 1)”. Using Bohr’s
permanence principle, he extends his counting of statete eomplicated atoms and
to all electrons in the hull of an atom. He concludes that “evergted@ in an atom can
be characterized by a principal quantum numbemnd three additional quantum num-
bers(L, J,m;)", (with J = L =+ 1). He notices that, fol. = 0, there are four possible
states for two electrons with different principal quantuomibers, but only one when
their principal quantum numbers agree. He then goes on taiexptoner’s and his ob-
servations by postulating that each state characterizegiagtum numberg, L, J, m )
can be occupied by at mosheelectron. (Pauli had actually defindd.J = L + % and

103 name introduced birac in 1925
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my = J,J —1,...,—J for singleelectrons.) This is thexclusion principlePauli con-
cludes his paper with the sentence:

“The problem of a more coherent justification of the geneudds concerning
equivalent electrons in an atom here proposed can probalbybe attacked
successfully after a further deepening of the fundamemiatiples of quantum
theory.”

Further deepening of the fundamental principles of quantheary was to come for-
ward, just a few months later, starting with the worktéisenberg12], followed by
a paper byMax BornandPascual Jordar{13], the “Drei-Manner-Arbeit” [14], Dirac’s
first contributions to the new matrix mechanics [15] (puidid before he earned his PhD
degree undeFowler in 1926), and, finally, bySchibdinger'swork on wave mechanics,
in 1926; see [16]. When Heisenberg started to do his fundeahemrk resulting in the
paper [12], his friend Pauli was momentarily fed up with ciuamtheory and worked on
Kaluza-Klein theory.

The quantum mechanics of angular momentum, includingihtdfyer angular mo-
mentum, was fully developed in [14]. Pauli’s exclusion prple was reformulated, quan-
tum mechanically, as saying that many-electron statesgwiavctions) must béotally
anti-symmetriazunder permutations of the positions and spins of individlattrons. An
early contribution in this direction was in a paper by Helseng, the general formula-
tion is due to Dirac (1926) and, in its definitive versionBaogene Wigne(1928), who
profitted from his friend’sJohn von Neumantknowledge of the permutation groups and
their representations. The first applications to statiticechanics were made grmi
and Dirac, in 1926, (Fermi-Dirac statistics).

Bose-Einstein statistiqéor particles with integer spin) was introduced Bgse(for
photons) an&instein(for ideal monatomic quantum gases) in 1924. Its quanturcheueical
reformulation says that wave functions of madgnticalbosons must be totally symmet-
ric under permutations of these particles. Einstein ptediBose-Einstein condensation
for non-relativistic Bose gases (and useslave pictureor the atoms in the gas) in 1924.

It should be added that the spin and the vatue 2 of the gyromagnetic factor of the
electron, as well as the fine structure of the hydrogen sypcthat led to the discovery
of the Thomas precession, all found a natural explanatioearv@irac discovered his
relativistic electron equation named after him, in 192 [g&’]. We will briefly return to
this equation, later.

I will now shift gears and leave the history of the discoverd spin and quantum
statistics. | will describe some highlights, mathemataradl physical ones, that emerged
from these discoveriesiot attempting to provide a historical perspective and jumping
over many important developments.

3 Some of the Mathematics of Spin and a Theorem of Wel/

The model of space and time underlying non-relativisticduan mechanics is inherited
from Newtonian mechanic®hysical space is homogeneous and isotropic, and an appro-
priate model is three-dimensional Euclidian spBéeTime is modelled by the real line,
with the standard order relation and metric. Space-tintés given byE? x R. Events

11sources for the material in this section are [6,18-22].
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are identified with points inM. The time difference between two events and the spa-
tial distance between them are invariants. Dynamical symessof autonomous physical
systems are described by the group of Euclidian motionsstsaand time translations,
the so-calledsalilei group.

The model of space-time underlying special-relativistiagtum theory (gravity ne-
glected) is usually taken to be the one propose®dincate andMinkowski Space-time
is denoted byM ~ R%, events are labelled by points int, and the only invariant for a
pair of events labelled by the poinis ) and(t', 2) is given by

At —t) =7 -7,

wherec is the speed of light. If this quantity is positive theiyn(t — ¢') is an invariant,
too. Symmetries of autonomous physical systems are desdofpthe Poincaré transfor-
mations of M, which form thePoincaré group

The Galilei group is recovered from the Poincaré group brgug contraction’, as
the ‘deformation parametet’/c tends to 0. As long as recoil on the gravitational field
is neglected and this field is treated asexternal field there are many good models of
Lorentzian space-times that can serve as receptacles foargugn theory. But a good
model of space-time underlying a quantum theory of mattdrgaavitation is not known,
yet!

What has all this got to do with spin? Both the Galilei and tloénParé group in
d = n + 1 dimensions (withm = 3, in nature) contain the groupO(n) of spatial rota-
tions as a subgroup: Generally speaking, if physical spais®iropic spatial rotations are
dynamical symmetries of autonomous non-relativistic goecil relativistic quantum-
mechanical systems, and we must ask how these symmetriespaesented on the space
of states of such a system, and what this has got to do with spin

Let G be any group of symmetries of a quantum-mechanical systémanilbert
spacesZ of pure state vector&ugene Wignehas shown that symmetry transformations
labelled by elements af are represented as unitary or anti-unitary operators@otm
2, and that these operators must defimpeaective representatioof G on .7, (because
the phase of a vector i’ is not observable; the spacemire statebeing given by pro-
jective space over?’). Valentin Bargmanras shown that i€; is aconnectedcompact
Lie group then all projective representationg’dhire given by unitary representations of
theuniversal covering grou: associated witld-.

If G =S0(n),n=2,3,4,...,(the rotation group im dimensions), then

_ R ,n=2
G = SU(2) ,n=3
Spin(n) , n general

Thespinof a quantum-mechanical particle is viewed as its intriasigular momen-
tum and is thus described as the generators of rotationsiiregiucible, unitary represen-
tation of the quantum-mechanical rotation grotypn(n), wheren is the dimension of
physical space. For = 2, these representations are given by the characters of ol gr
R, i.e., by areal numbers, called the ‘spin of the representation’. For= 3, the repre-
sentation theory of (the Lie algebra of) S@h= SU(2) has been worked out in [14] and
is taught in every course on introductory quantum mechahieslucible representations
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are labelled by their ‘spins = 0, %, 1, g, .... For generah, we refer, e.g., to [23]. We
do not have to go into this theory in any detail. We just not,tforn > 3, Spin(n)

is a two-fold cover ofSO(n) and that, as a consequence, there are irreducible represen-
tations of Spin(n) that aresingle-valued representationd SO(n) (rotations through an
angle2r =identity) labelled by & = 1’, and representations éfpin(n) that are double-
valued representationsf SO(n) (rotations through an angler = —identity) labelled

by ‘c =-1".

For an understanding of differential-geometric aspectpof it is useful to consider
the quantum mechanics of a single non-relativistic partiath spin moving in a physical
space described by a rather generalimensional manifold. Of course we are mainly
interested in the examples= 2 (planar physics) and = 3; but, for later purposes, it
pays to be a little general, here. We are interested in fatimg non-relativistic quantum
mechanics on a space timé of the form

N=MxR,

where physical spac# is a general smooth, orientabigin® manifold, equipped with

a Riemannian metrig, andRR denotes time. Our goal is to derive Pauli’'s wave equation
for a non-relativistic electron with spin moving i under the influence of an external
electromagnetic field and to also consider the quantum nméchaf positronium (a bound
electron-positron pair). For the standard chaiee = E? of direct interest in physics,
Pauli’s wave equation was discovered in [18].

3.1 Clifford algebras and spin groups

Let 7, be the unitatalgebra generated by elemebits. . ., b* and their adjointg'*, . .., b**
satisfying the canonical anti-commutation relations (JAR

W0} = b 0y =0, {107} =69, (3.1)

where{ A, B} := AB + BA. The algebraF; has a unique irreducible unitary represen-
tation on the Hilbert spacg := c?* given by

bJ:7-3®...®7-3®7-_(g>:|12(g>...(g>]127
(3.2)

bJ*:7-3®...®7-3®7—+®]l2®...®]l2’

with 7. := %(n + iry) in the j factors;r, , 7 andr; are the usuat x 2 Pauli matrices.

The representation (3.2) is faithful, and hedGe~ M (2*,C), the algebra of* x 2*
matrices over the complex numbers.

Let V' be a real, orientedi-dimensional vector space with scalar prodict) . The
complexified Clifford algebra’i(1) is the algebra generated by vectofs), c(w), linear
inv, w, with v andw in V" ® C, subject to the relations

{c(v),c(w)} = =2(v, w). (3.3)

If e, ..., e"is an orthonormal basis &f, n = dim V, then (3.3) implies that

{c(€"),c(e!)} = —26".
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A *operation is defined by
c(v) = —c(v), (3.4)

v eV ®C. Letn = 2k + p, wherep = 0 or 1 is the parity ofn. Setting
c(e¥ 1) =V — v,

(3.5)
c(e’) =i (¥ +07),
j=1,... k,and, forp =1,
c(e") = £ e(el) - e(e™), (3.6)
whereb'# ... b*# act onS and generaté,, we find thate(e!), . . ., c(e") define a repre-

sentation ofC{(V') on S. Egs. (3.5), (3.6) define thenique up to a sign related to space
reflection,irreducible unitaryrepresentation of'/(V), which is faithful. Hence

Cl(V)~ M (2",C) . (3.7)
A scalar product oi'/(1") extending the one oW is defined by

{a,b) :=27%tr(a*D), (3.8)
a,be Cl(V).

Thespin groupSpin(V) is defined by
Spin(V) :={a € CIF*(V) |aa* = a*a = 1,ac(V)a* C c¢(V)}, (3.9)

whereCl£®(V') denotes the real subalgebra@#f(1") generated by products of an even
number of elements of the fora{v), v € V. We also setSpin(n) = Spin(E™). The
groupSpin® (V) is defined by

Spin®(V) := {e“a|a €R, a € Spin(V)} . (3.10)
For eachu € Spin®(V'), we define a linear transformatioti(a) of V by
c(Ad(a)v) = ac(v)a*, vE V. (3.11)

Clearly, this linear transformation preserves the scatadyct onV’, and we have the
short exact sequence

1 — U(1) — Spin©(V) 24 s0(V) — 1.
The Lie algebrapin® (V) of Spin®(V) is given by
spin©(V) = spin(V) ® R, (3.12)

where
spin(V) = {£ € CI®V)|[ £+ =0, [£,c(V)] Ce(V)}. (3.13)

One then finds that

spin(V) = {Z zije(e’)e(e’)

zij =~ € R} = s0(V). (3.14)
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GivenV, let A\’ (V ® C) denote the exterior algebra over® C. There is a canonical

scalar product o\ (V' @ C) extending the one o @ C = \'(V @ C). Forv € V @ C,
we define operators® (v) anda(v) on A" (V ® C) by setting

a'(v)w:=vAw, (3.15)
a(v)w :=1(Gv)w, (3.16)

where(G is the metric onV defining the scalar product dnr, so thatGu is in the dual
space of/, and: denotes interior multiplication. Ther{v) = (a*(v))*, and the operators
a*(v), a(v), v € V ® C, are the usual fermionic creation- and annihilation opesat
satisfying the CAR, with
/\'(V ® C) ~ fermionic Fock space (3.17)

The operators

[(v) :=a"(v) — a(v), [(v) :=i(a*(v) + a(v)), (3.18)
then define two anti-commuting unitary representationSigi") on \"(V @ C).

Letdim V = 2k (p = 0) be even. We set
7 =*T(e!) - T(e"),

whichanti-commutesith all T'(v), and satisfies? = 1. Let S ~ C2* ~ 5. We then have
that

ANVeC ~ses,
with

Fwv)~clv)®1, (3.19)
T'(v) ~y®é), (3.20)

wherec andé denote the irreducible representationgsf!’) on S andS, respectively.
If dimV =2k + 1is odd then
v =) ()

commutesvith all I'(v), and satisfies? = 1. The operatory has two eigenvalues; 1,
both with multiplicity 2!, It follows that

ANVeC ~seCes,
and

F'w)=clv) @1, (3.21)
Tv)=1®n ®&v). (3.22)
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3.2 Pauli's wave equation for an ‘electron’ and for ‘positronium’ in a general differential-
geometric formulation — susy QM

We are ready, now, to formulatauli’'s wave equation for spinning particl¢$8] on a
space-time\V' = M x R, whereM is a generalp-dimensional smooth (compact) spin
manifold, e.g..M = E", n = 2,3. Letg = (g;;) be aRiemannian metrion the tangent
bundleT M of M, and letG = (¢*) denote the corresponding inverse metric on the
cotangent bundlé* ). Let "M be the bundle of differential forms o1, with 2" (M)

the space ofomplexified sectionsf A" M. This space is equipped with a natural scalar
product(-, -), determined by, and by the Riemannian volume form. L&i(M) be the
Clifford bundle overM; its base space i81 and its fibres are given bg'l{(7T M) ~
CUE™), with n = dim M. Let A = C>(M) be the algebra of smooth functions on
M. The space of section§(FE), of a vector bundlgZ over M is a finitely generated,
projective module for4; F is trivial iff I'(E) is a free.A-module. Our standard examples
for £ are

E=TM,T*"M, A\'M, Cl(M).

The Clifford bundle oveyM has two anti-commuting unitary representatidhandI’, on
the module®?’ (M), which we define as follows: Given a (complex) 1-foxme Q(M),
we introducecreation-andannihilation operators:.* (w) anda(w) on Q' (M),

a'(w)o=wAa, a(w)o :=1(Gw) o, (3.23)
for o € ' (M). Then (witha® = a or a*)
{a#(wl),a#(wg)} =0, {a(wl),a*(wg)} = (w1,ws), (3.24)

for wy, wy € QY(M), where(-,-) is the hermitian structure o\’ M. We define two
anti-commuting representatiohisandl” of C1(M) on Q' (M) by setting

['w):=a"(w) — a(w), I:=i(a*(w) +a(w)) . (3.25)
If the manifold M is spirf (which we have assumed) then
QM) =T(S)®4 (C°®)T(S), (3.26)

whereS = S(M) is thespinor bundleand S the (charge-) conjugate spinor bundle over
M. The factorC? on the R.S. of (3.26) only appearsif= dim M is odd. The modules

['(S) andI'(S) carry unitary representatiomsinde, respectively, of”'l(M) with
Nw)=cw) @ (r®)1, (3.27)
INw)=1® (n®)tw); (3.28)

see Sect. 3.1. (Over a coordinate chari\df egs (3.26) - (3.28) always make sense, by
the results of Sect. 3.1. Builobally, theyonly make sense iM is spirf!)

Let V be thelLevi-Civita connectioon A" M (unitary with respect tg and torsion-
free). A connectiorV* on S is called a spif connection iff it satisfies thel_gibniz rule

VR (c(©)v) = (VXY + c(§) VXY, (3.29)
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whereX is a vector field onM, ¢ a 1-form andy) aspinorin I'(.S), i.e., a section of.
If V¥ andV; are two hermitian spinconnections or then

(Vi -V =ia®, (3.30)

for¢ € I'(S), wherex is a real, globally defined 1-form. Physicallyjs the difference of
two electromagnetic vector potentiald; and A,, so-called Vvirtual U(1)-connection’s
onS; (A;, 1 = 1,2, is ‘one half times d/(1)-connection’ on a line bundle, canonically
associated witly ® S, with magnetic monopoles inside non-contractible 2-sghar the
homology of M).

The Pauli (-Dirac) operatorD 4 associated with a spinconnectionv® on S is de-
fined by

Dy:=coV?9, (3.32)
which is a linear operator ofi(.S). Locally, in a coordinate chart 0¥1, with coordinates
b am,

Dy=) c(da?) V7, (3.32)
j=1
with

{c(dxi), c(dxj)} = g(x).

To everyV? there corresponds a unique conjugate connediidnon S, obtained by
reversing the electric charge, i.el,— — A, and we define

D yi=coV, (3.33)

an operator acting ofi(.5).

The bundlesS and S are equipped with a natural hermitian structure. Let/gde-
note the Riemannian volume form av. By 7 we denote the Hilbert-space completion
of I'(S) in the scalar product ofi(S) determined by the hermitian structure $fand
dvol,; 7 is defined similarly, withS replaced bys.

We note, in passing, that the closuresidf, D_ 4 are selfadjoint, elliptic operators
densely defined on?;, 74, respectively.

ThusM equipped with a Riemannian metyjcgives rise to what Alain Connes [22]
callsspectral triples

<A7 DA; %)7 <A7 D—Aa %)7 (334)

which, in turn, determiné M, g) uniquely. In the special case whetd = E?, these
spectral triples are familiar to anyone who kndauli’s non-relativistic quantum theory
of the spinning electroand its twin, the positron4 is the algebra of position measure-
ments; % (%) is the Hilbert space of pure state vectors of a single eledjpositron);
andD 4 (E_A) is the ‘square-root’ of thelamiltoniangenerating the unitary time evolu-
tion of states of an electron (positron) movinghir and coupled to an external magnetic
field B = dA. More precisely, the Hamiltonian is given by

_

Hy= 5D, (3.35)
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wherem is the mass of an electroh,is Planck’s constant, and the gyromagnetic factor
g = ge = 2. (If ge weredifferentfrom 2 thenH 4 would not be the square ob 4; there
would then appear an additionaéeman ternon the R.S. of (3.35), as Pauli had intro-
duced it in [18]. This term is proportional #8;; c¢(dz")c(dz?), in local coordinates, where
B is the field strength corresponding4o) In the presence of an electrostatic potenbial
the Hamiltonian of Pauli’'s non-relativistic electron isgn by

Hga i =Hs+ @, (3.36)
and Pauli’s version of the time-dependent Schrodingeago reads
L0
’lha% = H ) Y1, (3.37)
for ¢y € 4. The corresponding equation for the non-relativistic posiis
L0 h? —o
ihexi = (5D24— @) xe. (3.38)

for x, € 74,

We observe that when the electrostatic potentiatanishest 4y = Hj, is the
square of a selfadjoint operator @per chargg

h2
=4 —Dy.
Q=4[5 Da
Let the dimension of\ be even, and lefey, ... ,¢,} be a local, orthonormal basis of
QYM);
({e1,....e,} is called an-bein’). We set

o= i%c(el) cc(ey) .

SinceM is orientable; extends to a globally defined involution©@1 (M) anti-commuting
with ¢(w), w € Q1 (M), and hence witl). Then(v, Q, 5%) furnishes an example slI-
persymmetric quantum mechaniesith N = 1 (or (1,0)) supersymmetry. The ‘super
trace’

o (v e-ﬁQQ) B>0, (3.39)

is easily seen to be independentiadnd invariant under small deformations of the metric
g and the vector potential. It computes thendexof the ‘Dirac operatof D 4, which is
a topological invariant ofM.

Next, we study the quantum theory pbsitronium namely of a bound state of an
electron and a positron. We defité&._, to be the Hilbert space completion of the space
2’ (M) of differential forms in the scalar product determined by thetricg. Then

Sy~ Hews (CP ) A5, (3.40)

where the facto€? is absent ifZim M is even. We introduce two anti-commuting Pauli
(-Dirac) operatorg> andD (densely defined and selfadjoint 6#f_,):

D:=T0oV, D:=ToV, (3.41)
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whereV is the Levi-Civita connection of2’ (M), andT’, T are the two anti-commuting
representations af'l(M) on Q' (M) introduced in (3.23) - (3.25). These operators are

easily seen to satisfy
2

{D.,D} =0, D?=D". (3.42)
Setting

1 — 1 —
di=3 (D—-1iD), d =5 (D+4D) , (3.43)
we find thatd? = (d*)* = 0. In fact,d turns out to be the exterior derivative. The Hamil-
tonian (for the center-of-mass motion of the ‘groundstatéa bound electron-positron
pair, i.e.,) ofpositroniumis given by
h? R: 2 R
H:=_—D>=_D = — (dd* +d*d 3.44

wheren = 2m. Note thatD, D and H areindependenbf the choice of the vector po-
tential A (and of ®) which, physically, corresponds to the circumstance thatelectric
charge of positronium is zero. The déta, D, D, %(_Lp) are thus well defined even.¥
doesnot admit a spifi structure. These data, together with (3.44), furnish amgna of
supersymmetric quantum mechanics wih= (1, 1) supersymmetry; the supercharges
are the operator® andD. They completely encode thie Rham-Hodge theond the
Riemannian geometiyf M.

One may wonder how additional geometric structure\dfreveals itself in Pauli’s
guantum theory of a non-relativistic electron, positropasitronium moving inM. Sup-
pose, e.g., thaM is a symplectic manifold equipped with a symplectic 2-fasLet €2
denote the anti-symmetric bi-vector field associated withiVe define three operators on
I p

n 1 1
L3 —T— 5, L+ = 5(,()/\(), L_ = §Z(Q), (345)
whereTw = pw, for anyp-formw € Q' (M). Then
[Ls, L] = £2L,, Ly, L] =L, (3.46)

i.e. {Lg, L, L_} define a representation of the Lie algebfaon /7 _,, commuting
with the representation of the algebdaon 7z ;. It is actually a unitary representation,
becausd.;* = L and(L.)* = Lz, in the scalar product of%_,. Sincew is closed, we
have that[L+, d] — 0, whered is the exterior derivative. A differential* of degree—1
can be defined by

d = [L_,d]. (3.47)

One finds tha{d*,d} = 0, (d*)? = 0, and [L_,d*] = 0. Thus(d, d*) transforms as a
doublet under the adjoint action ef;.

One can introduce a secorld doublet,(d, —d*), of differentials with the same prop-
erties aéd, J*}. We arenotclaiming that{d, J} = 0; this equation doesot hold for gen-
eral symplectic manifolds. It is natural to ask, howeveratwh special about the geometry
of M if )

{d,d} =0. (3.48)
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It turns out that, in this caséy! is aKahler manifold Defining
3 = 1 5
8.:—(d—zd), 0._§<d+zd>,
one finds that
P=F=0, {80*)=0, {0,0°)={5,0).

The differentials) ando are theDolbeault differentialsThe complex structuré on M
generates & (1)-symmetry on the differentials:

[J,d] = —id, [J,d] =id.

J commutes with the representation of the algeldras C>°(M) on 7 .

The data(A, 0,0%, 9, 0, %”e_p) furnish an example of a supersymmetric quantum
theory with N = (2,2) supersymmetry. If thel,-symmetry is broken, but th&(1)-
symmetry generated byis preserved theA may not be symplectic, but it is@mplex-
hermitianmanifold.

It is possible to reformulate all special geometries of sthananifolds in terms of
the supersymmetric quantum mechanics of a non-relathasctron or of positronium by
analyzing the adjoint action of symmetries on the Paulifab) operatorsD 4, D_4, D
and D. This mathematical theme is developed in [19]. The upshdhaft analysis is
that the non-relativistic quantum mechanics of the spigmilectron and of positronium
encodes the differential geometry and topology of RiemammaanifoldsM (‘physical
space’) in a perfect manner. There is a complete dictionatyéen thegeometryof M
and thesupersymmetriesf the quantum theory.

What about the non-relativistic quantum mechanics of plagiwith ‘higher spin’?
Let (M, g) be ann-dimensional, oriented, smooth, Riemannian manifold \Wtbman-
nian metricg and volume form dol,,. Let p be a finite-dimensional, unitary representation
of Spin(n) on a Hilbert spacé’,. If p is a double-valued representation®(n), i.e.,
o(p) = —1, thenM must be assumed to be Spjror o(p) = 1, this assumption is not
necessary. From the transition functions of the spinor luSd(or the tangent bundle
TM, for o(p) = 1) and the representatignof Spin(n) we can construct a hermitian
vector bundlet, over M whose fibres are all isomorphic 19. The hermitian structure
on E, and dol, determine a scalar produ¢t, -), on the space of sectiod§ E,). The
completion of['(E£,) in the norm determined by the scalar prodict), is a Hilbert
spaces#,. A spirt connectionV* on S (or the Levi-Civita connectio’v on A\' M if
o(p) = 1) determines a connectiovi” on £,,. (As a physicist, | think about these mat-
ters in coordinate chartg of M, with £,|;, ~ U x V,, use a little representation theory
of Spin(n) andspin(n), and glue charts together using the transition functions, air
T M, respectively, in the representatiph The connectiorvV?, the hermition structure
on E, and dol, determine d.aplace-Beltrami operator-A, 4 densely defined onz,,
(e.g., via the Dirichlet form oo, determined byv?).

Pauli’s non-relativistic quantum mechanics for a partitleving in physical space
M, with an ‘intrinsic angular momentum’ described by the esgmtatiorp of Spin(n),
is given in terms of the following data: The Hilbert space ofgstate-vectors is given by
J,. A real 2-formy on M determines a section of the subbunsflen (M) of CI(M),
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whose fibres are allisomorphic to the Lie algelysén(n) ~ so(n) of Spin(n); see (3.14).
By dp we denote the representationspn(n) on'V,,.

The Pauli Hamiltonianis then given by

2
HY = 5By + npdp(B) + @, (3.49)

wherem is the mass of the particlg,, its ‘magnetic moment'B € ?(M) the curvature
(‘magnetic field’) of the virtual/(1)-connectionA (the electromagnetic vector potential),
and® is an external (electrostatic) potential. The second temrthe R.S. of (3.49) is the
Zeeman term.

Remarks.

(1) Relativistic corrections (spin-orbit interactiongjdea variety of further effects can be
described in terms of additive contributions to th&)- and) Spin(n) connection
and further Zeeman terms.

(2) Inrelativistic quantum theory on four-dimensionalsgdime, one encounteasausal-
ity phenomenan the propagation of quantum-mechanical point particfepom > 1
coupled to external electromagnetic field$gfo-Zwanzigemphenomenon’). This
may shed some light on the question why, in Nature, there d@ppear to exist
any charged elementary particles of spiri. See also section 7.1.

Well, | suppose this is all we might want to know about theseegal matters, right now.
To conclude this general, mathematical section, | want¢aisize to the case where
M = E?, Spin(3) = SU(2), which is what we physicists care about most.

3.3 Back to physics: multi-electron systems, Weyl's theorg, the Dirac equation

We first specialize the material of section 3.2 to the caseewhe = E2. ThenS = S(M)
and /\"(M) are trivial bundles, and

Ao~ L* (R, d’z) @ C?, (3.50)

the space ofquare-integrable, two-component spinorsR?3. Choosing Cartesian coor-
dinatesr!, 22, 23 onE3, the Pauli (-Dirac) operatab 4 takes the form

3
.0 e
DA = Z O'j (-'L% + %AJ(ZE)) s (351)

whered = (0,, 05, 03) are the usual Pauli matrices, adz) = (A4, (z), As(z), As(x))
is the electromagnetic vector potential in physical unitghence the factof. multiplying
A;(z) in (3.51), where—e is the charge of an electron andhe speed of light. The Pauli
HamiltonianH 4 is given by

2

i
Hy=-—D%+d, (3.52)
2m
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where® is an external electrostatic potential.
We easily find that

h? h? =

U= T A S §B, (3.53)

2m % mc

where A 4 is the covariant Laplaciarﬁ = ’g& is the spin operator of an electron, and

B =V AAisthe magnetic field. Thus, for the ‘supersymmetric’ Haamlan H 4, the
gyromagnetic factoge of the electron has the value 2! As long as spin-orbit intéoas
can be neglected, i.e., in the absence of heavy nuclei, tha@ltéaian /7, in (3.52) de-
scribes the dynamics of a slow electron in an external elswgnetic field with good
accuracy. Yet, one may wonder how the relativistic effe¢tspin-orbit interactions and
the Thomas precession modify the expression (3.52), (3d&3he Pauli Hamiltonian.
From (2.14) and (2.17) we find that, must then be replaced by

h? e = (= 17 =
SO __ 2 Q. _ _ _
H3" = —2mAA+mcS (B 20/\E)+<I>, (3.54)
where the (gauge-invariantelocity operatorv is given by
L h = e -

and—22 A, = ™32, We introduce &pin(SU(2)-) connectionu = (wy, @) on S(E?) in
terms of its components in the ‘natural orthonormal badisestions ofS(E?):

e = o

wo(x) = i B(z)- S, (3.56)
. e o o

w(x) = —iy— E(x)ANS. (3.57)

We then defineovariant derivatives

1o i,
where 2 )
o= 2 3.59
2m 8(mc?)? (3.59)
(D Is thecovariant time derivativg and
D=V 4icAta. (3.60)
he

Here(®', eA ) are the components of aectromagnetié/ (1)-connectionThen the Pauli
equation,

i%\lft = H5OW,, ¥, ¢,

can be rewritten in ananifestlylU (1) x SU(2)spin gauge-invarianform

-
iheDy Wy = — = D* W, (3.61)
m
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This observation has been made in [14]; (see also the ofigapeers quoted there). When
incorporated into the formalism of quantum-mechanical ydaody theory the/(1) x
SU(2)spin gauge-invariance of Pauli’s theory has very beautiful angdrtant applica-
tions, which are discussed in much detail in [24]. Dependingontext, thé/(1)- and
SU (2)-connections introduced above receive further contrilmstje.g., from divergence-
free velocity fieldquantum mechanics in moving coordinates, with appliceti@.g., to
superconductivity, super-fluidity, a quantum Hall effeat fotating Bose gases [24], nu-
clear physics,...), from a non-triviapin connectiomn S(IE?) with curvatureandtorsion
describing disclinations and dislocations in a microscapystalline background, and/or
from the Weiss exchange fiéldescribing a magnetic background. It is most regrettable
that we cannot enter into all these applications, here. Bairéader will find a detailed
exposition of these topics in [24].

Next, we recall the quantum theory of a system of maiNy= 1,2, 3,...) Pauli
electrons. The Hilbert space of pure state vectors of sugktars is given by

AN = N - N = A (3.62)

where 77 is given by (3.50), and\ denotes an anti-symmetric tensor product. The anti-
symmetric tensor product in (3.62) incorporates Baeili exclusion principleLet H
denote the Pauli Hamiltonian for a single electron, as gingB.53) or (3.54). In applica-
tions to atomic, molecular or condensed matter phydi¢s) is the Coulomb potential of
the electron in the field oK nuclei with charges 7, ..., eZ, which we shall usually
treat, for simplicity, astatic, (Born-Oppenheimer approximation); i.e.,

K GQZk
O(x) = — —_— 3.63
(v) ;m—xkr (3.63)
wherez is the position of the electron, and,, ..., X are the positions of the nuclei.
Moreover,B is an arbitrary external magnetic field, aAfr) ~ —1V®(z) is the electric
field created by the nuclei (regularized or cut-off, fonearX,, ..., Xx).

The Hamiltonian for théV electrons is chosen to be

N
HM =3 1A AHOA AL+ Ve (21, 2y)
j=1

F V(XY XK), (3.64)

where, in thej/!" term of the sum on the R.S. of (3.64J(! stands in thg'" place (factor),
with 1’s in other factors, and

2

e
VC (J}l,..., .Z’N) = Z m, (365)
1<i<j<N v J
62ZkZl
Me(Xy,..., Xg) = _ .
VC ( 1, ) K) Z 47T|Xk—Xl| (3 66)
1<k<I<K

Properties of the Hamiltonia® ™) (with H as in (3.52) andpb as in (3.63)) will be
studied in the next section.
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We observe that the Hilbert spag€™) is given by
™ p, <L2 (RN V) © C2N> , (3.67)

where P, denotes the projection onto the subspace of totally amtirsgtric spinor wave
functions. In an obvious _sens&”(N) carries a tensor product representation of two rep-
resentationsy °™®t and /P, of the permutation groug”y of N symbols, where

Vorbit(w) =V, (r)®1,
VSpin(ﬁ) =1 V,(r), m€e Py,

in the tensor product decompositions of (3.67). The prmeck, selects the alternating
representation (multiplication byig(w), = € .#y) from V,, ® V,; i.e., only tensor prod-
ucts of subrepresentatiorig’ andV?, of V, andV,,, respectively, are in the range 6
for whichV(7) = sig(r) VI(r), (i.e., V! is ‘associatetto V7).

The spin spac€?” ~ ((C2)®N carries theN-fold tensor product representatign,
of the spins = % representation of U (2). This representation is the direct sum of irre-

ducible representations with spin= s, so + 1, ..., % wheresy, = 0 if N is even and
1

so = 5 if IV is odd. Itcommutesvith the representatiol, of .#; on (C2)®Y,

Hermann Weyhas proven the following

THEOREM 3.1.

(€)™ ~ P 22 0 £, (3.68)
A, s
with
V. =P 4|, @1, (3.69)
A,s
p =P 1|, @0, (3.70)
A,s

where theA’s are irreducible representations of the grouy labelled by Young dia-
grams withoneor two rows and a total ofV boxes, andg, is the irreducible represen-
tations of SU(2) with spins € {so, so + 1,..., §}. Moreover, in(3.67) everyA and
everys occur onlyonce i.e., aA on the R.S. 0{3.68)- (3.70) paired with a spins is
uniquely determinedly s, A = A(s), and conversely. (The spin= s(A) corresponding
to a representation is given by half the number of columns in the Young diagram of
that consist of a single box.)

Weyl's theorem is a special case of a general theorydoft pairs of groups;
see [25]. Weyl has shown that the grougy andSU(n), N =1,2,3,...,n=2,3 ...
are ‘dual pairs’. From our previous discussion we undetkthat a subrepresentatidn
of V,, can only be paired with a subrepresentationf V,, given by

A(r) = sig(m)A(n), m™€ L,

in order for the tensor product representatidme A to ‘survive’ the projectionP,. This,
together with Weyl's theorem, implies that the spirof an N-electron wave function
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completely determines its symmetry properties under exghaf electron positions or
momenta (the ‘race’ of the orbital wave function) and undertheange of electron spins
(the ‘race’ of the spin wave function). This explains why e tclassification of atomic
spectra the permutation groups did not appear; (see s&jtitma system of many elec-
trons moving in a shell of an atom or in a crystalline backgishlone might expect that,
by a conspiracy of electron motion (kinetic energy) and Gmb repulsion between elec-
trons (potential energy) the energies of those states atieyarly low that correspond
to totally anti-symmetric orbital wave functions, i.&\(r) = sig(r), ™ € .#». Then the
spin wave functions must be totally symmetric, i&.must be the trivial representation of
Zn. This implies that the spin of such a state imaximal i.e.,s = % (for N electrons).
The expectation described here is at the core of explarsatibAund’s first ruleand of
ferromagnetismWhile, in many situations, this expectations is quite pible it is still
poorly understood, mathematically.

What is missing? Well, maybe, a few commentdrac’s relativistic electron equa-
tion. But | will cut this short, since everybody is familiar withi A nice approach to the
Dirac equation can be extracted from the theory of projectinitary, irreducible rep-
resentations of thBoincare groupP!, which is the semi-direct product of the group of
proper, orthochronous Lorentz transformations of MinkiivepaceM* and the group of
space-time translations. The Poincaré grouptivasCasimir operators

(i) B
M? = P} — P?, (3.71)
where P, = H (the Hamiltonian) is the generator of time-translationsj & (the
momentum operator) is the generator of space-translaions
(i)
wE—-w?, (3.72)

-

where(W,, W) is thePauli-Lubanski pseudo vectmsee, e.g., [26].

For purposes of quantum physics, we are only interesteciegtive, unitary representa-
tions of .. for which M2 > 0 andW2 — W2 is finite. In anirreducible, projective unitary
representation oP! ,

M? =m?1,
W2 —W? = —m?s(s+ 1)1,

wherem > 0 is the mass of the representation and (for- 0) s is thespinof the repre-
sentation of the subgroup of space rotations. All projegtiwnitary, irreducible represen-
tations ofPl corresponding to a given mass > 0 and a finites can be constructed by
the method ofnduced representatiordeveloped by Wigner and generalized ®gorge
Mackey We consider an energy-momentum vegie (po, p) with p? = p2 — p? = m?.
By H, we denote the subgroup of all those Lorentz transformatizatdeavep fixed. For
m > 0,

H, ~ S0(3),

while, form = 0,
H,~ E(2),
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the group of Euclidian motions of the plane. The represemtaheories ofSO(3) and

E(2) then determine the representation theoryof. The Hilbert space of pure state
vectors of a free, relativistic particle of mass > 0 is the representation space of an
irreducible unitary representation of the quantum-meid@®oincaré group with mass
m > 0 and a finite eigenvalue fa? — W2, For an electron or positrom; is positive,
and hencéV2 — W2 = —m2s(s + 1) 1, wheres is the spin of the representation of the
little group H, ~ SO(3). For the electron or position,= %! If we insist that space reflec-
tions should be a symmetry of the theory, we must glue togdttee unitary, irreducible
representations of the quantum-mechanical Poincarégsith m > 0 ands = % Con-
sidering thatp, can be> m or < —m, we find theDirac equationfor the relativistic
electron hiding in the representation theoryﬂif with massm > 0 and spins = %; see,
e.g., [26]. The second-quantized Dirac theory for freetedes and positrons is obtained
by considering anti-symmetric tensor products of the pasinergy representation of
PIF for single electrons and positrons in a rather standarddaskee, e.g., [26]. All this
is so exceedingly well-known that | do not want to enter in&tails. One might note,
perhaps, that, for massless particles=€ 0), the helicity is not ‘quantized’ in general, but
can be an arbitrary real number. However, helicities thatat integers or half-integers
do notappear in quantum field theories formulated in terms of figlerators localizable
in space-time points; (see section 7).

The results and methods just alluded to, above, can be deedréo Minkowski
space-times of arbitrary dimensidn= n + 1 > 2. Formally, alocal quantum field the-
ory of electrons and positrons moving in quite gendémalentzianspace-time manifolds
and coupled to external electromagnetic fields can be wriiavn without difficulty.
However, in contrast to the theory of Pauli electrons andtfmos moving in a general
physical space, the number of electrons and positrons ismgel conserved (electron-
positron pair creation processes happen), and one encsget@us analytical problems
when one attempts to develop Dirac theory on general Lasantgpace-times and cou-
pled to general electromagnetic fields. These problemsrdyepartially solved, and | do
not wish to enter into this matter.

Pauli’s non-relativistic theory of the spinning electrafgng with a systematic treat-
ment of relativistic corrections, can be recovered by stuglyhe limit of Dirac’s theory,
as the speed of light tends toco. Relativistic corrections can be found by perturbation
theory inc~!. A mathematically careful treatment of such matters carobad in [27].

4 Stability of Non-Relativistic Matter in Arbitrary Extern al Magnetic Fields

In order to get a first idea of the importancesbéctron spirand thePauli principlein the
physics of systems of many electrons moving in the Couloni @estatic (light) nuclei
and coupled to an arbitrary external magnetic field, | re\sewe fairly recent results on
the stability of such systemdlhe referencéor such results is [28].

Let us consider a system &f electrons andy static nuclei with nuclear charges
eZy, ..., eZ. with 3.1 Z, ~ N. The Hilbert space of the system is the spag&")
introduced in (3.62), the Hamiltonian is the operaidf") defined in (3.64), where the
one-electron operatdi (V) is the Pauli operator of eq. (3.52), with, as in (3.51) and
asin (3.63).



Vol. XI, 2007 Spin, or actually: Spin and Quantum Statistics 29

Units: The energy unit iRy = 2mc?a?, wherea = % ~ % is Sommerfeld’s fine
structure constant. The unit of length is half the Bohr radie.,/ = % The magnetic
field B = V A A is in units of = ; the magnetic field energy is given byf B2 d’z, with

1
€= 5.

2I'i‘21e Pauli operatoD 4 is given, in our units, by

DA:a(—ﬁJrfT). (4.1)
It is convenient to work in th€oulomb gauge
V-A=0. (4.2)

For a vector field¥ onR? or a spinory € L2(R3, d’z) ® C2, we say thatX € L? (¢ €
L?) iff

(Y, )'? € LP(R®, oPx).

It is shown in [29] that if5 hasfinite field energyi.e., B € L2, then there exists anique
A such that o .
, V-A=0, AelLb.

o]l

VAA=
4.1 Zero-modes of the Pauli operator

Loss and Yau [30] have proven, by a fairly explicit constioat the following rather
remarkable result:

THEOREM 4.1. There exists a single-electron two-component spinor wanetionqy €
H'(R?) (the usual Sobolev space) and a vector potendiat LS, with V- A = 0 and
B =V A A e L?such that

Dath=0, (4.3)

i.e, v is a zero-mode of the Pauli operatdr,.

An explicit choice of a magnetic field leading to a zero-madehe sense of eq. (4.3) is

_ 12
B(@)= ———|(1-2H)i+2(7-2) T+20NZ],
() = o [ =7+ 201 )
wherer is a unit vector.
This result, whose proof we omit, has some rather remarlaiieequences that we
will discuss next.

4.2 Stability and instability of atoms and one-electron matcules

We consider the Pauli Hamiltonian for a one-electron ion geaeral external magnetic
field B of finite field energy:
A

Hy=D% - —~—_.
AT AT U o

(4.4)
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Let E, (B, Z) denote theinfimum of the spectrum ofl . If B is a constant external

magnetic field 3 = (0, 0, B), then it is known from work ofAvron, Herbstand Simon
quoted in [29] that

Eo (B, Z) ~ —const(in B)?.

This implies thatE), (én, Z) — —oo even for a sequence of suitably chosen magnetic
fields B,, of finite, but ever larger field energy. It is then natural tk afether

Eo(B, 2) + = / & Bla)’ (4.5)
is bounded below, uniformly i3, and for what range of values of the nuclear charge.

The answer is worked out in [29]. We define a convenient sgamfeconfigurations

(v, A),
c::{(qp, A’) ‘¢6H1(R3), ||¢H§:1,,4TeL6ﬁ~fT:0,ﬁAA’eﬁ} (4.6)

and a spacé/ of ‘zero modes’,

Ni={ (@A) ] @ A)eC, Dab=0}. (4.7)
We then define a critical nuclear chargeby
= 2|2 L
Zei= b {EHB ||2/<w, 47T|x|¢>}' (4.8)

The following result has been shown in [29].
THEOREM4.2. Z, is finite.

For Z > Z.,
inf {EO (é, Z) +e ||§||g} —
BelL?
For Z < Z.,
inf {EO (é, Z) +e ||§||g} > o0,
BeL?
and the infimum is a minimum reached for some pairA) € C.
Furthermore, the infimum on the R.S.(df8)is reached on a paify, A) € N.

In [29], Z. is estimated for the physical value of the fine structure @risnd comes
out to beZ. ~ 17'900. Thus, a single-electron ion coupled to an arbitrary magriedd
B of finite field energy isstable(the total energy is bounded from below) if the nuclear
chargeZ is smaller thar?,, while it is unstableif Z > Z.. This result crucially depends
on the fact that electrons hagpin and amagnetic momenwith a gyromagnetic factor
ge = 2, (as long as radiative (QED) corrections are neglected). 4 2 then

inf F, (é, Z) > —constZ? > —co,
BelL?

for all values ofZ, by Kato’s ‘diamagnetic inequality while for g > 2, ions would
alwaysbe unstable
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In [31], the results summarized in Theorem 4.2 are extenolathiny-electron atoms
and to a system consisting of a single electron moving in t@@nb field of arbitrarily
many static nuclei, (one-electron molecule in the Born-@p@imer approximation). For
this purpose, one considers the energy functional

e(v, B, X, 2) = <\If , H}N>\If> +el|Bl3, (4.9)

where¥ € #N), see (3.62), is aV-electron wave function witf¥, ¥) = 1, and
H}N) = HW) is the N-electron Hamiltonian introduced in (3.64) - (3.66), witi") as
in (3.52) and (3.63), (see also (4.5) wiﬁ% replaced by the Coulomb potential (3.63)

of many nuclei). There is an obvious extension of the dedini{4.6) of the spacé to an
N-electron system. We are interested in studying the lowessiple energy

iy

(v, A)ecC
XGRSK

Ey:= imf &(9,B X Z2). (4.10)

It is shown in [31] that, forK = 1 (one nucleus) andV arbitrary (arbitrarily many
electrons), or fors arbitrary andV = 1,

Ey > —0,
providedZ; < Z.< oo, forallj =1,..., K,andprovided
a < o, (4.11)

with 0.32 < a. < 6.7, i.e.,provided the fine structure constamis sufficiently smallThe
bound (4.11) comes from studying 1-electron molecules sfn@al’: If « > «. there are
configurations of” identical nuclei with arbitrary? < Z, = O(a2) such that, for some
choice of K, Fy = —o0, for a 1-electron molecule. Agaithe crucial role in the proofs
of these results is played by the electron spin and the fatyih= 2!

The punchline in this analysis of stability of non-relasitic matter was reached, a
little more than ten years ago, in works©harles Feffermaifi3d2] and ofElliott H. Lieb,
Michael LossandJan Philip Solove[33] (whose treatment is considerably simpler than
Fefferman’s, but came a little latéf) It is summarized in the next subsection.

4.3 Stability of matter in magnetic fields

Consider the energy functionél( ¥, E, X, Z) introduced in (4.9) — withV electrons

moving in the Coulomb field of< static nuclei at positions(y, ..., Xk, with nuclear
charges7,, ..., Zx, and coupled to an arbitrary external magnetic fiBlof finite field
energys || BJ|3. Let
Eo=FEo(a, 2):= inf &(9,B,X,Z). (4.12)
(¥, A) ecC
Xe R3K

The following result is proven in [33].

1271 this work came after ground-breaking work &fysonand Lenardin the 1960's, and of Lieb an@hirring; see [28] and
references given there.
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THEOREM4.3. Suppose that, < 7 < oo, forall k =1,..., K, and that
Za? <0.041 and o < 0.06. (4.13)

Then
Eo(a, Z) > —C (N + K), (4.14)

for some finite constarit depending or¥ and«, butindependenof N and K.

RemarksThe bound (4.14) expressstability of matterin the sense that thenergy
per particle(electrons and nuclei) has a lower bound {constZ? Ry) independenof
the number of electrons and nuclei in the system. This is pression othermodynamic
stability of such systems, which is a pillar on which all of condensexdten physics rests;
(‘independence’ of condensed-matter physics of nuclean fiactors and cut-offs im-
posed on the magnetic field).

For stability of matter, i.e., for the validity of (4.14),ig crucial that electrons are
fermions i.e., that they satisfy Pauli’s exclusion principle. IrebiThirring type proofs
of stability of matter, the Pauli principle enters in therfoof generalized Sobolev in-
equalities (bounding the electron kinetic energy from by the Thomas-Fermi kinetic
energy)only valid for fermionssee [28].

We know from the results in the last two subsections fhidty, Z) = —o0, i.e., the
system becomesnstable if either Z > a2 or if a is ‘large’ (« > 6.7). It is somewhat
tantalizing thatelectron spin and the fact thagt = 2 would render systems of many elec-
trons and nuclet as they are studied in atomic, molecular and condensetknpdiysics
—unstable ifa > 6.7 and/or if Za? is very ‘large’. This is reminiscent of the possibility
that theLandau polen relativistic QED will descend to the non-relativistigime if « is
large enough.

Let us see what the source of the potential instability i #ctually a short-distance

or ultraviolet instability If in the definition ongN), the electromagnetic vector potential
A in the Coulomb gauge is replaced by a mollified potential

A (x) = / dy (e — y) Aly)

wherer is an arbitrary positive, smooth function, withx = 1, (i.e., a smooth approxi-
mated-function) then the bound

Ey(a, Z) > —C (N + K)

is true for arbitraryr and Z, but the constant’ now depends oR, and ifa > 6.7 and/or
Za? is large enough, the = C, — oo, ask approaches a-function. In order to
arrive at a deeper understanding of these matters, we shoalttize the electromagnetic
field, too.

5 Electrons Interacting with the Quantized Electromagnett Field; Radiative Cor-
rections to the Gyromagnetic Factor

It is important to ask what becomes of the results in the lastien if the electromag-
netic field is treated quantum mechanically. One of my straxigntific interests, during
the past fifteen years, has been to find mathematically gregiswers to this question;
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see [34-41,43-46], and [47] for a review of some of these dmer oesults.
We return to the Hamiltonian (3.64), i.e.

HY =3 { [@. : (—ﬁj + 5<%‘>) r - 2 m%ikm}

1<i<j<N 1<k<I<K
acting on theV-electron Hilbert space
AN
AW = (1 (R, dr) o C?) (5.2)

We are interested in studying the dynamics of such systeraa e electromagnetic field
is quantizedli.e., electrons can emit and absorb photons. We quangzeléctromagnetic
field in the Coulomb gauge, i.e.,

V-A=0. (5.3)

Then

’LT (z) = 3/2 )\Zﬂ / m ax(k)as(k)e ™ +maA(k)eik'x] , (5.4)

wherea}(k), ax(k) are the usual creation and annihilation operators for agrhaiith
wave vectork € R3 and helicityl = =, satisfying the canonical commutation relations
(CCR),

[af (k). aff (D) =0, [au (k). af (D] = 03,0 (k — 1), (5.5)
andé\(k) L k, A = +, are two orthonormal polarization vectors. We considerfibek
representation of the commutation relations (5.5) unigakracterized by the existence

of a vacuum stat€ in which none of the field modes is excited, so that
ax(k)Q2 =0, forall A andk, (5.6)

and (2, Q) = 1. Fock spaceZ is the Hilbert space completion of the linear space ob-
tained by applying arbitrary polynomials in creation opera smeared out with square-
integrable function to the vacuufa. The Hamiltonian of the free electromagnetic field
generating the time evolution of vectors.4f is given, in our units, by the operator

Hy = 2;2/d3 { ﬁ(x)2:+:§(x)2:}
=) / &k al(k)|k|ax(k) (5.7)
A=+

where
= k| j =NERY ik-x
)= o X [ @/ [ et - Emame]
A==+1

are the transverse components of the electric fiBles V A A is the magnetic field, the
double colons indicate standard Wick ordering, akidis the energy of a photon with
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wave vectork (in our units).
The total Hilbert space of electrons and photons is given by

H =N @ F, (5.8)
and the Hamiltonian is given by
H:=H @1+ 1 H;. (5.9)

Alas, this operator idll-defined To arrive at a mathematically well defined expression
for the Hamiltonian (selfadjoint o’ and bounded from below), we must replace the

vector potentialsl(xj) on the R.S. of (5.1) by ultraviolet regularized potentiﬁ}s(xj),
j=1,..., N,where

Ap(w) = / &y ralz — y)A(y),
andx, is the Fourier transform of, e.g., a normalized Gaussian
1

e Y,

(2mA?)
where A is an ultraviolet cutoff energy that one may choose to be efdtder of the
rest energy of an electron. Of course one will ultimately ierested in studying the
limit, as A — oo. This limit is only meaningful if the mass and the chemicalgmbial

of an electron areenormalized To study the renormalization theory of the model of
guantum electrodynamics (QED) considered in this sectianmust replace the Pauli

Hamiltonians,[; - (—iV; + ff(xj))]z on the R.S. of (5.1) by operators

1 7. = - 2
1T [aj . <—1Vj + AA(xj)) } + pa, (5.10)
forj =1,..., N, whereM, is the ratio between thdare massof an electron and its

observed (physical) mass, apd is the bare self-energy (or chemical potential) of an
electron. The Hamiltonians obtained after the replacer(&f0) are denoted b ") =
HM(My, ), see (5.1), andl, = Hy(M,, 11a), see (5.9), respectively. A fundamental
guestion in renormalization theory is whether, > 0 andu, can be chosen to depend
on the cutoff energy in such a way that the limiting Hamiltonian

Hien =" lim H,’ (5.11)

exists as a selfadjoint operator off.

A mathematically rigorous answer to this question remaortsetfound. (I rather bet
it might be ‘no’.) However, there are indications of varickiads as to how to choose
M, andu, and plenty of perturbative calculations (perturbatiorotiyen «), which we
briefly summarize next.

(1) Since, in our model of QED, the number of electrons andeius conserved —
electron-positron pair creation processes are supprestee is no vacuum polar-
ization, and hence the fine structure constaig independent oA.

(2) (Non-rigorous) perturbative renormalization groufca&ations suggest that

My ~ A~ Be/3mToes) (5.12)
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i.e., the bare mass of an electron must apprdglike a small inverse power of,
asA — oo; or, in other words, the physical mass of an electron camsistirely of
radiative corrections.

(3) There are some rather crude bounds on the self-enpargy
A2 <y < AT

for constantg; andc; (but derived under the assumption tiét = 1); see [47] and
references given there.

(4) Perturbatively, a finite Lamb shiftis found, &s— oo, which is in rough agreement
with experimental datg; (an improved version of Bethe’s calculation of 1947).

(5) Thegyromagnetic factog, of the electrons affected by radiative corrections. In
low-order perturbation theory in, it remainsfinite, asA — oo, and is given by

_ 8 a 2] .
see [47,48]. This result should be compared to the valug.fpredicted by pertur-
bativefully relativistic QED,

o =2 [1 + O(oﬂ)} , (5.14)
27

where the lowest-order correctiof};, was first calculated byulian SchwingerEx-

periment favours Schwinger’s result! This can be viewedoen# likes — as a high-

precision confirmation of, among other things, fpecial theory of relativity

No matter whether electrons are treated non-relativisgica relativistically, we

find thatge > 2! For a single, freely moving electron with Hamiltonidh, given

by (3.52) (with® = 0), this results in a breaking of theupersymmetiysee sec-
tion 3.2) of the quantum theory, and the effects of ‘supersgtny breaking’ offer a
handle orprecision measurement$ g — 2; (see section 6).

The fact thatge > 2 and the results in section 4 apparently imply that QED with
non-relativistic matter ultimately only yields a matherally meaningful descrip-
tion of physical systems if a (large, but finiteltraviolet cutoffis imposed on the
interactions between electrons and photons, no matter hwil & is chosen. For
large values ofv (o > 6.7), this theory is expected to exhibit cutoff dependence
already at atomic and molecular energies.

The need for an ultraviolet cutoff in QED with non-relatittsmatter is reminiscent
of the problem of thé.andau polen relativistic QED.

(6) Stability of Matter:For an arbitrary numbeN of electrons ands static nuclei with
nuclear charge&, < Z < oo, forallk =1,..., K and arbitraryK’ < oo,

Hy > —C, 7 KA, (5.15)

12|n these calculations, the Zeeman termsthN) areneglected



36 J. Frohlich Séminaire Poincaré

for a finite constan,,, ; independent o\ and K. While (5.15) proves stability of
matter if an ultraviolet cutoff\ is imposed on the theory, the linear dependence on
A on the R.S. of (5.15) is disastrous, physically speakings ot understood, at
present, whether a lower bound &h (M, , is) can be found that igniformin A,
providedM, andyu, are chosen appropriately!

Present mathematically rigorous efforts towards undedstgy QED with non-relativistic
matter are therefore directed to an analysing&ij ), for a fixed ultraviolet cutoffA (~
rest energy of an electron), and to tackling the so-calié@red problemthat is caused
by the masslessness of the photons. Here there has beend@msegrogress, during the
past fifteen years; see e.g. [34-41,43-47].

The most remarkable results that have been found, duringshéen years, are, per-
haps, the following ones:

We choose an arbitrary, but fixed ultraviolet cutaff
(7) Atoms have stable ground states; [40—42].

(8) Excited states of atoms are turned into resonances {stetée states) whose en-
ergies and widths (inverse life times) can be calculatedldrary precision by a
constructive and convergent algorithm. These energiedifarttnes agree, to lead-
ing order in«a, with those first calculated by Bethe in order to explain tiznb
shift, [40, 41].

(9) Scattering amplitudesy;, for Rayleigh scattering of photons at atoms (below the
ionization threshold) have asymptotic expansions of tieafo

N
Sp = Z 0 i n() o + o(a),
n=0

where
lim a’c 4 () =0,
a—0

for an arbitrarily smalb > 0. It is expected (and can be verified in examples) that

n 1 k
Gfi,n:ZGfi,n,k (lna) .
k=0

The powers ofné come from the infrared singularities that render ordinaagtyor-
bation theoryinfrared-divergenin large, but finite orders in; see [45]. Our results
yield among many other results, a mathematically rigorassification of Bohr’s
frequency condition for radiative transitions.

(10) Infrared-finite, constructive, convergent algorighhmave been developed to calcu-
late the amplitudes for ionization of atoms by Laser pulsegp(blished work of
Frohlich and Schlein based on earlier work by Fring, Kdstryand Schader) and
for Compton scatteringf photons at a freely moving electron, [46].

| now leave this thorny territory and sketch how the gyronegnfactor of the electron
can be measured experimentally.
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6 Three Methods to Measureg,

We have already seen in section 2 that atomic spectroscapyniagnetic field (Zeeman
splittings) offers a possibility to measure the gyromagneictor g, of the electron.

Another possibility originating in condensed-matter physs to exploit théEinstein—
de Haas effect

6.1 The Einstein—de Haas effect; (see, e.qg., [24])

Consider a cylinder of iron magnetized in the direction sfikxis and suspended in such a
way that it can freely rotate around its axis. Should thisgr rotate, then it is advisable
to treat the quantum theory of the electrons (and nuclebenron in a rotating frame.

Let 17(37, t) be a (divergence-free) vector field on physical space thatrg¢es an
incompressible flow; : E3 — E3 with the property thaf = (y!, 32, 3°), given by

J=¢; (1), (6.1)
are Cartesian coordinates in ﬂm)vmg frameat timet, with 7 = (2!, 22, 2?) the Carte-

sian laboratory coordinates.\if generates space rotations around a pfzjnm space with
a fixed angular velocity then

V(G t) =GN ([ — ). (6.2)

The quantum theory of electrons in the moving frame is dbedrby a (in general
time-dependent) Hamiltonian

N
N mo, 9 e h, =
HV = Z {5(%"%’) +(9e—2)—2 5% - B(g;. t)

j=1

Ql(’b

— =, m = = 2
A(y]7 ) V(yj7 t) - Ev(ij t) }
+U00u|0mb<¢t<g1)7---7 (bt(gN)v le"w XK) ; (63)

where the velocity operatoi§ are given by

. h - e - m- .

vp=_ ("ij + gA(ygy t) + ﬁv(yﬁ t)) : (6.4)
andUcouiombiS the total Coulomb potential of electrons and nuclei, egped in laboratory

coordinates. The term%V’(y}, t)2 appearing in (6.3) is the potential of tieentrifugal

force at the positiony; of the ;™ electron in the moving frame. We observe that in (6.3)
and (6.4)

A and mV (6.5)
C

play perfectly analogous rdles, at leasyif = 2. As one will easily guesspV is the
vector potential generating th@oriolis force which can be obtained from tHeorentz

forceby replacingé 5 = ¢V A A by mV A V. Note that

_ ( iV A+mv> + G 5153, (66)

2me
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whereS =
V.

What we are describing here is thgantum-mechanical Larmor theore(see, e.g., [24]
for details).

Let us now imagine that a magnetized iron cylinder is inyiak rest in the labora-
tory frame. An experimentalist then turns on a constantragtanagnetic field5 in the
direction opposite to that of the spontaneous magnetizatithe cylinder (parallel to its
axis), so as talemagnetiz¢he cylinder. In general, this causes iaoreasein the free
energy of the cylinder, which can be released in the form aflmamical energy. What is
this mechanical energy? Well, the cylinder starts to roddeut its axis with an angular
velocity & it chooses so as to cancel the effect of the external magfieitic5 as best it
can. By formula (6.6), the total Zeeman term in the electramitonian in the rotating
frame,vanishesf

’g is the spin operator of an electron ad= V AV is twice the vorticity of

ge€ 5
B
2mc
and the total vector potential affecting orbital motion bételectrons is then given by
CA+mV = O(ge — 2) ~ 0. The total Coulomb potentidlcouomsis invariant under the

transformation?; — ¢;, X; — Y;. Thus, in the moving frame, the free energy of the
electrons in a cylinder rotating with an angular velocitgiven by (6.7) is approximately
the same as the free energy in the laboratory frame beforfettie5 was turned on and
& = 0. This explains the Einstein—de Haas effect.

By measuring§ andd, one can determing,!

TheBarnett effectiescribes the phenomenon that an iron cylinder can be nmagdet
by setting it into rapid rotation; (see (6.6)).

Other effects based on the same ideas are encountered atroypcphysics, two-
dimensional electron gases exhibiting the quantum Ha#lcgffmolecular and nuclear
physics; see [24] and references given there.

2 =0 =—

(6.7)

6.2 Accelerator measurement ofje

Consider an electron circulating in an accelerator ringadius R. It is kept in the ring
by a constant external magnetic figidperpendicular to the plane of the ring. Its angular

velocity Je || B is found by balancing the centrifugal with the Lorentz for¢aus, its
angular velocity is obtained by solving the equation

el 6 =4
Ge| = — B, (6.8)
yme

wherey = < — f—f) , U] = R|&c|-
This means that the velocity of the electron precesses around the directiot of
with an angular frequencydc| given by (6.8). What does itspin .S do? The precession

of S aroundsB is described by the so-call&hrgmann—Michel-TelegdBMT) equation
In the special situation considered here, this equationplgies to

dﬁ:i§A<ge‘2 l)é, (6.9)
2 g
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see, e.g., [9]. Thus the precession frequency of the spouisdto be

“ B+-—(ge—2)B. (6.10)
yme 2mc

W =

We find that, forge = 2, Js = &¢; but if g # 2 the spin- and velocity precession
frequencies differ by an amount
[ —
—— (90— 2)|B]. (6.1)

(If ge > 2 then the spin precesses faster than the velocity.) By miegstive spin polar-
ization of a bunch of electrons, with the property thattially, their spins were parallel
to their velocities, after many circulations around thesde@tor ring, one can determine
ge — 2 With great accuracy.

Of course, the Thomas precession encountered in sectiaml@d®und as an appli-
cation of the general BMT equation. How watertight the dation of the BMT equation
is, mathematically, is still a matter of debate [49].

6.3 Single-electron synchrotron measurement afe

Consider a single electron in a constant external magneiit £ = (0, 0, B) in the
z-direction whose motion in the-direction is quantized by a confining (electrostatic)
potential®(z). The time-independent Schrodinger equation for thisgaris

HWy = Fy, (6.12)
whereH® is given by
HO = e <_ﬁ + 2 *(f)>2 + P 0B+ a(z), (6.13)
2m he 2me
where/f(f) = %(—yB, xB, 0), 7 = (z,y, z). EQ. (6.12) can be solved by separating

variables:
U(z, y, 2) = x(, y) h(z),

wherey is a two-component spinor wave function only depending@mndy, andh(z)
is a scalar wave function satisfying

(_% =t @(2)) h(z) = Eh(z), (6.14)

with h € L*(R, d2). Let&y < & < & < ... be the energy eigenvalues of the eigenvalue
problem (6.14). As shown biev Landay the energy spectrum of the operaféf" is
then given by the energies

1
En,s,k: = hwe (TL + 5) + %hwcs + &, (6.15)

wherewe = Bl n=0,1,2..,s =+, k=0,1,2 ..., and&, as in (6.14). All these

me !

eigenvalues are infinitely degenerate. Their eigenfunstamrresponding to a degenerate
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energy levelE, ;. can be labelled by the eigenvalues of theomponent,L., of the
orbital angular momentum operator, which are given by

hl, withl=-n, —n+1,...,0,1,2....
We observe that ifi, were exactly equal to 2 then

E

1
n7_§7

E— En—1,+%7k; ) (616)
and
EO,—%,]C — gk .

These equations are an expression of the ‘supersymmePgudf’'s non-relativistic quan-
tum theory of an electron with, = 2; (see section 3). I # 2 this supersymmetry is
broken, and we have that

ge— 2
2

By measuring such energy differences with great precisiorery slow radiative transi-

tions, one can determing with astounding accuracy. The life times of the excitedestat
can be made long, and hence the energy uncertainties tingibg cavities obeying non-
resonance conditions. Very beautiful high-precision meaments ofj. based on these
ideas have recently been performed®grald Gabrielseand collaborators; see [50].

Ep 10— B, 1 =hwe(m—n)+ hwe . (6.17)

=

7 KMS, Spin and Statistics, CPT

In this last section, we study the general connection betwezspin of particles and their
guantum statistics — particles with half-integer spin ameriions, particles with integer
spin are bosons — and the related connection between thefspeids and their com-
mutation relations within the framework of local relatittsquantum field theory. Our
approach to this subject yields, as a byproduct, a proof etctiebrated CPT theorem,
namely of the statement that the product of the discreteadipers of charge conjugation
(C), space reflectiofP) and time reversall’) is ananti-unitary symmetrpf any local
guantum field theory on an even-dimensional space-times §ftnmetry mapstates of
matteronto correspondingtates of anti-matterThus the prediction of the existence of
the positron by Dirac and Weyl, on the basis of Dirac’s holeotty, can be viewed, in
hindsight, as a corollary of the locality of quantized Ditheory and of the general CPT
theorem

I should like to mention that in a three-dimensional spacete.g., in the physics of
two-dimensional electron gases exhibiting the quantunh éfedct, or of films, one may
encounter (quasi-) particles withactional spin¢g %Z and a type offractional quantum
statisticsdescribed by representations of thraid groups or braid groupoids (originally
introduced in mathematics ymil Artin). Moreover, in two- and three-dimensional local
guantum field theories, there are fields of fractional spisghcommutation relations
give rise to representations of the braid groups or growgdtids conceivable that this
exotic type of quantum statistics is relevant in the contéxhe fractional quantum Hall
effect, and there are people who hope to exploit it for theppse of (topologicaljjuan-
tum computing?

13An idea probably first suggested by myself.
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It may be appropriate to make some sketchy remarks on theistthe discoveries
of the connection between spin and statistics, of the CPdréme and of braid statistics.

The general connection between spin and statistics forfieds was discovered,
on the basis of earlier work by Heisenberg and Pauli and byi Bad Weisskopf, by
Markus Fierzin 1939, [40]. His result was later rederived more elegahthPauli. In
axiomatic field theory, a general result was found by Luders Zumino; see [52,53]. A
much more general analysis of the statistics of superseteséctors, based on the alge-
braic formulation of local quantum field theory, was carreed by Doplicher, Haagand
Roberts see [55,56]. They showed that general para-Bose or paraiBatistics can al-
ways be converted into ordinary Bose or Fermi statisticsnpducing ‘internal degrees
of freedom’ on which a compact topological group of intersyainmetries acts, and they
rederived the general connection between spin and statigtll these results only hold
in space-times of dimensions 4.

The CPT theorem, i.e., the statement that the product ¢f and7’ is an anti-unitary
symmetry of any local, relativistic quantum field theorysfiast derived in [57] and then,
in its general form, byRes Josin [58]; see also [52,53]. Based on Jost’s analysis and on
the KMS condition [59] characterizing thermal equilibriustates, it was rederived in
a general setting bgisognancand Wichmann60], who established a connection with
Tomita-Takesaki theory [61].

We will see that the general connection between spin andtstatand the CPT the-
orem are consequences of the fact that the vacuum state oélar&ativistic quantum
field theory is &KMS (equilibrium)statefor all one-parameter subgroups of the Poincaré
group consisting okorentz boosts a two-dimensional plane containing the time direc-
tion. This observation has been made in [60]. Incidentdlig,at the core of the theory of
theUnruh effect

Exotic commutation relations between fields carrying ‘fi@aal charges’ in local
relativistic quantum field theories with soliton sectorgwo space-time dimensions first
appeared in work oR. Streateandl. Wilde [62] and of the author [63], in the early sev-
enties. (They gave rise to certain abelian representatibtie braid group.) In 197°M.
LeinaasandJ. Myrheim[64] discovered the first example of a system of quantumglasti
moving in the plane and exhibiting braid (or ‘fractionaltpsistics: Charged point parti-
cles carrying magnetic vorticity. The braid statistics o€ls particles is a consequence
of the Aharonov-Bohm effect. Their analysis was generdlire[65] and [66]. Within
the context of abelian gauge (Higgs) theories in three dsioen particles with fractional
spin and braid statistics were analyzed in [67]. The gerteedry of (abelian andon-
abelian braid statistics was initiated by the author in [68] and pbteted in [69, 70],
and references given there. A general connection betwaetidnal spin and braid statis-
tics was established in [70], and it was shown that, in |decabties in three-dimensional
space-time, ordinary Bose or Fermi statistics is encoadtdrand only if all spins are
integer of half-integer, and that braid statistics imptlesbreaking of parityP) and time
reversalT).

7.1 SSC,KMS and CPT

I will now first recall theconnection between spin and statist{&SC) in the general
framework oflocal relativistic quantum field theorfRQFT), as formalized in the so-
called (Garding-) Wightman axiomf52, 53]; (see also [54]). As a corollary, | will then
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show that the vacuum state of an arbitrary local RQFT{(in 3 space-time dimensions)
is aKMS (equilibrium) state[59] for any one-parameter group of Lorentz boosts at in-
verse temperaturé = 2, [60]. TheCPT theoremandSSCturn out to be consequences
of the KMS condition.

I will follow methods first introduced in [58, 60], and my pegation is similar to
that in [71], where various mathematical details can be doun

We consider a local RQFT on Minkowski spale#, (d = n + 1), at zero temper-
ature satisfying the Wightman axioms [52, 64]. L#t denote the Hilbert space of pure
state vectors of the theory afide .77 thevacuum vectarThe space”’ carries a projec-
tive, unitary representation/, of PL We first consider RQFT’s with fields localizable in
points and transforming covariantly under the adjointactf U; a more general frame-
work is considered in the next subsection, (see [73] for @gdranalysis of the localiza-
tion properties of fields). Le¥, ..., Uy be the fields of the theory. Smearing out these
fields with test functions in the Schwartz space dvEr, one obtains operators densely
defined ons7. In fact, 7 turns out to be the norm-closure of the linear space obtained
by applying arbitrary polynomials iy, ..., ¥y (Smeared out with Schwartz space test
functions) to the vacuu. LetII ¢ M be a two-dimensional plane containing a time-
like direction. Without loss of generality, we can chooserdinates:’, z',..., 2% ! in
M such thafl is the(2°, z!)-coordinate plane. We consider the one-parameter subgroup
of Lorentz boosts given by

x) = cosh(0)z” + sinh(f)z*
zp =sinh(6)z° + cosh()a", (7.2)
xé =g/, forj>2,

with 6 € R the rapidity of the boost. Let/;; = M}, denote the generator of the boosts (7.1)

in the projective, unitary representatiohof Pl on 2. To each field¥; of the theory,
there is associated a finite-dimensional, irreduciblegutdje representatiof; of the

groupLTF of proper, orthochronous Lorentz transformation®&fsuch that

M (20 2t ) e M = Sj_l(ﬁ) W, (2, vy, T), (7.2)
with 7 = (22, ..., 2¢71), or, in components,
e!0Mm ‘IIA(x zt, 7) e M — Z S B2y, zp, 7), (7.3)

where¥4 is the A™ component ofl ;.

A theorem due tdBargmann, Halland Wightman[52, 53] guarantees that, for an
RQFT satisfying the Wightman axioms, tihéck rotationfrom real times to purelymag-
inary timesct = ir, 7 € R, is always possibleThe vacuum vectof2 turns out to be
in the domain of all the operatofg,_, ¥, (zi), wherexy, = (73, z}, ¥) € E? (d-dim.
Euclidean space),

\ifj(T, zl, B) = U,(iT, o', T) = e ™ v,(0, o', 7)e™ (7.4)
with H > 0 theHamiltonianof the theory, provided that

O<m<m<...<Ty; (7.5)
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see [74]. The Euclidian Green- 8chwinger functionare then defined by
S Gy w1y ey Gy @) = (05 (1) - Uy, (2,) Q). (7.6)
By Bargmann-Hall-Wightman, the Schwinger functic$i&) are defined on all of
E‘;[” = {(xl, cey X))

It is convenient to introduce polar coordinatés, r, ), with r > 0, a € [0, 27), in the
(1, #')-plane by setting

v, €BL j=1,... n, z #1j, fori;«éj}. (7.7)

1

T=rsina, 2' =rcosa, = (2%,..., 27"); (7.8)

(the anglen is an imaginary rapidity).
Let ., denote the Schwartz space of test functigis &) with support inR, x
R?%2, We define function®™ of n angles as follows:

(I)(n)(jlu f17 Ay, jnu fna an) =

/ S™ iy, ay, 71, D1y Gny Gy Ty Tn) H fr(re, Zp) drp 22y, . (7.9)
k=1

As shown in [71] (see also [74]), using Bargmann-Hall-Wighn (see (7.6), (7.7)) —
among other things — these functions are given by

(I)(n)(jla fla Ay, jna fna an) = <Qv ‘iljl(fjv al) e \ijjn(fna an) Q> ) (710)
provideda; < ag < ... < ay, With a,, — a7 < 27. Onthe R.S. of (7.10),

Uy(f, @+ B) = e M Ry(a) Uy (f, ) e, (7.11)
for arbitrary anglesy > 0, # > 0 with o + 3 < 7, where
Rj(Oz) = SJ(ZCY) (712)

is the finite-dimensional, irreducible representatiortpin(d) obtained fromS; by an-
alytic continuation in the rapidity. Formally, (7.10) and. 11) follow from (7.2), (7.3)
and (7.6); (the details required by mathematical rigor ditd@ complicated; but see [60,
71]). We note that the vacuufais invariant under Poincaré transformations; in particul

M) =, foralld eC. (7.13)

We note, furthermore, that two pointa;, r;, 1) and(as, 12, #2) in E? arespace-like
separatedvhenevery; # as. Thus, the local commutation relations of fields at spake-li
separated points [52,53, 74] imply that, foy # as.1,
(I)(n)( ) jk7 fkv ag, jk+17 fk+17 g1y - - )
= GXp(iQWijjk+1) (I)(n)( Cey jk+1, fk+1, (077 jk7 fk, 0777 ) s (714)
for arbitraryl < k£ < n, where, ford > 3,
0, =0modZif ¥; or ¥; is aBose field (7.15)

1 . -
0;,, = = modZif ¥; andV¥, areFermifields (7.16)
23 J J

2
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For details see [74] and [75]. In two space-time dimensitims,statistics of fields lo-
calizable in points can be more complicated; see subsect@®ynand [68—70]. In par-
ticular, the phaseé— can be arbitrary real numbers, and this is related to thetlfeatt

Spin(2) = SO( ) = R, which implies that thespin (parity) s, of a field ¥; can be an
arbitrary real number. Thepin (parity) s, of a field U, is defined as follows: Sincg; is
a finite-dimensional, irreducible representatiortpin(d),

R;(27) = €™ 1, (7.17)

wheres; = 0, 3 modZ, for d > 3, while s; € [0, 1) modZ, for d = 2.
Given a fleld indexj, we define the ‘adjoint’ index through the equation

(97(9))" =92(g), g€ 7M7), (7.18)

J

whereA* is the adjoint of the operatot on 7 in the scalar product ofZ .

We are now prepared to prove the gensgah-statistics-connectiofsSC) for fields
of a local RQFT localizable in space-time points. We firsenbiat, by (7.11) and (7.18),

Uy(f, ) = (M Ry() by (f, 0) i)
= MR (0) W(F, 0) e M
= R;(a)"R-"(—a) ¥3(f, —a)
= U5(f, —a),
by (7.2), (7.3) and (7.18). Thus
Rj(a) = R;(—a). (7.19)

Furthermore, by (7.3), (7.11) and (7.13),
(P(N)(]b f17 aq + a, ..., jn7 fn7 (679 + O[)
= <Q A (s e+ ) Q>
= (0, T (e Ry ), (i, o) ) €2)
=R (a)®--- @ R;, () ®™ (1, fi, a1, Gy fr, @), (7.20)

which expresses the rotation covariance of the functidfi$, (a consequence of the
Poincare covariancef the fields¥; and thePoincaré invarianceof the vacuuni). Thus,
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using the positivity of the scalar produgt -) on.># we find that, for0 < « < T,

0 < (e-*Mn Ui (f, 0)Q, e My (f, 0) Q)

(7.10§7.11) Rfl(—a) ® R'_l(a) (b@) (ja fa —Q, jv fv a)
(7.14)(7.19) 127
=7 RN0) @ R (—a) €27 0P, f, o, T, T, —a)
— (@) ® R (—a) e®™ @3], f ], T, 21 —a)
(7':20) (Q—W)@)R ( o — ) Z27T9JJ(I) (]7 f> 71-737 f»ﬂ_a)

0 e R 0 —m) @ Ry w - 0) @00 foa—m, J F m—a)

(7.:11) ei27r9]<j €i27rs;. <e(a—7r)1\/[1—[ \i]]—(.]?, O) 0 7 e(a—w)Mn \i,j_(JT’ 0) Q> ) (721)

Note that the L.S. and the scalar produt factor) on the very R.S. of (7.21) are well
defined andstrictly positive for 0 < o < 7. It then follows that

Sj = —87= 8]*] mOdZ, (722)
which is the usual connection between spin and statistics:

s; half-integer «—— ¥; aFermi field,
s; integer «—— W, aBose field (7.23)

and, ford = 2,
s; fractional «—— V¥, a field withfractional (braid) statistics

Next, we show that our results imply that the vacufinis a KMS stateat inverse
temperatured = 27 for the one-parameter group of Lorentz boosts in the plane
We consider the Schwinger function

’:]:

(I)(n)<.]17 f17 Qp,..., jTL7 fTL7 an = <Q y ]k fk, Ofk > (724)

k=1

fora; < --- < ay,, With o, — a; < 2. For simplicity, we assume thdt> 3, so that all
spins are half-integer or integer and, by (7.22), only FeonBose statistics is possible.

Then (I)(n) (jh f17 A1y ...y
Jn, fn, @) vanishes, unless avennumber of the fieldsl;,, ..., ¥, are Fermi fields.
For everyl < m < n, we define the phase
Om = > 0, i1 (7.25)
k=1,..., m

with ¢, ;, as in (7.14).
Using egs. (7.15) and (7.16) and the fact that the total numwideermi fields among
v,,...,¥; iseven, one easily deduces from the spin statistics coiomg@t.23) that

O = Z s, modZ. (7.26)
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Next, by repeated use of (7.14), we find that

(I)(n)(.]h f17 A1y .eey jn7 fn7 an)

- 6i27r<pm (I)(n)(jm-i-la fm+1> Am41y -0, jna fna A, j1> f1> Ay eeny jm> fma am)
m
(7.26) . . .
=" exp <Z27TZ Sjk> DM (Jrnst, Frntt Qmits - -5 1> f1o 01,0 .0)
k=1

27 19 ®@1@R,(27)® - ®R,, (2r)

'(b(n)(jm—i-lv fm+1> At 1s - - '>j1> f1> &3] +27T>' R jma fm> 75 +27T) .
(7.27)

Note thato,,, 1 < ... < a, < a1 + 271 < ... < Qg + 27, With a,,, + 27 — gy <
21) (& am < ama1). Thus, by (7.24) (applied to the L.S. and the R.S. of (7.209),
arrive at the identity

< H‘I’ (frs ax) H U, (fi, 1) Q2

\/

I=m+1
_ <Q I1 s a1 (e—%MH U, (fi. ak)e%Mn) Q> (7.28)
I=m+1 k=1
which is the celebrateldMS condition
Defining
w(A) = (Q,AQ), (7.29)
and
Tp(A) 1= M 4 =M (7.30)

with (19(A))* = 19(A*) andry(A; - As) = 19(A1)79(As), WhereA, A;, A, are operators
on 7, we find, setting

H Ik fk7 ak Ba
k=1
and
H (flv al) =
l=m+1
that

w(B-C) =w(Crori(B))
=w(T_2r(C)B), (7.31)

a more familiar form of the KMS condition fafw, 7y) at inverse temperaturg = 2;
see [59].
It deserves to be noticed that the KMS condition (7.28), XY ignplies the spin-
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statistics connection. We calculate formally: Botr: ¢ < T,

U)(\:A[]jl(fl) 0)\11j2(f27 5))

KMS,(7.11) o 2 i
D o2 ) (G, (fo, 21 + €)W, (f1, 0)
(14 —i2msj, Li2mo;, U)(\i]jl(fly O)ﬁfh(fz, 2m + 6))
(7-:11) 6—i27rsj2 6i27r9j1 o w(\i]jl(fly 0)\1}].2(][‘2’ 5)) . (732)

Thus,
modZ , (7.33)

unlessw(¥;, (f1, 0)¥;,(f2, €)) = 0. If this quantity doesiot vanish (and ini > 3) then
either¥;, andV, are both Fermi fieldsd, ;, =  modZ) or they are both Bose fields
(0}, j, = 0modZ). Thus, (7.33) proves (a special case of ) SSC!

Sjo = ejl Jo

It turns out that theCPT theoren{for d ever) is a direct consequence of the KMS
condition (7.31). This claim can be viewed as a corollaryhef general Tomita-Takesaki
theory [61]. But, in our concrete context, it is easy to diedefine ananti-unitary in-
volution J acting on.7Z, which, thanks to the KMS condition (7.31), turns out to be a
symmetry of the theory: We define

B =V, (fi, 1)U, (for o), (7.34)
with0 <oy <...<a, < and
C =0, (g1, 61) V1, (Gm, Bm) » (7.35)

with0 < 8 < ... < (3, < w. We define
JBQ :=e ™up Q) (7.36)
or

J\i]jl(fh 051) o '\iljn(fm an) Q
= E_WMH ‘ilij(fna _an) e \ijjl(fl’ _al) Q
— Rj:nl(yr) U= (F,, m—ay)-- -RJ—._ll(W) ‘i’]—-l(fp m—op)Q,  (7.37)

In

wthd<7—a, <7m—a,1 <...<m—a < Byanalytic continuation of (7.37)
in the anglesyy, ..., o, to the imaginary axis, see [71], we see thabas the interpre-
tation of the productC P, T, where P, is the space reflection' — —2!', 7 — 7, 7 =
(22, ..., 2971); (geometrically, the action of only involves a reflection in the planié).
Using (7.36), we find that

(JCQ,JBQ) "=V (e g oM BrQ)
(e ™M B*Q)
= w(rm(C)B)
(7.31)

=" w(B*C)
(BQ,CQ),
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which tells us that/ is anti-unitary. Moreover,
J(JBQ) = J (e B*e™m) O
— 6—7r]\/fn (67TMH Be—wl\/fn) 9]
=B,
i.e.,J is aninvolution
In evenspace-time dimension, the produétP, where P is space reflection, has

determinant= 1 and can be represented as a space rotation. Herie¢és asymmetryof
the theory. It follows that the CPT operaterdefined by

©:=JPP (7.38)
is ananti-unitary symmetrpf the theory. This is the celebrat&@PT theoreni58]. In a
space-time obdd dimension, the operatots; = CP;T, j = 1,..., d — 1 are always

anti-unitary symmetries, but, in gener@l is nota symmetry.

For an analysis of SSC and CPT for local RQFT’s on a class ofeclispace-time
manifolds with ‘large’ groups of Killing symmetries (Schrzachild, de Sitter, AdS), see,
e.g., [71].

I conclude my discussion with a result due $teven Weinbergnd Edward Wit-
ten [72]: In a four-dimensional local RQRithout gravity there are no massless charged
(asymptotic) particles of spix % with a well defined current- and charge operator, and
there are no massless (asymptotic) particles of spin with a well defined energy-
momentum tensor.

7.2 Braid statistics in two and three space-time dimensionand SSC*#

Two-dimensional electron gases in a transversal exteraginetic filed exhibiting the
fractional quantum Hall effect appear to be examples of iuarmechanical systems
with fractionally charged quasi-particles having franab spins ¢ %Z and fractional
or braid statistics; see, e.g., [78, 79], and referencesngiliere. The analysis of these
particles is important in order to calculate, e.g., the gabfi the Hall conductivityoy

(a rational multiple of%). Certain systems exhibiting the fractional quantum Hééct

(e.g., the ones witlv; = g %) are believed to be of interest for purposes of quantum
computation. All this is quite fascinating and has been agrmag more serious scientific
interests in the 1990’s. Thus, it would have been temptirgime a rather detailed account
of the theory of planar systems exhibiting fractional eleatharges, fractional spin and
fractional or braid statistics.

However, after much agonizing, | have come to the conclusianit is impossible to
give an account of fractional spin and braid statisticsihatcurate(mathematically pre-
cise),comprehensibleandshort | therefore decided, with considerable regrets, to limit
my account of these matters to some very sketchy remarks.

The pure physical states of a quantum-mechanical systethsninitely many de-
grees of freedom aero temperaturedescribed, e.g., by a local RQFT, fall into different
irreducible (‘simple’)superselection sectar¥hese sectors are invariant under the action
of operators corresponding to local observable quan(iiesasurements’) of the theory.

1430urces for this section are [55,56,68-70, 73,76, 77].
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(The action of the algebra of all ‘local observables’ on g\&rperselection sector of the
theory is usually irreducible.) Superpositions of statesnf different superselection sec-
tors are thereforencoherent:Their relative phases are not observable, and interference
terms vanish (‘decoherence’).

Let/ = {e,2,3,..., N}, N < o0, be a set of indices labelling the different ir-
reducible superselection sectors of such a system,anbelling the sector containing
the ground statgor vacuum)(? of the system. Lel/;, ; € I, denote the unitary repre-
sentation of the quantum-mechanical rotation grépn(d — 1) on (the Hilbert space
#¢; of pure states corresponding to) the superselection sgcBince the algebra of local
observables is assumed to act irreducibly#h and because observables commute with
rotations through an anglter, one can show that’;(R(2x)), where R(2) is a space
rotation through an angler, is a multiple of the identity, i.e.,

U;(R(2m)) = €™ 15, (7.39)
wheres; is called the spin (parity) of sectoy’. Ford > 3, s; € %Z, but, ford = 3,
Spin(2) ~ R, (7.40)

so thats, can, in principle, be aarbitrary real number(modZ).

If the theory describing the systems hakeal structure(see [55, 69, 70, 73]) and
the vacuum sectar has appropriate propertiedHaag duality, see [55]) then one can
show that sectors can lsemposedi.e., with two sectors; andj, one can associate their
composition; ® 7, (a kind oftensor produdt, and the sector ® j can be decomposed
into a direct sum of irreducible sectors, with multipliesiaccording to

Nl
ioj =P N:-k=P [P+ |, (7.41)

kel kel a=1

whereij =0, 1, 2,...is themultiplicity of the irreducible sectok in the tensor prod-
uct sectori ® j, andk(® ~ k. The integersV}: are called fusion rules If the theory
describing the systems has a local structure, as above aorghow that:

« to every irreducible sectgr € I one can uniquely associate a (chargmijugate
sectorj such thay ® j ~ j ® j contains the vacuum (groundstate) seet@xactly
oncei.e.,

j®j26@< @ ij..k;); (7.42)
kel
k#e
and
ee®j~j®e~y, foralljel.

Sincei ® j ~ j ®1, there must exist amtertwiner (morphism)e;; intertwining: © j with
J @

Eij iR — j®I. (7.43)
Focusing on systems in two or three space-time dimensionkiehwve will do in the
following — we find, after some serious reflection, that tremeeusuallytwo distinguished
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intertwinerSe;; ande;; satisfying (7.43). (In two space-time dimensions, this bann-
derstood as a consequence of the fact that the complemehgbt eone has two disjoint
components; in three space-time dimensions, it is relaidtid circumstance that two
points in the plane can be exchanged either clockwise orcéotkwise.) It turns out
that, thanks to the associativity of the composition of @ex{the tensor produc), the
operator&;tj obey theYang-Baxter equation@s first observed in [68]), and

£;; €5 = identity. (7.44)
It follows from these properties that the intertwinér_s; |i,7 € I} determine a unitary
representation of the groupoid of colored braidshastrands (the colors are the labels of
the irreducible sectors, i.e., the elementgffor arbitraryn = 2, 3, . ... These represen-
tations describe thguantum statisticef the system. If

ey =eyforalld, jel, (7.45)

then the representations of the braid groupoids are agttegresentations of theer-
mutation groupsand the quantum statistics ultimately reduces to ordiBmse / Fermi
statistics In d > 4 space-time dimensions, eq. (7.45) always holds.

Let N; denote thel| x || matrix with positive integer matrix elements

(N;)} = NE. (7.46)

The matricesN;, i € I, all commute and have a common Perron-Frobenius eigenvecto
A, with componentg\; > 0, € . It is quite easy to show, using (7.41) - (7.43), that

i.e.,A; is the largest eigenvalue of the math; A,, is called thestatistical(or quantumn
dimensionof the sectori. ClearlyN, = 1 and henceA, = 1. If all statistical dimen-
sionsA;, i € I, arepositive integershen the quantum statistics is ordinary Bose / Fermi
statistics ormbelianbraid statistics. Thuson-abelianbraid statistics is only encountered
in theories with some fractional quantum dimensions.

Next, we introduce theonodromy operatois

One aspect of the genemadnnection between spin and statistig€shat the spectrum of
the monodromy operatqr;; consists of the eigenvalues

exp [i2m(s; +s; — si)], k€1, (7.49)

and the multiplicity of the eigenvaluep [i27(s; + s; — si)] IS given byNZ-’;%; see[70,76].
Let vf’j be an intertwiner (‘Clebsch-Gordan operator’) intertwinthe sectoi® j with the

subsectok; see (7.43). There are preciséW} linearly independensuch intertwiners.
Then

iy vfj = exp [127(s; + 55 — Si)] vfj . (7.50)
In particular, fori = j, k = e, we have that

pi; 05, = exp [i27(s; + s7)] v5; (7.51)
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because, = 0 modZ. One can show that
sj = —s;modZ, (7.52)

or, equivalently,

Hij Vg = V55
This is a weaker form of eq. (7.22), subsection 7.1. We catecthis brief survey with the
following result valid (for local RQFT in }hreespace time dimensions and established
in [70]; (see also references given there).

THEOREM 7.1.
(1) If I is a finite set then; is arational numberfor all j € I.

(2) If eitherspace reflection in a liner time reversails a symmetryof the theory orall
its superselection sectojse [ then the quantum statistics of the theory is ordinary
permutation-grougBose / Fermiktatistics and

1
5; € 52, forall jeI. (7.53)

(3) The following two statements agguivalent

(i) The quantum statistics of the theory is ordinary perniotagroup (Bose /
Fermi) statistics.

(i) exp [i27(s; +s; — sx)] = 1, forall 4, j, kin I with ij > 1.

Moreover, both statements imply that

1
sjEEZ, forall jeI.

Remarks.

(1) Therationality of the Hall conductivity, i.e.oy = r<, r € Q, in two-dimensional,
incompressible electron gases exhibiting the fractiomangum Hall effect is inti-
mately connected to paft) of the theorem; see [79].

(2) Space reflections in a line and time reversahartesymmetries of a two-dimensional
electron gas in a transversal, external magnetic field.dwwf part(2) of the theo-
rem, this explains why such systems may exhibit quasi-gastwith braid statistics.

(3) The precise hypotheses under which the theorem is pr@vgn local RQFT satis-
fying ‘Haag duality’) can be found in [70].

It is not entirely easy to translate the contents of this teewointo purely field theo-
retic jargon, at least if one desires to be precise, matheatigt The remark may help the
reader that ‘physical’ examples of sectors with fractiss@h and braid statistics can be
found in the realm of abelian and non-abelian Chern-Simbesries; see, e.g., [67, 80].
In these theories, sectors with fractional spin and stesisian be constructed by apply-
ing field operators with Mandelstam flux strings to the vacweutor. In the theory of
the quantum Hall effect topological versions of these tle=oplay a fundamental role;
see [47]. They also appear in the theoretical descriptigrayhene.

Well, | guess it is time to claim victory!
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