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Abstract. The theoretical aspects of the gravitational motion and radiation of
binary black hole systems are reviewed. Several of these theoretical aspects
(high-order post-Newtonian equations of motion, high-order post-Newtonian
gravitational-wave emission formulas, Effective-One-Body formalism,
Numerical-Relativity simulations) have played a significant role in allowing one
to compute the 250 000 gravitational-wave templates that were used for search-
ing and analyzing the first gravitational-wave events from coalescing binary
black holes recently reported by the LIGO-Virgo collaboration.

1 Introduction

On February 11, 2016 the LIGO-Virgo collaboration announced [1] the quasi-
simultaneous observation by the two LIGO interferometers, on September 14, 2015,
of the first Gravitational Wave (GW) event, called GW150914. To set the stage, we
show in Figure 1 the raw interferometric data of the event GW150914, transcribed
in terms of their equivalent dimensionless GW strain amplitude hobs(t) (Hanford
raw data on the left, and Livingston raw data on the right).

Figure 1: LIGO raw data for GW150914; taken from the talk of Eric Chassande-Mottin (member
of the LIGO-Virgo collaboration) given at the April 5, 2016 public conference on “Gravitational
Waves and Coalescing Black Holes” (Académie des Sciences, Paris, France).

The important point conveyed by these plots is that the observed signal hobs(t)
(which contains both the noise and the putative real GW signal) is randomly fluc-
tuating by ±5× 10−19 over time scales of ∼ 0.1 sec, i.e. time scales shorter than the
observable duration (∼ 0.2 sec) of the coalescence signal. Such a fluctuation level is
500 times larger than the maximum amplitude of the GW coalescence signal due to
GW150914, which is hsignal

max ' 1 × 10−21. In other words, the observed (equivalent)
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GW amplitude hobs(t) is totally dominated by the colored, broadband noise, n(t),
of the detectors:

hobs(t) = n(t) + hsignal(t) (1)

with |n(t)| ∼ 5× 10−19 � |hsignal(t)|.
Methods for detecting the presence of the small signal hsignal(t) in hobs(t) have

therefore been crucial to the interpretation of the LIGO data. The data analysis,
performed by the LIGO-Virgo collaboration, of the raw LIGO data makes use of
several methods (generic transient search, matched-filter search) and is done in sev-
eral stages (online, offline). We refer to the contribution of Eric Chassande-Mottin
for a detailed discussion of the various data analysis pipelines. Here we shall focus
on the role played by the multi-year theoretical work on the motion and radiation of
compact binary systems, and notably on binary black hole (BBH) systems. Indeed,
as we shall explain, this work led, more than 10 years before the first detection, to
precise predictions for the GW signal hsignal(t) emitted by inspiralling and coalescing
BBH systems. These predictions have played an important role in defining a large
bank of “template” signal waveforms hsignal(t; pi), depending on several parameters
pi, that have been used, via a Matched Filtering technique, both to search for and
to physically interpret, GW coalescence signals hidden in the raw LIGO data. To
date, the observation of three BBH GW coalescence events have been reported by
the LIGO-Virgo collaboration [1, 2]: GW150914, GW151226 and (with a lower con-
fidence level) LVT151012. A theory-based bank of 250 000 template waveforms has
been crucially used both to extract from the noise, and to interpret (in terms of the
masses and spins of inspiralling and coalescing black holes), these three events. We
note in passing that, while the first event GW150914 was loud enough to have been
initially identified by an online generic transient search (using a time-frequency-
analysis), the other, weaker events were only identified by a matched-filter search
(GW151226 having been first identified by an online matched-filter search, and the
candidate event LVT151012 having been found in an offline matched-filter analysis).

2 Early contributions to the theory of the gravitational motion and radiation of
compact binary systems

Before explaining the rather recent theoretical work that led to precise predictions
for the form of the GW signals emitted by coalescing BBHs (which are the only
compact binary systems observed so far), we wish to briefly summarize the early
history of the theory of the motion and radiation of compact binary systems. [The
expression “compact binary systems” refers to systems made either of two black
holes, two neutron stars, or one black hole and one neutron star. Most of the recent
theoretical work applies to all these systems, though the BBH case is special in
that it is the only one for which the theory has been able to accurately predict
the full GW signal, from the early inspiralling phase, up until the merger and the
post-merger “ringdown”.]

2.1 Early contributions to the theory of the gravitational motion of binary systems (in
brief)

Einstein (and Droste) introduced around 1912-1916 the useful approximation method
called post-Newtonian (PN). This is an expansion in 1/c2, which gathers, at each or-
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der, “slow-motion” relativistic corrections proportional to v2/c2, and “weak-
gravitational-field” corrections proportional to GM/(rc2). The PN expansion is a
quite efficient approximation scheme which has kept its usefulness over many years
(after many theoretical improvements to cure some of its defects). The first post-
Newtonian (1PN) approximation to the dynamics of a binary system has been first
correctly derived in a famous 1938 paper by Einstein-Infeld-Hoffmann [3]. [An equiv-
alent result was already contained in a 1917 paper by Lorentz-Droste [4], which
remained ignored in the literature].

2.2 Early contributions to the theory of the gravitational radiation of binary systems (in
brief):

In 1918 Einstein [5] obtained the structure of weak, plane gravitational waves, and
derived –modulo a factor 2– the leading-order (LO) emission of GWs from a non-
self-gravitating source. He found that the LO radiation was quadrupolar in nature,
and determined by the second time derivative of the mass quadrupole of the source.
More precisely, his results were equivalent to saying that, in a certain coordinate
system, the metric perturbation emitted by a general non-self-gravitating source
could be written, far from the system (at a point x = r n, with n2 = 1, in the wave
zone), as

hquad
ij (t,x) ≈ 2G

c4r

[
d2Iij(t− r/c)

dt2

]TT
(2)

where the superscript TT denotes a transverse-traceless projection on the plane
orthogonal to the radial direction ni = xi/r, i.e.

ATTij ≡
(
Pii′(n)Pjj′(n)− 1

2
Pij(n)Pi′j′(n)

)
Ai′j′ (3)

where Pij(n) ≡ δij − ninj. [We use Einstein’s summation convention on repeated
indices, and spatial indices i, j, . . . = 1, 2, 3 are raised and lowered by the Euclidean
metric δij = diag(1, 1, 1), so that, for instance ni = ni and δij = δij.]

To LO, the symmetric trace-free (STF) spatial tensor Iij entering Eq. (2) is the
Newtonian mass quadrupole of the source

Iij(t) ≈
∫

source

d3x ρ(t,x)

(
xixj − 1

3
x2δij

)
(4)

where ρ(x) is the Newtonian mass density of the source.
The quadrupole-emission formula of Einstein was generalized to self-gravitating

sources (such as binary systems) by Landau and Lifshitz [6] in 1941 (as well as
by Fock [7] in 1955). These authors found that, though one cannot neglect, when
evaluating the gravitational emission of a binary system, the nonlinear gravitational
stresses linked to the self-gravity effects within the source (i.e. the spatial stresses
T ij of the material source must be completed by additional contributions tijg gen-
erated by the nonlinear structure of Einstein’s equations), the final result for the
emitted waveform can still be written in the form (2) with a quadrupole moment
still approximately given by the Newtonian expression (4).

Applying this Einstein-Landau-Lifshitz quadrupole-emission formula to the case
of a binary system [with masses m1,m2 located at positions x1(t), x2(t)] predicts
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that the GW emitted by a binary system is, to LO, given by Eq. (2) with a LO
quadrupole moment given by

Iij(t) ≈ m1

(
xi1x

j
1 −

1

3
x1

2δij

)
+m2

(
xi2x

j
2 −

1

3
x2

2δij

)
(5)

In the center-of-mass frame of the binary system, the LO quadrupole moment reads

Iij(t) ≈ µ

(
xi12x

j
12 −

1

3
x12

2δij

)
(6)

where
µ ≡ m1m2

m1 +m2

(7)

is the reduced mass of the binary system, and where x12 ≡ x1 − x2 is the relative
position.

In addition, as early as 1918, Einstein [5] evaluated the instantaneous flux of
energy emitted (at a given retarded time u ≈ tfield−r/c, and over a sphere at infinity)
by the source in the form of GWs, and found –modulo a factor 2 which was later
corrected by Eddington– that it was given by the following quadratic expression in
the third time-derivative of the (radiative) quadrupole moment Iij(t) entering the
waveform (2):

FE
GW(u) ≈ G

5c5

[
d3Iij(t)

dt3
d3Iij(t)

dt3

]
t=u

(8)

Inserting in the LO “flux quadrupole formula” (8) the LO expression of the quadru-
pole moment of a binary system, Eqs. (5), (6), and using, at LO, the Newtonian
equations of motion to evaluate the third time-derivative of Iij(t) then yields an
explicit expression for the instantaneous GW flux emitted by a binary system. The
latter expression simplifies in the case where the two bodies move along circular
orbits, and yields

FEcirc
GW ≈ 32G4

5c5

µ2M3

r5
12

(9)

where
M ≡ m1 +m2 (10)

denotes the total mass of the binary system.
Requiring that the loss of energy in the form of a GW flux at infinity is balanced

by corresponding secular loss of the energy of the binary system

dEsystem

dt
= −FE

GW (11)

and using the LO (Newtonian) value for the binding energy of a circular binary
system, namely

Ecirc
system ≈ −

1

2

Gm1m2

r12

(12)

yields the following ODE [given as an exercize in Landau-Lifshitz (1941) [6]] for the
secular evolution of the relative distance r12(t) of the binary system

dr12

dt
≈ −64G3

5c5

µM2

r3
12

(13)



Ondes Gravitationnelles, Vol. XXII, 2016 Gravitational Waves and Binary Black Holes 5

or, equivalently,
dr4

12

dt
≈ −256G3µM2

5c5
(14)

whose solution is

r4
12(t) ≈ r4

12(0)− 256G3µM2

5c5
t = r4

12(0)

(
1− t

tc

)
(15)

where

tc =
5c5r4

12(0)

256G3µM2
(16)

Note that tc has the physical meaning of the time of coalescence of two point masses,
namely the time at which, formally, the relative distance r12(t) ∝ (1−t/tc)

1
4 vanishes.

For comparable masses, m1 ∼ m2, this coalescence time (when evaluated at any time
t0) is of order

tc ∼
P0

(v0/c)5
(17)

where P0 and v0 are, respectively, the orbital period and the orbital velocity, evalu-
ated at time t0.

In a visionary paper of 1963, Freeman Dyson [8] was apparently the first to
grasp the most important consequence of this text-book exercize: namely, the fact
that GW radiation reaction necessarily drives binary systems closer and closer until
the two bodies coalesce in a violent event that will emit an intense burst of GWs.
He realized that the GW signal emitted just before and during such a coalescence
event will be most important for binary systems made of compact objects. [For
objects having larger radii R1, R2, the coalescence (which actually takes place when
r12 ≈ R1 + R2) occurs for a larger relative distance, corresponding to a smaller
relative velocity, and a weaker GW signal.] In his paper (written before the discovery
of pulsars, i.e. at a moment where most people did not take seriously the idea of
“neutron stars”), Dyson explicitly considered the case of a an inspiralling binary
system of two neutron stars, whose inspiral is driven by the energy loss into GWs,
and emphasized the potential importance of such coalescence events as GW sources.
To quote Dyson:

“According to (11) [the Einstein-Landau-Lifshitz quadrupole formula], the loss
of energy by gravitational radiation will bring the two stars closer with ever-
increasing speed, until in the last second of their lives they plunge together and
release a gravitational flash at a frequency of about 200 cycles and of unimaginable
intensity. [...] It would seem worthwhile to maintain a watch for events of this kind,
using Weber’s equipment or some suitable modification of it.”

This vision of Dyson is illustrated in Fig. 2 and Fig. 3. More precisely, Fig. 2
sketches the evolution, Eq. (15), of the relative distance between the two neutron
stars (which formally ends up at r12(tc) = 0), while Fig. 3 sketches the correspond-
ing emitted gravitational wave amplitude (estimated by the “quadrupole formula”),
which formally ends up as a singular (infinite-amplitude, infinite frequency) oscilla-
tory signal h(t) ' c1(tc − t)−1/4 cos(c2(tc − t)5/8 + c3).

LIGO transformed this theoretical vision of Dyson into reality (for the case of
binary black holes; binary neutron star coalescences are still to be detected). Note
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Figure 2: Secular decrease (formally until coalescence: r12(tc) = 0) of the distance r12(t) between
the two members of a compact binary, as computed from the leading-order (quadrupole) formula.
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Figure 3: Gravitational wave signal emitted by a coalescing compact binary, as estimated from the
leading-order theoretical estimate (quadrupole-formula)
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in passing that Dyson’s work had been motivated by the pioneering experimental
vision (dating from about 1955, when Dyson invited Weber to stay at the Institute
for Advanced Study in Princeton) of Joseph Weber that GWs passing on Earth gen-
erate observable effects that can, in principle, be detected by a sufficiently sensitive
apparatus.

The case of circular motions considered by Landau-Lifshitz and Dyson might
seem to be generically too special. Peters [9] extended the LO (quadrupolar) energy-
loss computation of Einstein (1918) to the computation of the (LO, quadrupolar)

loss of angular momentum, say F Ji

GW, of a binary system. Requiring that the GW
losses of energy and angular momentum are both balanced by corresponding secular
losses of the energy and angular momentum of the binary system,

dEsystem

dt
= −〈FE

GW〉 (18)

dJ isystem

dt
= −〈F Ji

GW〉 (19)

(where 〈· · · 〉 denotes a time-average over orbital period) he found that a binary
system moving on an eccentric orbit would efficiently circularize. More precisely,
expressing, at LO, Esystem, and Jsystem = Jzsystem in terms of the Newtonian semi-
major axis, a, and eccentricity, e, of the Keplerian relative orbit, namely

Esystem ≈ −
GµM

2a
; Jsystem ≈ µM

√
Ga(1− e2)

M
(20)

and using the LO values of the averaged GW fluxes of energy [10] and angular
momentum [9] from eccentric Keplerian binary orbits, namely

〈FE
GW〉 ≈

32G4

5c5

µ2M3

a5

1 + 73
24
e2 + 37

96
e4

(1− e2)
7
2

, (21)

〈F J
GW〉 ≈

32G
7
2

5c5

µ2M
5
2

a5

1 + 7
4
e2

(1− e2)2
, (22)

Peters derived a system of two coupled ODEs for the secular time evolution of a and
e. This system can be transformed into a decoupled ODE of the type da/de = f(e),
together with an ODE of the type de/dt = g(e)/a4. The decoupled ODE da/de =
f(e) was explicitly solved by Peters with the result

a(e) = c0
e

12
19

1− e2

[
1 +

121

304
e2

] 870
2299

(23)

where c0 is a constant of integration. The latter result shows that the eccentricity
decreases as the semi-major axis decreases, and the orbital frequency

Ω =
2π

P
=

√
GM

a3
(24)

increases, under GW radiation reaction. [This decrease is roughly inversely propor-

tional to the orbital frequency: e ∝ Ω−
19
18 ' Ω−1.] In other words, radiation reaction
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leads to a rather fast circularization of the binary orbit. As most coalescing compact
binary systems will most likely enter the observable frequency band of ground-based
interferometric GW detectors only after many years of secular evolution have led to
a huge increase in orbital frequency, this brings the big simplification that observed
binary systems can be expected to move on an orbit which can be well approximated
by a secularly-shrinking circular orbit.

2.3 Early contributions to the theory of back holes (BH) (in brief)

Let us recall the discovery of BH solutions by Schwarzschild (1916) [11] and Kerr
(1963) [12], and the pioneering work of Oppenheimer and Snyder (1939) [13], which
introduced the vision of the dynamical formation of a BH during the collapse of a
neutron star exceeding its maximum possible mass. In addition, especially important
for the theoretical understanding of the post-merger, “ ringdown” signal of coalescing
BBH, one should mention the important discovery of [14] that the scattering of a
featureless incoming Gaussian wavepacket on a BH generates, as outgoing wave, a
wavepacket which features new oscillations, carrying information about the BH on
which it scattered. This result initiated the vision of BHs as dynamical objects per
se, instead of mere extreme potential wells, having a strange spacetime structure. It
was later understood that the new oscillations imprinted on the outgoing wavepacket
could be interpreted as “vibrations of the black hole” [15]. It was also found at the
time that the fall of a particle in a BH would excite these “ringing modes” of the
BH [16]. [The latter work belonged to the many investigations, done in the 1970’s, of
the possible GW signals emitted by test particles moving in BH backgrounds. These
investigations made use of the Regge-Wheeler-Zerilli, and Teukolsky, formalisms for
perturbed BH geometries.] The theory of these BH “Quasi-Normal Modes” (QNM)
was later well developed, and is an important part of the GW signal emitted by a
coalescing BBH. [They constitute the final, exponentially damped, part of the GW
signal, called “ringdown”.]

3 Later history of accurate computations of the motion and radiation of binary
systems

We have summarized above the early history of the description of the motion and
GW emission of compact binaries (and notably binary black hole systems). This
led to the lowest-order (LO) description of the secular inspiral, ending in a violent
coalescence, of compact binaries. When plans for the construction of ultra-sensitive
interferometric detectors of GWs started to materialize, it was, however, realized
(see, e.g., [17]) that much more accurate descriptions of both the motion and the
GW emission of binary systems were needed. Indeed, astrophysical estimates of the
spacetime density of binary coalescences indicated that the signals to be expected
would always be much smaller than the broadband noise of the detectors. Such a
situation is far from new in physics and technology. In particular, the development
of radar systems during the second world war led to many studies of the extraction
of signals from noisy data stream. In the case where the signal to be extracted has a
known shape, say hsignal(t; pi) (depending, however, on the values of several a priori
unkown parameters pi), and when the background noise stream n(t) is Gaussian and
stationary, there is an optimal way of filtering the signal out of the observed noisy
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output hobs(t) of the detector, say

hobs(t) = n(t) + hsignal(t; pi) (25)

This optimal filtering (called “Wiener filter”) consists in computing a certain
weigthed convolution between the detected noisy data stream hobs(t) and a nearly
continuous bank of templates, i.e. copies of the expected parameter-dependent sig-
nals hsignal(t; pi). [Among the list of parameters pi, there is always one, say p0 = t0,
which describes the a priori unknown time of arrival of the signal.] In the time-
domain the latter weighted convolution involves a kernel K(t − t′), which is the

convolution-inverse of the noise correlation function Sn(t − t′) ≡ n(t)n(t′). In the
frequency-domain, the convolution-inverse is simply the usual (algebraic) inverse, so
that the optimal filter consists in computing the following weigthed overlap

〈hobs(t), htemplate(t; pi)〉 =

∫ +∞

−∞
df
e2πift0

S̃n(f)
h̃obs ∗ (f) h̃template(f ; p′i) (26)

Here, the tilde symbol denotes the Fourier transform, while p′i denotes the list of
parameters, excluding the time-delay one, which is parametrized by t0 in the expo-
nential factor e2πift0 . [See the contribution of Eric Chassande-Mottin for details of
the optimal filtering method, and of its application to data analysis.]

The overlap 〈hobs(t), htemplate(t; pi)〉 is the sum of a random, zero-average noise-
related term 〈n(t), htemplate(t; pi)〉, and of a non-fluctuating, signal-related term
〈hsignal (t), htemplate(t; pi)〉. The crucial point is that the latter signal-related contri-
bution will reach the maximum amplitude it can achieve (i.e. the maximum possible
signal-to-noise-ratio) only if the templates htemplate(t; pi), used as filters, are very
accurate representations (for some value of the parameters) of the expected real sig-
nals hsignal(t). Roughly speaking, this means that the template (of the type of Fig. 3)
should (at least when the frequency of the GW signal is within the frequency range
where the detector is reasonably sensitive, say between 30 Hz and 1000 Hz) only
dephase from the real signal by a small fraction of a cycle. This requirement turned
out to necessitate the development of new, sophisticated theoretical calculations of
the motion and radiation of compact binaries, namely:

1. Development of analytical methods able to tackle the motion of strongly self-
gravitating bodies, and notably of black holes;

2. Accurate analytical calculations of the motion of binary systems, going much
beyond the LO (Newtonian) appproximation;

3. Accurate analytical calculations of the GW emission of binary systems, going
much beyond the LO (quadrupole) appproximation;

4. Development of resummation methods, able to go beyond the limit of validity
of the usual, PN approximation method, and thereby to describe the complete
GW coalescence signal;

5. Development of numerical schemes able to tackle the inspiral and coalescence
of black holes and neutron stars.

The following sections will briefly cover these developments.



10 T. Damour Séminaire Poincaré

4 Analytical developments in the general relativistic two-body problem

The two-body problem in General Relativity (GR), and notably the problem of the
motion of compact bodies, has been the focus of many theoretical works, from the
1970’s up until now. Indeed, the discovery in the 1970’s of binary systems comprising
strongly self-gravitating bodies (black holes or neutron stars) has obliged theorists to
develop improved approaches to the two-body problem. These improved approaches
are not limited (as the traditional PN method) to the case of weakly self-gravitating
bodies and can be viewed as modern versions of the Einstein-Infeld-Hoffmann classic
work [3].

In addition to the need of considering strongly self-gravitating bodies, the dis-
covery of binary pulsars in the mid 1970’s (starting with the Hulse-Taylor pulsar
PSR 1913 + 16) obliged theorists to go beyond the 1PN (O(v2/c2)) relativistic ef-
fects in the equations of motion (which was the level reached, notably, by Einstein,
Infeld and Hoffmann [3]). More precisely, it was necessary to go to the 2.5PN ap-
proximation level, i.e. to include terms O(v5/c5) beyond Newton in the equations of
motion. This is, indeed, the level at which radiation reaction effects, linked to the fi-
nite velocity of propagation of the gravitational interaction between the two bodies,
start entering the equations of motion. This was achieved in the 1980’s by several
groups [18, 19, 20, 21, 22]. [Let us note that important progress in obtaining the
N -body metric and equations of motion at the 2PN level had been achieved by the
Japanese school in the 1970’s [23, 24, 25].] The main result of Refs. [18, 19, 20, 21, 22]
was to show that the combination of the finite velocity of propagation of the grav-
itational interaction between the two bodies with the specific nonlinear properties
of General Relativity implied a decay of the orbital period of a binary system given
by the expression

dP

dt
= −192π

5c5

(
2πG

P

) 5
3

µM
2
3

1 + 73
24
e2 + 37

96
e4

(1− e2)
7
2

. (27)

The presence of a factor 1/c5 on the rhs corresponds to the fact that the effect (27)
is linked to the 2.5PN, i.e. O[(v/c)5], contributions to the equations of motion of
a binary system. The expression (27) can also be heuristically derived by requiring
the balance (18) between the Newtonian energy of the binary system (20) and the
LO GW energy flux (21). However, the works [18, 19, 20, 21, 22] were the first
to derive the period decay (27) from Einstein’s equations by means of a complete
dynamical computation (taking into account, for the first time, all intermediate
effects at 1PN and 2PN levels) based on the specific nonlinear properties of General
Relativity together with the (assumed) propagation of gravity via a retarded Green’s
function. This result thereby showed that (contrary to what is often stated) the
observed orbital period decay of binary pulsars is a direct proof of the reality of
gravitational radiation (in the precise sense of the propagation at the velocity of light
of the gravitational interaction between the two bodies). The often voiced contrary
statement that the agreement between expression (27) and binary pulsar data is
only an indirect proof of the existence of gravitational radiation is due to the use of
the indirect reasoning that requires the energy balance (18). This indirect reasoning
(which was the one used by Landau-Lifshitz, Dyson and Peters) heuristically relates
a wave-zone energy loss to a near-zone binding-energy decrease, while the dynamical
proof of (27) only involves dynamical quantities, and GW propagation effects, in the
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near zone.
Motivation for pushing the accuracy of the equations of motion beyond the

2.5PN level came from the prospect of detecting the gravitational wave signal emit-
ted by inspiralling and coalescing binary systems, notably binary neutron star (BNS)
and binary black hole (BBH) systems. The 3PN-level equations of motion (includ-
ing terms O(v6/c6) beyond Newton) were derived in the late 1990’s and early 2000’s
[26, 27, 28, 29, 30] (they have been rederived in [31]). The next-to-leading order
radiation-reaction terms entering at the 3.5PN level (O(v7/c7) beyond Newton) have
been derived by several authors, starting with Ref. [32]. Recently, the (conservative)
4PN-level dynamics (including terms O(v8/c8) beyond Newton) has been tackled
in [33, 34, 35, 36, 37, 38] and completed in Refs. [39, 40] (the correctness of the
latter 4PN dynamics has been confirmed in [41]).

Let us briefly contrast the new approaches to the problem of motion that have
been developed after the 1970’s to the older ones.

The traditional approach (started by Einstein, Droste, de Sitter, Eddington,...;
see [42] for a review and references) to the problem of motion of N separate bodies
in GR consists of solving, by successive approximations, Einstein’s field equations
(we use the signature −+ ++)

Rµν −
1

2
Rgµν =

8π G

c4
Tµν , (28)

together with their consequence

∇ν T
µν = 0 . (29)

To do so, one assumes some specific matter model, say a perfect fluid,

T µν = (ε+ p)uµ uν + p gµν . (30)

One expands (say in powers of Newton’s constant) the metric,

gµν(x
λ) = ηµν + h(1)

µν + h(2)
µν + . . . , (31)

and use the simplifications brought by the ‘Post-Newtonian’ approximation (∂0 hµν =
c−1 ∂t hµν � ∂i hµν ; v/c� 1, p� ε). Then one integrates the local material equation
of motion (36) over the volume of each separate body, labelled say by a = 1, 2, . . . , N .
In so doing, one must define some ‘center of mass’ zia of body a, as well as some
(approximately conserved) ‘mass’ ma of body a, together with some corresponding
‘spin vector’ Sia and, possibly, higher multipole moments.

An important feature of this traditional method is to use a unique coordinate
chart xµ to describe the full N -body system. For instance, the center of mass, shape
and spin of each body a are all described within this common coordinate system
xµ. This use of a single chart has several inconvenient aspects, even in the case of
weakly self-gravitating bodies (as in the solar system case). Indeed, it means for
instance that a body which is, say, spherically symmetric in its own ‘rest frame’
Xα will appear as deformed into some kind of ellipsoid in the common coordinate
chart xµ. Moreover, it is not clear how to construct ‘good definitions’ of the center
of mass, spin vector, and higher multipole moments of body a, when described in
the common coordinate chart xµ. In addition, as we are possibly interested in the
motion of strongly self-gravitating bodies, it is not a priori justified to use a simple
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expansion of the type (31) because h
(1)
µν ∼

∑
a

Gma/(c
2 |x−za|) will not be uniformly

small in the common coordinate system xµ. It will be small if one stays far away
from each object a, but, it will become of order unity on the surface of a compact
body.

These two shortcomings of the traditional ‘one-chart’ approach to the relativistic
problem of motion can be cured by using a ‘multi-chart’ approach. The multi-chart
approach describes the motion of N (possibly, but not necessarily, compact) bodies
by using N + 1 separate coordinate systems: (i) one global coordinate chart xµ

(µ = 0, 1, 2, 3) used to describe the spacetime outside N ‘tubes’, each containing
one body, and (ii) N local coordinate charts Xα

a (α = 0, 1, 2, 3; a = 1, 2, . . . , N) used
to describe the spacetime in and around each body a. The multi-chart approach was
first used to discuss the motion of black holes and other compact objects [43, 44, 45,
46, 47, 48, 49, 50, 51]. Then it was also found to be very convenient for describing,
with the high-accuracy required for dealing with modern technologies such as VLBI,
systems of N weakly self-gravitating bodies, such as the solar system [52, 53].

The essential idea of the multi-chart approach is to combine the information
contained in several expansions. One uses both a global expansion of the type (31)
and several local expansions of the type

Gαβ(Xγ
a ) = G

(0)
αβ(Xγ

a ;ma) +H
(1)
αβ (Xγ

a ;ma,mb) + · · · , (32)

whereG
(0)
αβ(X;ma) denotes the (possibly strong-field) metric generated by an isolated

body of mass ma (possibly with the additional effect of spin).

The separate expansions (31) and (32) are then ‘matched’ in some overlapping
domain of common validity of the type Gma/c

2 . Ra � |x − za| � d ∼ |xa − xb|
(with b 6= a), where one can relate the different coordinate systems by expansions
of the form

xµ = zµa (Ta) + eµi (Ta)X
i
a +

1

2
fµij(Ta)X

i
aX

j
a + · · · (33)

The multi-chart approach becomes simplified if one considers compact bodies (of
radius Ra comparable to 2Gma/c

2). In this case, it was shown [49], by considering
how the ‘internal expansion’ (32) propagates into the ‘external’ one (31) via the
matching (33), that, in General Relativity, the internal structure of each compact
body was effaced to a very high degree, when seen in the external expansion (31). For
instance, for non spinning bodies, the internal structure of each body (notably the
way it responds to an external tidal excitation) shows up in the external problem of
motion only at the fifth post-Newtonian (5PN) approximation, i.e. in terms of order
(v/c)10 in the equations of motion.

This ‘effacement of internal structure’ indicates that it should be possible to
simplify the rigorous multi-chart approach by skeletonizing each compact body
by means of some delta-function source. Mathematically, the use of distributional
sources is delicate in a nonlinear theory such as GR. However, it was found that
one can reproduce the results of the more rigorous matched-multi-chart approach
by treating the divergent integrals generated by the use of delta-function sources by
means of (complex) analytic continuation [49]. In particular, analytic continuation
in the dimension of space d [54] is very efficient (especially at high PN orders).



Ondes Gravitationnelles, Vol. XXII, 2016 Gravitational Waves and Binary Black Holes 13

Finally, the most efficient way to derive the general relativistic equations of
motion of N compact bodies consists of solving the equations derived from the
action (where g ≡ − det(gµν))

S =

∫
dd+1 x

c

√
g

c4

16π G
R(g)−

∑
a

ma c

∫ √
−gµν(zλa ) dzµa dzνa , (34)

formally using the standard weak-field expansion (31), but considering the space
dimension d as an arbitrary complex number which is sent to its physical value d = 3
only at the end of the calculation. This ‘skeletonized’ effective action approach to
the motion of compact bodies has been extended to other theories of gravity [47, 48].
Finite-size corrections can be taken into account by adding nonminimal worldline
couplings to the effective action (34) [55, 56].

5 PN-expanded results on the conservative dynamics of binary systems

It is convenient to decompose the dynamics of a binary system in two parts: (i)
a conservative part (which is time-inversion-symmetric); and (ii) a dissipative part
(which is time-antisymmetric).

The conservative dynamics of an isolated, gravitationally interacting two-body
system is formally obtained by eliminating the gravitational field gµν , conveying the
time-symmetric (half-retarded-half-advanced) gravitational interaction, in the total
(gauge-fixed) action Stot[x

µ
a ; gµν ] describing the particles-plus-field system [57, 58,

59]. The so-obtained reduced (Fokker-type) action is then a functional S[xµ1 , x
ν
2] of

the two worldlines. There are several ways of computing the latter reduced action.
These several ways differ in: (1) the choice of coordinate gauge; (2) the encoding
of the gravitational degrees of freedom; and (3) the technical way of computing the
reduced action. Three prominent approaches to computing the reduced action are:
(i) harmonic-gauge approach (as was used in the early 2.5PN work of [18, 19]); (ii)
Arnowitt-Deser-Misner approach (as in Ref. [26]); and (iii) Effective Field Theory
approach (as in Ref. [56]).

To give an idea of the structure of the reduced action S[xµ1 , x
ν
2], let us indicate

how it looks when computed in harmonic gauge.
When working in the harmonic gauge, the Fokker action can be written as an

infinite series Sfree + S12 + . . . , where Sfree = −
∫
m1 ds1 −

∫
m2 ds2 (with dsa =√

−ηµν dxµa dxνa) is the free action, S12 the one-graviton-exchange interaction [60]

S12[x1, x2] = 2G

∫∫
ds1ds2 t

µν
1 (s1) Gµν,αβ(x1(s1)− x2(s2)) tαβ2 (s2) , (35)

with linear source terms tµνa (sa) = ma(dx
µ
a/dsa)(dx

ν
a/dsa), gravitational propagator

(in D = 4 spacetime dimensions) Gµν,αβ =
(
ηµα ηνβ − 1

2
ηµν ηαβ

)
G, with G(x, x′) ≡

−4π�−1
sym = δ(ηµν(x

µ − x′µ)(xν − x′ν)), and where the higher-order terms + . . . are
given by more complicated Feynman-like integrals of the type (suppressing indices)

S112 ∼ G2

∫∫ ∫∫
ds1 ds′1 ds2 d4x t1(s1) t1(s′1) t2(s2)

× ∂∂ G(x1 − x)G(x′1 − x)G(x− x2) , (36)
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where the concatenation of source terms, propagators and vertices (here at the
intermediate field point x) is defined by the (gauge-fixed) Einstein-Hilbert action
[61]. The explicit form of the Poincaré-invariant equations of motion at order G2

have been obtained in Refs. [62, 63]. For the definition and computation of the PN-
expanded version of the harmonic-gauge Fokker action see Refs. [56, 64, 65, 66, 38].

Previous works [25, 22, 67] have shown that computing the reduced gravitational
action by means of the canonical formalism of Arnowitt, Deser and Misner (ADM)
[68] had several useful features. There are less propagating degrees of freedom in
this approach than in harmonic gauge. Essentially g00 and g0i have been eliminated,
to leave only the spatial metric gij and its canonically conjugated momentum πij.

The computation of the reduced two-body action (in spacetime dimension D ≡
d+1) within the ADM formalism goes through several steps [see, e.g., Ref. [39] for a
recent summary of these steps]. The details of the PN calculations of the conservative
dynamics, as well as the form of the final results, depend on the approach taken.
To be concrete, let us quote the explicit form of the final, PN-expanded two-body
Hamiltonian at the 4PN approximation, as recently obtained (within the ADM
formalism) in [39] (using the local results of [37]). For simplicity, we quote the results

for the center-of-mass-reduced dynamics (with rescaled Hamiltonian Ĥ ≡ H/µ),
expressed in terms of scaled variables: r = (x1 − x2)/GM , p = p1/µ = −p2/µ,
where

M ≡ m1 +m2 , µ =
m1m2

m1 +m2

, ν ≡ µ

M
≡ m1m2

(m1 +m2)2
(37)

ĤN (r,p) =
p2

2
− 1

r
, (38)

Ĥ1PN (r,p) =
1

8
(3ν − 1)(p2)2 − 1

2

{
(3 + ν)p2 + ν(n · p)2

}1

r
+

1

2r2
, (39)

Ĥ2PN(r,p) =
1

16
(1− 5ν + 5ν2)(p2)3

+
1

8

{
(5− 20ν − 3ν2)(p2)2 − 2ν2(n · p)2p2 − 3ν2(n · p)4

}1

r

+
1

2

{
(5 + 8ν)p2 + 3ν(n · p)2

} 1

r2
− 1

4
(1 + 3ν)

1

r3
, (40)

Ĥ3PN(r,p) =
1

128
(−5 + 35ν − 70ν2 + 35ν3)(p2)4

+
1

16

{
(−7 + 42ν − 53ν2 − 5ν3)(p2)3 + (2− 3ν)ν2(n · p)2(p2)2

+ 3(1− ν)ν2(n · p)4p2 − 5ν3(n · p)6
}1

r
[2ex]
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+

{
1

16
(−27 + 136ν + 109ν2)(p2)2

+
1

16
(17 + 30ν)ν(n · p)2p2 +

1

12
(5 + 43ν)ν(n · p)4

}
1

r2

+

{(
− 25

8
+

(
π2

64
− 335

48

)
ν − 23ν2

8

)
p2

+

(
−85

16
− 3π2

64
− 7ν

4

)
ν(n · p)2 1

r3

+

{
1

8
+
(109

12
− 21

32
π2
)
ν

}
1

r4
. (41)

Ĥ4PN(r,p) =

(
7

256
− 63

256
ν +

189

256
ν2 − 105

128
ν3 +

63

256
ν4

)
(p2)5

+

{
45

128
(p2)4 − 45

16
(p2)4 ν +

(
423

64
(p2)4 − 3

32
(n · p)2(p2)3 − 9

64
(n · p)4(p2)2

)
ν2

+

(
−1013

256
(p2)4 +

23

64
(n · p)2(p2)3 +

69

128
(n · p)4(p2)2 − 5

64
(n · p)6p2 +

35

256
(n · p)8

)
ν3

+

(
− 35

128
(p2)4 − 5

32
(n · p)2(p2)3 − 9

64
(n · p)4(p2)2 − 5

32
(n · p)6p2 − 35

128
(n · p)8

)
ν4

}
1

r

+

{
13

8
(p2)3 +

(
−791

64
(p2)3 +

49

16
(n · p)2(p2)2 − 889

192
(n · p)4p2 +

369

160
(n · p)6

)
ν

+

(
4857

256
(p2)3 − 545

64
(n · p)2(p2)2 +

9475

768
(n · p)4p2 − 1151

128
(n · p)6

)
ν2

+

(
2335

256
(p2)3 +

1135

256
(n · p)2(p2)2 − 1649

768
(n · p)4p2 +

10353

1280
(n · p)6

)
ν3

}
1

r2

+

{
105

32
(p2)2 +

((
2749π2

8192
− 589189

19200

)
(p2)2 +

(
63347

1600
− 1059π2

1024

)
(n · p)2p2

+

(
375π2

8192
− 23533

1280

)
(n · p)4

)
ν

+

((
18491π2

16384
− 1189789

28800

)
(p2)2 +

(
−127

3
− 4035π2

2048

)
(n · p)2p2

+

(
57563

1920
− 38655π2

16384

)
(n · p)4

)
ν2
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+

(
−553

128
(p2)2 − 225

64
(n · p)2p2 − 381

128
(n · p)4

)
ν3

}
1

r3

+

{
105

32
p2 +

((
185761

19200
− 21837π2

8192

)
p2 +

(
3401779

57600
− 28691π2

24576

)
(n · p)2

)
ν

+

((
672811

19200
− 158177π2

49152

)
p2 +

(
110099π2

49152
− 21827

3840

)
(n · p)2

)
ν2

}
1

r4

+

{
− 1

16
+

(
6237π2

1024
− 169199

2400

)
ν +

(
7403π2

3072
− 1256

45

)
ν2

}
1

r5

− 1

5

G2M

µc8
I

(3)
ij (t)× Pf2r12/c

∫ +∞

−∞

dv

|v|
I

(3)
ij (t+ v) (42)

The last contribution to the 4PN Hamiltonian, namely

Hnon loc
4PN (t) = −1

5

G2M

c8
I

(3)
ij (t)Pf2r12/c

∫ +∞

−∞

dv

|v|
I

(3)
ij (t+ v) ,

(where the symbol Pfs denotes a Hadamard partie finie, with scale s) is nonlocal in
time. The appearance of such a time-nonlocality in the dynamics of gravitationally
interacting systems was first pointed out in Ref. [69].

Ref. [40] (see also [41]) showed how to “reduce” the above 4PN nonlocal dynam-
ics to an ordinary time-local Hamiltonian dynamics by means of a procedure involv-
ing both a generalization of the usual higher-derivative-reduction method [70, 71, 72],
and an action-angle (Delaunay) transformation method.

6 Accurate theory of the gravitational-wave emission of binary systems

The conservative dynamics of binary systems must be completed by a correspond-
ingly accurate description of the GW emission, and of its back effect on the motion
(radiation damping).

The original work of Einstein, and Landau-Lifshitz, on the LO GW emission of
gravitationally interacting systems has been extended by many authors. One line of
research followed Landau and Lifshitz in trying to directly solve Einstein’s equations
in harmonic coordinates, written in the form

� hµν =
16πG

c4
τµν(h). (43)

Here, ηµν + hµν ≡ gµν ≡ √ggµν denotes the “gothic” metric (which satisfies 0 =
∂νg

µν = ∂νh
µν in harmonic coordinates), while � ≡ ηµν∂µ∂ν denotes the flat

d’Alembertian, and

τµν = |g|T µν +
c4

16πG
Λµν(h) (44)

denotes the “total effective stress-energy tensor”, i.e. the sum of the (weight-one)
stress-energy tensor of the matter, and of the (Landau-Lifshitz) “gravitational stress-
energy tensor”.
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One can then try to solve the above harmonically-relaxed Einstein equations by
successive iteration, i.e. by writing

hµν =
16πG

c4
�−1
R τµν(h), (45)

where �−1
R is a retarded potential kernel, and by successively replacing h on the rhs

by a known, lower-order approximation of the h entering the lhs.
This direct integration of the harmonically-relaxed Einstein equations (pio-

neered by Landau and Lifshitz) has been particularly pursued by Epstein, Wagoner
and Will [73, 74, 75]. Though this method was pushed to the next-to-next-to-leading-
order (NNLO) beyond the LO quadrupole formula [75], it seems less powerful than
the method to be described next.

The most powerful, currently available analytical GW generation formalism is
the Multipolar Post-Minkowskian (MPM) formalism. This formalism was introduced
in [76], and developed in many later papers by Blanchet, Damour, Iyer and others.
Among the key papers let us cite: [77, 78, 79, 80, 81, 82]. In particular, the latter
paper was the first one to obtain the 3PN-accurate quadrupole moment needed to
obtain the 3.5PN-level GW flux from a circular binary. This formalism makes use
of a cocktail of rather sophisticated methods: mutipolar-expansion, crucial use of
analytic continuation to iteratively solve Einstein’s equations in the external zone,
crucial use of dimensional regularization for treating the near-field of the two BHs,
high-order PN expansion, use of matched-asymptotic-expansions.

Contrary to the “direct” method indicated above (based on iterating Eq. (45)),
the MPM method looks for an iterative, post-Minkowskian (PM), solution, of the
type

hµν = Ghµν1 +G2hµν2 +G3hµν3 + · · · (46)

of the vacuum version of Eq. (43), i.e.

� hµν = Λµν(h). (47)

This leads to a sequence of (inhomogeneous) wave equations of the form

� hµν1 = 0 (48)

� hµν2 = Λµν
2 (h1), etc. (49)

First, one parametrizes the most general (retarded) solution of Eq. (48) (submitted
to the harmonicity constraint ∂νh

µν
1 = 0) in the form of a multipolar expansion1

h00
1 = − 4

c2

∑
l≥0

(−)`

`!
∂L

(
IL(t− r/c)

r

)
+ gauge (50)

h0i
1 =

4

c3

∑
l≥1

(−)`

`!

`

`+ 1
εiab∂aL−1

(
JbL−1(t− r/c)

r

)
+ · · ·+ gauge, (51)

hij1 = · · ·+ gauge, (52)

1We use symmetric-trace-free Cartesian tensors of degree `, such as IL (`th mass tensor) and JL (`th spin
tensor) [where L ≡ i1i2 · · · i` denotes a multi-index of order `] to parametrize the 2` + 1-dimensional irreducible
representation of SO(3).
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where the (harmonic) gauge terms involve other (gauge) multipole moments. Second,
one solves the higher-order equations, such as Eq. (49) [using Eqs. (50), etc. to
replace the rhs as a sum of multipolar-type nonlinear source terms ∝

∑
r−kFkL(t−

r/c)nL, where nL = ni1ni2 · · ·ni` is a multi-tensor product of the unit radial vector
ni = xi/r] by means of an analytic-continuation-regularized retarded integral:

� hµν2 = PFB�
−1
R

[
rB

rB0
Λµν

2 (h1)

]
+ pµν2 (53)

Here �−1
R is a retarded integral, B is a complex number, PFB denotes the partie finie

(i.e. the coefficient of B0) of the Laurent expansion [in (negative and positive) powers
of B] of the rhs, and pµν2 denotes a specific additional homogeneous contribution,
constructed so as to ensure the condition ∂νh

µν
2 = 0.

After having so-constructed the most general (modulo gauge) vacuum (re-
tarded) solution outside the material source, one determines (in the form of a PN
expansion) the values of the seed multipole moments IL and JL (together with
the physically less significant additional gauge multipoles) as functionals of the
stress-energy tensor of the material source by matching the exterior MPM solution
hµν [IL, JL, · · · ] = Ghµν1 [IL, JL, · · · ]+G2hµν2 [IL, JL, · · · ]+· · · to the near-zone solution
of the inhomogeneous Einstein equations constructed by the usual PN approxima-
tion method. The latter matching leads (at each given PN accuracy) to an explicit
determination of the relation between the seed multipole moments, IL, JL, · · · , and
the stress-energy tensor of the material source. This matching was performed at
the 1PN order, in an explicit way, in Refs.[77] and [83]. Later, Blanchet [79] [80]
derived a useful general formula directly relating the seed multipole moments of (a
certain version of) the MPM algorithm to the source. The result of Blanchet (which
crucially uses various properties of the convergence factor (r/r0)B, together with
analytic continuation, and partie finie, in B) consists in showing that (in a suit-
able gauge) the MPM multipole moments can simply be written as the multipole
moments of linearized gravity [78], with the Landau-Lifshitz-type replacement

T µνlinearizedGR →
(
r

r0

)B
τµν(h). (54)

The nonlinear iterations of the MPM formalism automatically include the hered-
itary effects of GWs in the wavezone (i.e. the so-called “tails”). These hereditary
effects affect the functional structure of the “radiative multipole moments”, UL(U)
and VL(U) that parametrize the waveform observed far from a binary system. [Here
U = t− r/c− 2(GM/c3) ln(r/r0) + · · · , with M denoting ADM mass of the system,
is a Bondi-type retarded time in the wavezone.] Indeed, the functional relation be-
tween the radiative multipole moments UL(U) and VL(U) and the source involve not
only (like in the LO quadrupole formula) time-derivatives of the multipole moments
of the system at the retarded time U , but also integrals involving the behavior of
the multipole moments on retarded times anterior to the observer retarded time U .
For instance, the radiative quadrupole moment at infinity has an expansion of the
type [84]

Uij(U) = I
(2)
ij (U) +

2GM

c3

∫ +∞

0

dτ

[
ln

(
cτ

2r0

)
+

11

12

]
I

(4)
ij (U − τ) (55)
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+2

(
GM

c3

)2 ∫ +∞

0

dτ

[
ln2

(
cτ

2r0

)
+

57

70
ln

(
cτ

2r0

)
+

124627

44100

]
M

(5)
ij (U − τ) + · · · .

Using the powerful MPM formalism, together with dimensional regularization
for dealing with the strong self-gravity of compact objects (such as black holes), it
was possible to compute the GW emission of binary systems up to a high PN order.
In particular, both the individual radiative multipole moments, and the correspond-
ing GW energy flux, were computed to high PN accuracy for binary systems moving
on circular orbits (which is the most important situation for GW detections, in view
of the result of Peters mentioned above). For instance, the 3.5PN-accurate GW en-
ergy flux emitted by a circular binary system of orbital frequency Ω, expressed in
terms of the dimensionless frequency parameter

x ≡
(
GMΩ

c3

) 2
3

, (56)

reads (from Refs. [82], [84] and references therein)

FE
GW (x) =

32c5

5G
ν2x5

{
1 +

(
−1247

336
− 35

12
ν

)
x+ 4πx3/2

+

(
−44711

9072
+

9271

504
ν +

65

18
ν2

)
x2 +

(
−8191

672
− 583

24
ν

)
πx5/2

+

[
6643739519

69854400
+

16

3
π2 − 1712

105
γE −

856

105
ln(16x)

+

(
−134543

7776
+

41

48
π2

)
ν − 94403

3024
ν2 − 775

324
ν3

]
x3

+

(
−16285

504
+

214745

1728
ν +

193385

3024
ν2

)
πx7/2 +O

(
1

c8

)}
. (57)

Here, the prefactor, 32c5

5G
ν2x5, is the LO result, obtained by using the Einstein-

Landau-Lifshitz quadrupole formula, while the following bracket,
{

1+
(
−1247

336
− 35

12
ν
)

x + · · ·
}

, represents the fractional 3.5PN correction. For a review of more results
concerning both the motion, and the GW radiation, of binary systems see Ref. [84].

7 The Effective One-Body Formalism

Around 1998, it was clearly realized that the sort of high-order PN-expanded an-
alytical results on the motion and radiation of binary systems briefly summarized
above would be insufficient (if used as they are) for allowing one to describe the
last orbits, and the merger of binary black holes. Indeed, the issue is that the for-
mal small expansion parameter ε = v/c [which can be defined as v/c ≡ x

1
2 ≡

(GMΩ/c3)
1
3 ] becomes of order unity near the end of the inspiral, so that the various

PN-expanded representations of both the dynamics, and the GW emission, of the
type c0+c1 v/c+c2 v

2/c2+c3 v
3/c3+· · ·+cn vn/cn, become numerically useless before

one can reach the merger. [For instance, the coefficient of the 3PN fractional correc-
tion (∝ x3 = (v/c)6) in the 3.5PN GW flux (57) is numerically of order ∼ 120 when



20 T. Damour Séminaire Poincaré

v/c = x
1
2 = 1

2
(corresponding to the merger of BBHs), so that the 3PN fractional

correction to the LO quadrupole result is larger than 100 % at merger.]
In front of this situation, some authors [85] ascertained the “inability of current

computational techniques to evolve a BBH through its last ∼ 10 orbits of inspiral”
and to compute the merger, and concluded to the necessity of describing the late
inspiral and merger of BBHs by numerical simulations. By contrast, other authors
[86] advocated the use of resummation methods for extending the domain of validity
of the PN-acquired information to the late inspiral, and to the merger.

A resummation method consists in replacing a Taylor-like truncated expansion
c0 + c1 v/c+ c2 v

2/c2 + c3 v
3/c3 + · · ·+ cn v

n/cn by some non-polynomial function of
v/c, defined so as to incorporate some of the expected non-perturbative features of
the exact result. In 1999-2000 a new approach, called the Effective One-Body (EOB)
formalism, to the resummation of the conservative dynamics of binary systems was
introduced [87, 88, 89]. It was initially introduced for non-spinning binary systems,
and was soon extended to the case of spinning systems [90].

The basic ideas and techniques for resumming each aspect of the motion, and
radiation, of binary systems are different and have different historical roots.

Concerning the first ingredient, i.e. the EOB Hamiltonian, it was inspired by an
approach to electromagnetically interacting quantum two-body systems introduced
by Brézin, Itzykson and Zinn-Justin [91].

The resummation of the second ingredient, i.e. the EOB radiation-reaction force
F , was initially inspired by the Padé resummation of the flux function introduced by
Damour, Iyer and Sathyaprakash [86]. More recently, a new and more sophisticated
resummation technique for the (waveform and the) radiation reaction force F has
been introduced by Damour, Iyer and Nagar [92, 93]. It will be discussed in detail
below.

As for the third ingredient, i.e. the EOB description of the waveform emitted
by a coalescing black hole binary, it was inspired by the work of Davis, Ruffini
and Tiomno [16] which discovered the transition between the plunge signal and a
ringing tail when a particle falls into a black hole. Additional motivation for the
EOB treatment of the transition from plunge to ring-down came from work on the,
so-called, “close limit approximation” [94].

Let us sketch here the approach used in the EOB formalism to resum the con-
servative dynamics of non-spinning binary systems. This approach (which gives its
name to the entire formalism) is a general relativistic generalization of the well-
known Newtonian-dynamics fact that the relative dynamics of a two-body system,
with masses m1, m2 and interaction energy V (x1 − x2), is equivalent to the dy-
namics of a test-particle of mass µ = m1m2/(m1 + m2) and position x = x1 − x2

submitted to the same potential energy V (x). In the case of a gravitational two-body
interaction, i.e. when V (x1 − x2) = −Gm1m2/|x1 − x2|, the identity m1m2 ≡ µM
(where M ≡ m1 + m2) means that the gravitational two-body Newtonian inter-
action is equivalent to the dynamics of a mass µ attracted by a central mass
GM = G(m1 +m2).

The EOB approach generalizes this fact by looking for an ‘effective external
spacetime geometry’ geff

µν(x
λ;GM, ν) such that the geodesic dynamics of a ‘test par-

ticle’ of mass µ within geff
µν(x

λ, GM, ν) is equivalent (when expanded in powers of

1/c2) to the original, relative PN-expanded dynamics (described by the PN-expanded
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Hamiltonian (41)).

Let us explain the idea, proposed in [87], for establishing a ‘dictionary’ between
the real relative-motion dynamics, (41), and the dynamics of an ‘effective’ particle of
mass µ moving in geff

µν(x
λ, GM, ν). The idea consists in ‘thinking quantum mechan-

ically’2. Instead of thinking in terms of a classical Hamiltonian, H(q,p), and of its
classical bound orbits, we can think in terms of the quantized energy levels E(n, `)
of the quantum bound states of the Hamiltonian operator H(q̂, p̂). These energy
levels will depend on two (integer valued) quantum numbers n and `. Here (for a
spherically symmetric interaction, as appropriate to Hrelative), ` parametrizes the
total orbital angular momentum (L2 = `(`+1) ~2), while n represents the ‘principal
quantum number’ n = `+ nr + 1, where nr (the ‘radial quantum number’) denotes
the number of nodes in the radial wave function. The third ‘magnetic quantum num-
ber’ m (with −` ≤ m ≤ `) does not enter the energy levels because of the spherical
symmetry of the two-body interaction (in the center of mass frame). For instance,
the non-relativistic Newton interaction (Eq. (38)) gives rise to the well-known result

E0(n, `) = −1

2
µ

(
GMµ

n ~

)2

, (58)

which depends only on n (this is the famous Coulomb degeneracy). When considering
the PN corrections to H0 one gets a more complicated expression of the form

Erelative
PN (n, `) = −1

2
µ
α2

n2

[
1 +

α2

c2

(c11

n`
+
c20

n2

)
+
α4

c4

( c13

n`3
+

c22

n2`2
+
c31

n3`
+
c40

n4

)
+
α6

c6

( c15

n`5
+ . . .+

c60

n6
+ · · ·

)]
, (59)

where we have set α ≡ GMµ/~ = Gm1m2/~, and where we consider, for simplicity,
the (quasi-classical) limit where n and ` are large numbers. The 2PN-accurate version
of Eq. (59) had been derived by Damour and Schäfer [95] as early as 1988 while
its 3PN-accurate version was derived by Damour, Jaranowski and Schäfer in 1999
[96]. The dimensionless coefficients cpq are functions of the symmetric mass ratio
ν ≡ µ/M , for instance c40 = 1

8
(145− 15ν + ν2). In classical mechanics (i.e. for large

n and `), it is called the ‘Delaunay Hamiltonian’, i.e. the Hamiltonian expressed in
terms of the action variables3 J = `~ = 1

2π

∮
pϕ dϕ, and N = n~ = Ir + J , with

Ir = 1
2π

∮
pr dr.

The (PN-expanded) energy levels (59) encode, in a gauge-invariant way, the
relative dynamics of a ‘real’ binary. Let us now consider an auxiliary problem: the
‘effective’ dynamics of one body, of mass µ, following (modulo the Q term discussed
below) a geodesic in some ν-dependent ‘effective external’ (spherically symmetric)
metric4

geff
µν dx

µ dxν = −A(R; ν) c2 dT 2 +B(R; ν) dR2 +R2(dθ2 + sin2 θ dϕ2) . (60)

2This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechanics can often
help us in going to the essence of classical mechanics.

3We consider, for simplicity, ‘equatorial’ motions with m = `, i.e., classically, θ = π
2

.
4It is convenient to write the ‘effective metric’ in Schwarzschild-like coordinates. Note that the effective radial

coordinate R differs from the two-body ADM-coordinate relative distance RADM = |q|. The transformation between
the two coordinate systems has been determined in Refs. [87, 97].



22 T. Damour Séminaire Poincaré

Here, the a priori unknown metric functions A(R; ν) and B(R; ν) will be constructed
in the form of expansions in GM/c2R:

A(R; ν) = 1 + ã1
GM

c2R
+ ã2

(
GM

c2R

)2

+ ã3

(
GM

c2R

)3

+ ã4

(
GM

c2R

)4

+ · · · ;

B(R; ν) = 1 + b̃1
GM

c2R
+ b̃2

(
GM

c2R

)2

+ b3

(
GM

c2R

)3

+ · · · , (61)

where the dimensionless coefficients ãn, b̃n depend on ν. From the Newtonian limit, it
is clear that we should set ã1 = −2. In addition, as ν can be viewed as a deformation
parameter away from the test-mass limit, we require that the effective metric (60)
tend to the Schwarzschild metric (of mass M) as ν → 0, i.e. that

A(R; ν = 0) = 1− 2GM/c2R = B−1(R; ν = 0) .

Let us now require that the dynamics of the “one body” µ within the effective
metric geff

µν be described by an “effective” mass-shell condition of the form

gµνeff p
eff
µ peff

ν + µ2 c2 +Q(peff
µ ) = 0 ,

where Q(p) is (at least) quartic in p. Then by solving (by separation of variables)
the corresponding ‘effective’ Hamilton-Jacobi equation

gµνeff

∂Seff

∂xµ
∂Seff

∂xν
+ µ2c2 +Q

(
∂Seff

∂xµ

)
= 0 ,

Seff = −Eeff t+ Jeff ϕ+ Seff(R) , (62)

one can straightforwardly compute (in the quasi-classical, large quantum numbers
limit) the effective Delaunay Hamiltonian Eeff(Neff , Jeff), with Neff = neff ~, Jeff =
`eff ~ (where Neff = Jeff + Ieff

R , with Ieff
R = 1

2π

∮
peff
R dR, P eff

R = ∂Seff(R)/dR). This
yields a result of the form

Eeff(neff , `eff) = µc2 − 1

2
µ
α2

n2
eff

[
1 +

α2

c2

(
ceff

11

neff`eff

+
ceff

20

n2
eff

)
+
α4

c4

(
ceff

13

neff`3
eff

+
ceff

22

n2
eff`

2
eff

+
ceff

31

n3
eff`eff

+
ceff

40

n4
eff

)
+
α6

c6

(
ceff

15

neff`5
eff

+ . . .+
ceff

60

n6
eff

)
+ · · ·

]
, (63)

where the dimensionless coefficients ceff
pq are now functions of the unknown coefficients

ãn, b̃n entering the looked for ‘external’ metric coefficients (61).

At this stage, one needs to define a ‘dictionary’ between the real (relative) two-
body dynamics, summarized in Eq. (59), and the effective one-body one, summarized
in Eq. (63). As, on both sides, quantum mechanics tells us that the action variables
are quantized in integers (Nreal = n~, Neff = neff~, etc.) it is most natural to identify
n = neff and ` = `eff . One then still needs a rule for relating the two different energies
Erelative

real and Eeff . Ref. [87] proposed to look for a general map between the real energy
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levels and the effective ones (which, as seen when comparing (59) and (63), cannot
be directly identified because they do not include the same rest-mass contribution5),
namely

Eeff

µc2
− 1 = f

(
Erelative

real

µc2

)
=
Erelative

real

µc2

(
1 + α1

Erelative
real

µc2
+ α2

(
Erelative

real

µc2

)2

+α3

(
Erelative

real

µc2

)3

+ . . .

)
. (64)

The ‘correspondence’ between the real and effective energy levels is illustrated in
Fig. 4.

Figure 4: Sketch of the correspondence between the quantized energy levels of the real and effective
conservative dynamics. n denotes the ‘principal quantum number’ (n = nr+`+1, with nr = 0, 1, . . .
denoting the number of nodes in the radial function), while ` denotes the (relative) orbital angular
momentum (L2 = `(` + 1) ~2). Though the EOB method is purely classical, it is conceptually
useful to think in terms of the underlying (Bohr-Sommerfeld) quantization conditions of the action
variables IR and J to motivate the identification between n and ` in the two dynamics.

Finally, identifying Eeff(n, `)/µc2 to 1 + f(Erelative
real (n, `)/µc2) yields a system of

equations for determining the unknown EOB coefficients ãn, b̃n, αn, as well as the
coefficients parametrizing a general quartic mass-shell deformation. [The need for
introducing a quartic mass-shell deformation Q only arises at the 3PN level.]

Let us quote the result of solving this system of equations at the 3PN level
(as obtained in Ref. [97]). The three EOB potentials A,D,Q describing the two-
body dynamics are given (at the 3PN level) by very simple functions of the EOB
“gravitational potential” u ≡ GM

c2R
. With the short-hand notation

a4 =
94

3
− 41

32
π2 ' 18.6879027 , (65)

5Indeed Etotal
real = Mc2 + Erelative

real = Mc2 + Newtonian terms + 1PN/c2 + · · · , while Eeffective = µc2 + N +
1PN/c2 + · · · .
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for the 3PN-level coefficient entering the radial potential A(R; ν), one finds

A3PN(R) = 1− 2u+ 2 ν u3 + a4 ν u
4 , (66)

D3PN(R) ≡ (A(R)B(R))3PN = 1− 6νu2 + 2(3ν − 26)νu3 , (67)

Q3PN(q,p) =
1

c2
2(4− 3ν)ν u2 p4

r

µ2
. (68)

In addition, the map between the (real) center-of-mass energy of the binary
system Erelative

real = Hrelative = E tot
relative−Mc2 and the effective one Eeff is found to have

the very simple (but non trivial) form

Eeff

µc2
= 1 +

Erelative
real

µc2

(
1 +

ν

2

Erelative
real

µc2

)
=
s−m2

1 c
4 −m2

2 c
4

2m1m2 c4
(69)

where s = (E tot
real)

2 ≡ (Mc2 + Erelative
real )2 is Mandelstam’s invariant s = −(p1 + p2)2.

It is truly remarkable that the EOB formalism succeeds in condensing the com-
plicated, original 3PN Hamiltonian, Eqs. (41), into the very simple potentials A,D
and Q displayed above, together with the simple energy map Eq. (69). This sim-
plicity of the EOB results is not only due to the reformulation of the PN-expanded
Hamiltonian into an effective dynamics, but also follows from several remarkable
cancellations taking place in the ν-dependence of the EOB A(u; ν) potential.

The large value of the a4 coefficient happens to prevent the PN-expanded po-
tential A3PN to be qualitatively similar (as ν increases up to 1

4
) to the Schwarzschild

potential ASchwarz(u) = 1 − 2u in exhibiting, notably, a simple zero (“horizon”). It
was therefore suggested [97] to further resum6 A3PN(R) by replacing it by a suitable
Padé (P ) approximant. The replacement of A3PN(R) by7

A1
3(R) ≡ P 1

3 [A3PN(R)] =
1 + n1u

1 + d1u+ d2u2 + d3u3
(70)

ensures that the ν = 1
4

case is smoothly connected with the ν = 0 limit.
The 4PN-level EOB Hamiltonian has been determined in [40].

8 EOB description of radiation reaction and of the emitted waveform during
inspiral

In the previous Section we have described how the EOB method encodes the conser-
vative part of the relative orbital dynamics into the dynamics of an ’effective’ parti-
cle. Let us now briefly discuss how to complete the EOB dynamics by defining some
resummed expressions describing radiation reaction effects, and the corresponding
waveform emitted at infinity. One is interested in circularized binaries, which have
lost their initial eccentricity under the influence of radiation reaction. For such sys-
tems, it is enough (in first approximation [?]) to include a radiation reaction force in

6The PN-expanded EOB building blocks A3PN(R), B3PN(R), . . . already represent a resummation of the PN
dynamics in the sense that they have “condensed” the many terms of the original PN-expanded Hamiltonian within
a very concise format. But one should not refrain to further resum the EOB building blocks themselves, if this is
physically motivated.

7We recall that the coefficients n1 and (d1, d2, d3) of the (1, 3) Padé approximant P 1
3 [A3PN(u)] are determined

by the condition that the first four terms of the Taylor expansion of A1
3 in powers of u = GM/(c2R) coincide with

A3PN.
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the pϕ equation of motion only. More precisely, we are using phase space variables
r, pr, ϕ, pϕ associated with polar coordinates (in the equatorial plane θ = π

2
). Actu-

ally it is convenient to replace the radial momentum pr by the momentum conjugate
to the ‘tortoise’ radial coordinate R∗ =

∫
dR(B/A)1/2, i.e. PR∗ = (A/B)1/2 PR. The

real EOB Hamiltonian is obtained by first solving Eq. (69) to get Htotal
real =

√
s in

terms of Eeff , and then by solving the effective Hamilton-Jacobi equation to get Eeff

in terms of the effective phase space coordinates qeff and peff . The result is given by
two nested square roots (we henceforth set c = 1):

ĤEOB(r, pr∗ , ϕ) =
Hreal

EOB

µ
=

1

ν

√
1 + 2ν (Ĥeff − 1) , (71)

where (at the 3PN level)

Ĥeff =

√
p2
r∗ + A(r)

(
1 +

p2
ϕ

r2
+ z3

p4
r∗

r2

)
, (72)

with z3 = 2ν (4− 3ν). Here, we are using suitably rescaled dimensionless (effective)
variables: r = R/GM , pr∗ = PR∗/µ, pϕ = Pϕ/µGM , as well as a rescaled time
t = T/GM . This leads to equations of motion for (r, ϕ, pr∗ , pϕ) of the form

dϕ

dt
=
∂ ĤEOB

∂ pϕ
≡ Ω , (73)

dr

dt
=

(
A

B

)1/2
∂ ĤEOB

∂ pr∗
, (74)

dpϕ
dt

= F̂ϕ , (75)

dpr∗
dt

= −
(
A

B

)1/2
∂ ĤEOB

∂ r
. (76)

The EOB resummation of the ϕ component of the radiation reaction, F̂ϕ, i.e., which
has been introduced on the r.h.s. of Eq. (75), will be discussed below.

8.1 The first prediction of the complete GW signal emitted by coalescing BBHs

The EOB formalism led to the first (approximate) computation of the full coales-
cence waveform, from inspiral to ringdown, going through the coalescence of the
BBH. Indeed, the work of Buonanno and Damour [88], proposed to complete the
EOB Hamiltonian of [87] (describing the conservative dynamics) by an additional
radiation-damping force computed by using the “non-perturbative resummation
technique” previously introduced in [86]. This proposal led to the first analytical
description of the last orbits of a binary black hole (BBH) system, up to coalescence,
and made several quantitative and qualitative predictions concerning the dynamics
of the coalescence and the corresponding waveform: (i) a blurred transition from
inspiral to “plunge” that is just a smooth continuation of the inspiral, and (ii) a
sharp transition, around the merger of the BBH, between a continued inspiral and
a ringdown signal.
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This first analytical-based estimate of the full waveform (for the equal-mass
case, i.e. ν = 1

4
where ν ≡ µ/M = m1m2/(m1 + m2)2) was given in Fig. 12 of [88]

which is reproduced as Fig. 5 below. Note that the latter complete EOB waveform
comes out of the analytical EOB formalism as a prediction which did not need to
use any input from numerical data (which, anyway, did not exist at the time; see
below). In addition, the proposal of [88] led to the first computation-based esti-
mates of the losses of energy and angular-momentum during a BBH coalescence,
and thereby of the mass and spin of the final BH made from the merger of the
BBH. [The signal-to-noise-ratio estimates for BBH GWs of the previous work [98]
were based on optimistic guesstimates, without any detailed computational basis.]
In particular, the dimensionless spin parameter af = cSf/GM

2
f of the final BH was

predicted, from the pioneering EOB model of [88], to be af ' 0.795 in the equal-mass
case. This prediction is somewhat coarse (it is 11.5 % larger than current Numerical
Relativity results aNRf ' 0.69), but later work has shown that including more ana-
lytical information in the EOB calculation was giving analytical results much closer
to Numerical Relativity results (see Ref. [99]).

Figure 5: Fig. 12 of Ref. [88], i.e. “Plot of the complete waveform: inspiral and plunge followed by
merger and ringdown”, as obtained by completing the EOB Hamiltonian of [87] by a factorized
and Padé-resummed radiation damping angular-momentum loss from [86], and a matched ringdown
signal made of a (single, least-damped) quasi-normal mode of a Kerr black hole with mass and
spin computed from the EOB formalim itself.

9 Numerical Relativity (NR) simulations of BBHs

Let us recall again that the matched-filter analysis, by the LIGO-Virgo collaboration,
of candidate Gravitational Wave events from coalescing compact binaries used a
large bank of precomputed of waveform templates. These templates were analytically
constructed by combining Analytical Relativity (AR) information with Numerical
Relativity (NR) information. Before describing the various ways in which AR and
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NR information have been combined, let us briefly explain some of the theoretical
aspects that enter NR simulations. In particular, we shall explain the mix of methods
that enabled Frans Pretorius [100] to simulate (in a numerically stable manner), for
the first time, in 2005 the last plunging orbit, leading to merger and ringdown, of a
BBH, and to extract the corresponding waveform.

The mathematical foundations for NR were essentially contained, long ago, in
papers of the French mathematical relativity school, notably Georges Darmois,
André Lichnerowicz and Yvonne Choquet-Bruhat. Of particular importance was
the work Ref. [101] by Yvonne Choquet-Bruhat, which proved the mathematical
existence of local-in-time solutions to the harmonic-coordinates-reduced (vacuum)
Einstein equations (which are diagonal-hyperbolic), and showed how to construct
solutions of the full Einstein equations by then solving, on an initial Cauchy hyper-
surface, the harmonic-coordinates-version of the constraints of Einstein equations,
and in proving that the constraints homogeneously propagate off the initial Cauchy
hypersurface.

More precisely, the harmonic-coordinates condition used by Fourès-Bruhat (=
Choquet-Bruhat) was of the form (in the following a, b, . . . = 0, 1, 2, 3 denote space-
time indices)

C(0)
a = 0 (77)

where
C(0)
a ≡ −gab�xb (78)

with

�xa ≡ 1
√
g
∂b
(√

ggbc∂cx
a
)
, (79)

Then the harmonic-coordinates-reduced Einstein equations for the evolution of the
spacetime metric gab read (Γcab denoting the usual Christoffel symbols)

1

2
gcdgab,cd + gcd(,agb)d,c + ΓcbdΓ

d
ac = −8π

(
Tab −

1

2
gabT

)
, (80)

where Tab is the stress-energy tensor of matter.
The diagonal-hyperbolic nature of the second-derivative term 1

2
gcdgab,cd allowed

Fourès-Bruhat to prove the existence of local-in-time solutions of Eqs (80). To then
get solutions of Einstein’s original solutions one further needs to show how to satisfy,
in addition, the conditions (77) everywhere in spacetime. The “constraints” Ca

(0) ≡
gabC

(0)
b satisfy (when (80) are satisfied) the wave equation

�Ca
(0) = −Ra

bC
b
(0) (81)

The latter propagation equation for the constraints is homogeneous. Therefore, if

C
(0)
a , and their time-derivatives, vanish on some initial-time (Cauchy) hypersurface

t = x0 = 0 [which is shown to be related to the usual 3+1 hamiltonian and momen-
tum constraints], they will continue to vanish for all times (as was correctly argued,
and showed, by Fourès-Bruhat, back in 1952).

Besides the just explained harmonic-coordinates formulation of the Einstein
equations, there exist many other ways of extracting an evolution system from Ein-
stein’s equations. As early as 1927, Georges Darmois [102] showed how, in Gauss



28 T. Damour Séminaire Poincaré

coordinates (i.e. g00 = −1 and g0i = 0, or, equivalently g00 = −1 and g0i = 0), Ein-
stein’s equations implied a second-order-in-time evolution system for the components
of the spatial metric. The particular (and particularly simple) 3+1 decomposition of
Einstein’s equations obtained in Gauss (also called “synchronous”) coordinates was
later generalized to the general case where the values of g00 and g0i are arbitrary.
One can indeed use the four arbitrary functions entering a general coordinate trans-
formation to give arbitrary values to the “lapse function” α ≡ (−g00)−

1
2 and the

“shift co-vector” βi = g0i. The Einstein equations, written as evolution equations
for the time-development of the 3-metric γij, in presence of arbitrary values of α and
βi are well-known [103, 68]. However, the latter “3+1” formulation(s) of Einstein’s
equations do not lead, in general, to evolution equations endowed with good prop-
erties (such as various forms of hyperbolicity behavior). One needs to complement
them with adequate evolution equations for the lapse and the shift to end up with
mathematically (and/or numerically) satisfactory evolution systems.

As explained above, the system obtained from writing Einstein equations in
harmonic coordinates, i.e. Eqs. (80), define a mathematically satisfactory evolu-
tion system, in the sense that it is a diagonally-hyperbolic evolution system, for
which theorems can be proved about the existence of solutions, given suitable initial
(Cauchy) data. However, somewhat surprisingly, this evolution system was found
to be numerically unsatisfactory on several accounts. First, the original harmonic-
coordinate conditions can sometimes develop “cordinate pathologies” of their own.
An in-principle remedy for avoiding such pathologies was advocated by Garfinkle
[104]. It consists in generalizing the harmonic-coordinates condition �xa = 0 to a
generalized form �xa = Ha(x), where the Ha(x) are some suitable “source func-
tions”. Such a generalization was earlier suggested by H. Friedrich [105] with a
different motivation. One must then either specify the source functions Ha(x) as
explicit functions of the four spacetime coordinates, or give dynamical equations
determining their evolution (and helping in avoiding coordinate pathologies). I shall
not give here the equations that have been used to evolve the Ha(x), because I
mainly wish here to emphasize a second modification of the standard harmonic-
coordinate approach that turned out to be a crucial new ingredient which allowed
NR to succeed for the first time in 2005 to simulate the coalescence of BBH [100].
Indeed, it was found, before introducing this second modification, that the numerical
evolution of Einstein’s equations in generalized harmonic coordinates was generally
numerically unstable, and does not allow to simulate the coalescence of two black
holes.

When using Friedrich-Garfinkle generalized harmonic coordinates the
constraints (77) are replaced by

Ca ≡ gab (Ha −�xa) = 0. (82)

Then, the crucial modification (used in [100]) of the correspondingly reduced Ein-
stein equations consists in adding extra terms proportional to the constraints Ca in
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Einstein’s equations. Namely, Pretorius [100] considered now the evolution system

1

2
gcdgab,cd + (83)

gcd(,agb)d,c +H(a,b) −HdΓ
d
ab + ΓcbdΓ

d
ac (84)

+κ [n(aCb) −
1

2
gabn

dCd] (85)

= −8π

(
Tab −

1

2
gabT

)
. (86)

Here, na ≡ gabnb denotes the unit timelike vector normal to the t = const. hyper-
surfaces, and κ denotes an adjustable parameter.

One can then show that if the metric is evolved using (83-86), the constraints
Ca ≡ gabCb will satisfy the following evolution equation

�Ca = −Ra
bC

b + 2κ∇b

[
n(bCa)

]
, (87)

which generalizes (81). The crucial difference with respect to Eq. (81) is the presence
of the last terms proportional to κ.

When κ is taken as being positive (and of an appropriate order of magnitude),
the extra κ-dependent terms in the homogeneous evolution equation (87) tend to
damp the evolution of the constraints Ca, i.e. they tend to make them tend ex-
ponentially towards zero when evolving them in the future of the initial Cauchy
hypersurface. Because of this property, the extra terms (proportional to κCa) added
in the reduced Einstein equations (83-86) are called constraint damping terms.

The use of the extra constraint-damping terms was crucial to the breakthrough
work of [100] in which to evolve, for the first time, a system of two black holes
(initially formed by the collapse of a source Tab made of a scalar field ϕ) was evolved,
for the first time, through its last orbit, until coalescence and ringdown.

Before Pretorius, many authors had tackled the problem of the coalescence of
BBH, but without succeeding in stably evolving two BHs on quasi-circular orbits.
Besides the pioneering work of Smarr, and Eppley, around 1975 (head-on collision
of two BHs starting from a small initial separation), one should cite the near break-
through work, in 2004, of Bruegmann, Tichy and Jansen [106] (evolution of a BBH
along one orbit). One should also mention that the idea of adding constraint-damping
terms had surfaced in previous works, notably [107] and [108].

The GW waveform obtained in the first BBH coalescence simulation was given
(in the form of the second time-derivative of the usual strain waveform, i.e. Ψ4 =
∂2h/∂t2, this is why it looks different from the usually considered strain amplitude
h, as discussed above) in Fig. 3 of [100], which is reproduced in Fig. 6 here.

The landmark paper [100] had a huge impact on the progress of the field of
Numerical Relativity (NR). By showing that it was possible to concoct a suitable
mix of methods allowing one to numerically simulate the coalescence of a BBH it
gave to several other groups the motivation and energy to do the same.

On the one hand, the groups that followed on the heels of Pretorius in succeeding
to numerically simulate BBH coalescence, namely [109] and [110], did not use the
same mix of methods as Pretorius. They used instead a new trick consisting in
allowing the two “punctures” representing the two BHs (introduced, and used earlier,
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Figure 6: Fig. 3 of [100], i.e. “A sample of the gravitational waves emitted during the merger, as
estimated by the Newman-Penrose scalar Ψ4[= ∂2h/∂t2] (from the medium resolution simulation).
Here, the real component of Ψ4 multiplied by the coordinate distance r from the center of the grid
is shown at a fixed angular location, though several distances r.”

by Brandt and Bruegmann) to move across the numerical grid (without the need
of the BH horizon-excision method used by Pretorius). They also used a different
formulation of the Einstein equations going under the name of BSSN, for Baumgarte-
Shapiro-Shibata-Nakamura.

On the other hand, the Caltech-Cornell group, which has since then established
itself as the indispensable provider of accurate BBH waveforms for LIGO, did use
a mix of methods comparable to the Pretorius one, with generalized harmonic co-
ordinates, excision, and, a constraint-damping method similar to the one used in
[100]. The Caltech-Cornell Spectral code (nicknamed SPEC) was constructed in a
sequence of works, and notably in Refs. [111], [112], and [113].

10 Combining Analytical Relativity (AR) with Numerical Relativity (NR) re-
sults for constructing accurate GW templates

Soon after the first numerical simulation of a BBH coalescence, Buonanno, Cook and
Pretorius [114]: (i) extracted the main physical characteristics of the dynamics and
GW emission of the last few orbits and of the merger of a BBH; and (ii) compared
the results of their NR simulations to “analytical predictions based on the adiabatic
post-Newtonian (PN) and nonadiabatic resummed-PN models (effective-one-body
and Padé models).” Their main conclusions concerning the point (ii) were that:

1. they confirmed the prediction of [88] that “to a good approximation the
inspiral phase of the evolution is quasicircular, followed by a blurred, quasicircular
plunge lasting for about 1 − 1.5 GW cycles.”

2. “For all models considered, 3PN and 3.5PN orders match the inspiral numer-
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ical data the best” (thereby confirming the usefulness of all the high-accuracy PN
work).

3. In their Fig. 21 (reproduced below as Fig. 7) they compared the NR and
EOB3.5PN predictions for both the GW frequency evolution through late inspiral
and merger, and the C22 = ∂2h22/∂t

2 (`m = 22) multipolar waveform. Their results
showed a good qualitative, and rather good quantitative, agreement between NR
and the purely analytical EOB model of the time.

Figure 7: Fig. 21 of [114], i.e. the first NR/EOB comparison.

This qualitatively, and semi-quantitatively successful comparison between NR
and EOB motivated several authors to extract (as had been earlier suggested in
[135]) non-perturbative information from NR simulations and to incorporate it in the
(at the time purely analytical) EOB formalism so as to improve the EOB-computed
waveforms. This avenue of research was independently pursued by two groups: a
group in France (around T. Damour), and a group in the US (around A. Buonanno).
This effort led to the current extremely accurate NR-completed EOB waveforms,
that we shall call EOB[NR] waveforms in the following. The construction of accurate
EOB[NR] waveforms has been based on two pillars: (i) several improvements in EOB
theory (notably the factorized, resummed waveform, see below); and (ii) extraction
of non-perturbative strong-field information from NR simulations.
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Figure 8: Fig. 1 of [93], i.e. “Equal-mass case: agreement between NR (black online) and EOB-based
(red online) `m = 22 metric waveforms”.

10.1 Improved resummation of the emitted radiation, and of radiation reaction

Several methods have been tried during the development of the EOB formalism

to resum the radiation reaction F̂ϕ (starting from the high-order PN-expanded re-
sults that have been obtained in the literature). Here, we shall briefly explain the
parameter-free resummation technique for the multipolar waveform (and thus for the
energy flux) introduced in Ref. [116, 115] and perfected in [92]. To be precise, the
new results discussed in Ref. [92] are twofold: on the one hand, that work generalized
the ` = m = 2 resummed factorized waveform of [116, 115] to higher multipoles by
using the most accurate currently known PN-expanded results [30, 117, 118, 119]
as well as the higher PN terms which are known in the test-mass limit [120, 121];
on the other hand, it introduced a new resummation procedure which consists in
considering a new theoretical quantity, denoted as ρ`m(x), which enters the (`,m)
waveform (together with other building blocks, see below) only through its `-th

power: h`m ∝ (ρ`m(x))`. Here, and below, x denotes the invariant PN-ordering pa-
rameter given during inspiral by x ≡ (GMΩ/c3)2/3.

The main novelty introduced by Ref. [92] is to write the (`,m) multipolar wave-
form emitted by a circular nonspinning compact binary as the product of several
factors, namely

h
(ε)
`m =

GMν

c2R
n

(ε)
`mc`+ε(ν)x(`+ε)/2Y `−ε,−m

(π
2
,Φ
)
Ŝ

(ε)
eff T`me

iδ`mρ``m. (88)

Here ε denotes the parity of ` + m (ε = π(` + m)), i.e. ε = 0 for “even-parity”
(mass-generated) multipoles (` + m even), and ε = 1 for “odd-parity” (current-

generated) ones (` + m odd); n
(ε)
`m and c`+ε(ν) are numerical coefficients; Ŝ

(ε)
eff is a

µ-normalized effective source (whose definition comes from the EOB formalism);
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T`m is a resummed version [116, 115] of an infinite number of “leading logarithms”
entering the tail effects [122, 123]; δ`m is a supplementary phase (which corrects the

phase effects not included in the complex tail factor T`m), and, finally, (ρ`m)` denotes
the `-th power of the quantity ρ`m which is the new building block introduced in [92].
We refer to the latter reference for details on the various factors entering Eq. (88).
Let us only mention here the explicit expression of the tail factor T`m which resums
an infinite number of “leading logarithms” entering the transfer function between
the near-zone multipolar wave and the far-zone one,

T`m =
Γ(`+ 1− 2i

ˆ̂
k)

Γ(`+ 1)
eπ

ˆ̂
ke2i

ˆ̂
k log(2kr0), (89)

where r0 = 2GM/
√
e and

ˆ̂
k ≡ GHreal

EOBmΩ and k ≡ mΩ.
For extensions of the (non spinning) factorized waveform of [92] to the spinning

case, see [126, 127, 128]. Note also that, besides adding some specifically EOB-
type information, the factorized EOB waveform nourishes itself from high-order
PN-expanded waveform computations, such as Ref. [119], together with higher-order
test-mass (ν → 0) GW computations, such as Refs. [120, 121, 124, 125].

Several studies, both in the test-mass limit, ν → 0, and in the comparable-mass
case, have shown that the resummed factorized (inspiral) EOB waveforms defined
above provided remarkably accurate analytical approximations to the “exact” in-
spiral waveforms computed by numerical simulations. These resummed multipolar
EOB waveforms are much closer (especially during late inspiral) to the exact ones
than the standard PN-expanded waveforms given by a PN-correction factor of the
usual “Taylor-expanded” form

ĥ
(ε)PN
`m = 1 + c`m1 x+ c`m3/2x

3/2 + c`m2 x2 + . . .

To illustrate the performance of the resummed factorized EOB waveform we
reproduce in Fig. 8 here the Fig. 1 of [92]. This Figure is a comparison between
a very accurate SPEC waveform (for equal-mass, non-spinning BBH) and a NR-
completed EOB waveform (in which the 5PN-level coefficient a6(ν) in the EOB
A(u; ν) potential was NR-fitted, as well as some non-quasi-circular corrections to the
`m = 22 waveform; see below). The agreement between the red (EOB) and black
(NR) curves is remarkably good (they are superposed nearly everywhere, except just
after merger).

In addition, one uses the resummed multipolar waveforms (88) to define a re-
summation of the radiation reaction force Fϕ defined as

Fϕ = − 1

Ω
F (`max), (90)

where the (instantaneous, circular) GW flux F (`max) is defined as

F (`max) =
2

16πG

`max∑
`=2

∑̀
m=1

(mΩ)2|Rh`m|2. (91)
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11 EOB description of the merger of binary black holes and of the ringdown of
the final black hole

Up to now we have reviewed how the EOB formalism, starting only from analytical
information obtained from PN theory, and adding extra resummation requirements
(both for the EOB conservative potentials A, Eq. (70), and D, and for the wave-
form, Eq. (88), and its associated radiation reaction force, Eqs. (90), (91)) makes
specific predictions, both for the motion and the radiation of binary black holes. The
analytical calculations underlying such an EOB description are essentially based on
skeletonizing the two black holes as two, sufficiently separated point masses, and
therefore seem unable to describe the merger of the two black holes, and the subse-
quent ringdown of the final, single black hole formed during the merger. However, as
early as 2000 [?], the EOB formalism went one step further and proposed a specific
strategy for describing the complete waveform emitted during the entire coalescence
process, covering inspiral, merger and ringdown. This EOB proposal is somewhat
crude. However, the predictions it has made (years before NR simulations could
accurately describe the late inspiral and merger of binary black holes) have been
broadly confirmed by subsequent NR simulations. Essentially, the EOB proposal
(which was motivated partly by the closeness between the 2PN-accurate effective
metric geff

µν [87] and the Schwarzschild metric, and by the results of Refs. [16] and
[94]) consists of:

(i) defining, within EOB theory, the instant of (effective) “merger” of the two
black holes as the (dynamical) EOB time tm where the orbital frequency Ω(t) reaches
its maximum;

(ii) describing (for t ≤ tm) the inspiral-plus-plunge (or simply insplunge) wave-
form, hinsplunge(t), by using the inspiral EOB dynamics and waveform reviewed in
the previous Section; and

(iii) describing (for t ≥ tm) the merger-plus-ringdown waveform as a superposi-
tion of several quasi-normal-mode (QNM) complex frequencies of a final Kerr black
hole (of mass Mf and spin parameter af , self-consistency estimated within the EOB
formalism), say (

Rc2

GM

)
hringdown
`m (t) =

∑
N

C+
N e
−σ+

N (t−tm) , (92)

with σ+
N = αN + i ωN , and where the label N refers to indices (`, `′,m, n), with

(`,m) being the Schwarzschild-background multipolarity of the considered (metric)
waveform h`m, with n = 0, 1, 2 . . . being the ‘overtone number’ of the considered
Kerr-background Quasi-Normal-Mode, and `′ the degree of its associated spheroidal
harmonics S`′m(aσ, θ);

(iv) determining the excitation coefficients C+
N of the QNM’s in Eq. (92) by

using a simplified representation of the transition between plunge and ring-down
obtained by smoothly matching (following Ref. [116]), on a (2p+1)-toothed “comb”
(tm−pδ, . . . , tm−δ, tm, tm+δ, . . . , tm+pδ) centered around the merger (and matching)
time tm, the inspiral-plus-plunge waveform to the above ring-down waveform.

Finally, one defines a complete, quasi-analytical EOB waveform (covering the
full process from inspiral to ring-down) as:

hEOB
`m (t) = θ(tm − t)hinsplunge

`m (t) + θ(t− tm)hringdown
`m (t) , (93)
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where θ(t) denotes Heaviside’s step function. The final result is a waveform that
essentially depends only on the choice of a resummed EOB A(u) potential, and, less
importantly, on the choice of resummation of the main waveform amplitude factor
f22 = (ρ22)2.

12 NR-completed EOB templates (EOB[NR])

We have emphasized here that the EOB formalism is able, in principle, starting
only from the best currently known analytical information, to predict the full wave-
form emitted by coalescing binary black holes. The early comparisons between 3PN-
accurate EOB predicted waveforms8 and NR-computed waveforms showed a satisfac-
tory agreement between the two, within the (then relatively large) NR uncertainties
[131, 132]. In addition, it has been shown that the Padé-resummed 3PN-accurate
A(u) potential is able, as is, to describe with remarkable accuracy several aspects of
the dynamics of coalescing binary black holes, [133, 134].

On the other hand, when NR started delivering high-accuracy waveforms, it
became clear that the 3PN-level analytical knowledge incorporated in EOB theory
was not accurate enough for providing waveforms agreeing with NR ones within
the high-accuracy needed for detection, and data analysis of upcoming GW signals.
[See, e.g., the discussion in Section II of Ref. [127].] At that point, one made use
of the natural flexibility of the EOB formalism. Indeed, as already emphasized in
early EOB work [28, 135], we know from the analytical point of view that there
are (yet uncalculated) further terms in the u-expansions of the EOB potentials
A(u), D(u), . . . (and in the x-expansion of the waveform), so that these terms can
be introduced either as “free parameter(s) in constructing a bank of templates, and
[one should] wait until” GW observations determine their value(s) [28], or as “fitting
parameters and adjusted so as to reproduce other information one has about the
exact results” (to quote Ref. [135]). For instance, modulo logarithmic corrections
that will be further discussed below, the Taylor expansion in powers of u of the
main EOB potential A(u) reads

ATaylor(u; ν) = 1− 2u+ ã3(ν)u3 + ã4(ν)u4 + ã5(ν)u5 + ã6(ν)u6 + . . .

where the 2PN and 3PN coefficients ã3(ν) = 2ν and ã4(ν) = a4ν have been known
since 2001, but where the 4PN, 5PN,. . . coefficients, ã5(ν), ã6(ν), . . . were not known
at the time (the analytical value of ã5(ν) has been determined in 2013 [36]). A first
attempt was made in [135] to use numerical data (on circular orbits of corotating
black holes) to fit for the value of a (single, effective) 4PN parameter of the simple
form ã5(ν) = a5ν entering a Padé-resummed 4PN-level A potential, i.e.

A1
4(u; a5, ν) = P 1

4

[
A3PN(u) + νa5u

5
]
. (94)

This strategy was pursued in Ref. [136, 115] and many subsequent works. It was
pointed out in Ref. [93] that the introduction of a further 5PN coefficient ã6(ν) =
a6ν, entering a Padé-resummed 5PN-level A potential, i.e.

A1
5(u; a5, a6, ν) = P 1

5

[
A3PN(u) + νa5u

5 + νa6u
6
]
, (95)

8The new, resummed EOB waveform discussed above was not available at the time, so that these comparisons

employed the coarser “Newtonian-level” EOB waveform h
(N,ε)
22 (x).
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helped in having a closer agreement with accurate NR waveforms. See Refs. [140]
and [141] for two different updated determinations of the EOB A potential.

In addition, Refs. [116, 115] introduced another type of flexibility parameters
of the EOB formalism: the non quasi-circular (NQC) parameters accounting for
uncalculated modifications of the quasi-circular inspiral waveform presented above,
linked to deviations from an adiabatic quasi-circular motion. These NQC parameters
are of various types, and subsequent works [129, 130, 93, 137, 138, 127] have explored
several ways of introducing them. They enter the EOB waveform in two separate
ways. First, through an explicit, additional complex factor multiplying h`m, e.g.

fNQC
`m = (1 + a`m1 n1 + a`m2 n2) exp[i(a`m3 n3 + a`m4 n4)]

where the ni’s are dynamical functions that vanish in the quasi-circular limit (with
n1, n2 being time-even, and n3, n4 time-odd). For instance, one usually takes n1 =
(pr∗/rΩ)2. Second, through the (discrete) choice of the argument used during the
plunge to replace the variable x of the quasi-circular inspiral argument.

For a given value of the symmetric mass ratio, and given values of the A-
flexibility parameters ã5(ν), ã6(ν) one can determine the values of the NQC parame-
ters a`mi ’s from accurate NR simulations of binary black hole coalescence (with mass
ratio ν) by imposing, say, that the complex EOB waveform hEOB

`m (tEOB; ã5, ã6; a`mi ) os-
culates the corresponding NR one hNR

`m (tNR) at their respective instants of “merger”,
where tEOB

merger ≡ tEOB
m was defined above (maximum of ΩEOB(t)), while tNR

merger is

defined as the (retarded) NR time where the modulus |hNR
22 (t)| of the quadrupo-

lar waveform reaches its maximum. The order of osculation that one requires be-
tween hEOB

`m (t) and hNR
`m (t) (or, separately, between their moduli and their phases

or frequencies) depends on the number of NQC parameters a`mi . For instance, a`m1
and a`m2 affect only the modulus of hEOB

`m and allow one to match both |hEOB
`m | and

its first time derivative, at merger, to their NR counterparts, while a`m3 , a`m4 affect
only the phase of the EOB waveform, and allow one to match the GW frequency
ωEOB
`m (t) and its first time derivative, at merger, to their NR counterparts. The

above EOB/NR matching scheme has been developed and declined in various ver-
sions in Refs. [129, 130, 93, 137, 138, 139, 127, 142]. One has also extracted the
needed matching data from accurate NR simulations, and provided explicit, analyt-
ical ν-dependent fitting formulas for them [93, 127, 142]. The EOB/NR comparison
displayed in Fig. 8 above used such an NR-completed EOB waveform.

As EOB waveforms are much faster to compute than NR waveforms9, LIGO
has used several banks of EOB[NR] templates (corresponding to different versions
of spinning EOB[NR] models developed by the group of A. Buonanno [140]) for their
search and data analysis pipelines. The spinning EOB[NR] (or SEOBNR) models
used in the first searches used the further simplifying approximation of nonprecess-
ing spin vectors (orthogonal to the orbital plane). [This approximation has been
shown to be sufficient [144].] As a consequence, these EOB[NR] templates depend
on four parameters: the two masses m1,m2 and the two algebraic spin magnitudes
S1, S2. In view of the known properties of Kerr BHs, the latter are replaced by
the dimensionless spin parameters χ1 ≡ cS1/Gm

2
1, χ2 ≡ cS2/Gm

2
2 which satisfy

−1 ≤ χa ≤ +1. [A positive (respectively, negative) value of χ corresponds to a
spin vector aligned (respectively, antialigned) with respect to the orbital angular

9It takes more than a month to compute a reasonably long and accurate NR waveform.
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momentum.] In principle, the four parameters m1,m2, χ1, χ2 vary continuously. In
practice, one discretizes the four parameters to build an adequately dense bank of
250 000 waveforms covering the space of expected physical parameters (up to BH
masses equal to 100M�). In addition, though the analytically-defined time-domain
EOB[NR] templates take only minutes to be computed10, the online searches, as
well as the use of Bayesian methods, require the fast computation of many overlaps
Eq. (26). To meed these demands, parametrized,“Reduced Order” Fourier-domain
versions of the spinning EOB[NR] have been obtained [143]. To give an idea of the
waveform template bank used in GW searches, we reproduce in Fig. 9 the Fig. 1 of
[144], namely the projection on the m1 −m2 plane of the 250 000 bank of spinning
EOB[NR] templates used by the LIGO-Virgo collaboration in their searches and
data analysis. Note the circle which locates the position of the first discovered GW
event: GW150914.

Figure 9: Fig. 1 of [144] showing the projection on the on the m1 −m2 plane (with the conven-
tion m1 ≥ m2) of the 250 000 bank of spinning EOB[NR] templates used by the LIGO-Virgo
collaboration in their searches and data analysis.

After the matched-filter analysis has extracted a BBH coalescence signal from
the noisy data (and has established its significance by measuring in various ways
the corresponding signal-to-noise-ratio, and false alarm probability), a more refined
determination of the source parameters (masses and spins) is conducted by means
of a coherent Bayesian analysis of source parameters, using locally denser banks of
waveform templates. Two different such banks of templates have been used: one is
made of spinning EOB[NR] templates (constructed as explained above), and the

10The EOB formalism defines, for each value of the masses and spins, a time-domain waveform via an analytical
system of ODEs that needs to be numerically integrated.
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other one is made of phenomenological versions [145] of wavefom EOB + NR hybrid
templates constructed by joining together, in the time-domain, an EOB waveform
describing the BBH inspiral to an NR waveform describing the last orbits and the
merger of a BBH; the so-constructed bank of hybrid EOB + NR templates is then
Fourier-transformed, and its Fourier-transform is encoded within a parametrized
analytical representation; see Refs.[146] and [147].

13 The first discoveries

The two LIGO detectors have simultaneously observed, during the first run of ad-
vanced LIGO, two (and probably three) transient signals that can be confidently
interpreted as GWs emitted by the coalescence of BBHs: GW150914 [1], GW151226
[2], and, with less confidence: LVT151012 [144]. Let us end by a few comments
concerning these events.

13.1 GW150914

The values of the BH masses for the first GW event GW150914 were found to be
larger than usually assumed for stellar BHs, namely:

m1 = 36+5
−4M� ; m1 = 29+4

−4M� ;χeff = −0.06+0.17
−0.18 . (96)

Here, the last entry is the mass-weighted dimensionless spin parameter (m1χ1 +
m2χ2)/(m1 +m2). Its smallness suggests that the BHs were slowly spinning.

Figure 10: Adequately frequency-filtered output of the Hanford LIGO detector during the
GW150914 event; from the upper left panel of Fig. 1 of [1]

This first event was so “loud” that a relatively simple filtering (combining a
low-frequency filter, a high-frequency one, and the elimination of several discrete
frequencies of oscillation) allowed the LIGO-Virgo collaboration to display a filtered
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version of the detector’s outputs in which one could recognize the theoretically
predicted signal. Compare Fig. 10 to the originally predicted EOB waveform, Fig.
5 above, and to the corresponding improved EOB[NR] template directly computed
from the best-fit values (96), which is displayed in Fig. 11 below

Figure 11: EOB[NR] BBH coalescence waveform computed with the EOB model of [141], using the
best-fit parameters (96)

We wish, however, to emphasize that even for this remarkable event, the main
contributions to the final, large (coherent) matched-filter squared signal-to-noise-
ratio (ρ2 ≈ (24)2) came from the latish inspiral, rather than from the merger.
This is illustrated in Fig. 12 which displays the density per octave of frequency
of squared signal-to-noise-ratio, i.e. dρ2/d ln f , for GW150914. Indeed, the maxi-
mum of dρ2/d ln f occurs around 40 Hz, i.e. before the (EOB-predicted) Last Stable
Orbit (LSO) [dot-dashed vertical line] which occurs at 67.65 Hz.

13.2 GW151226

The values of the BH masses for the first GW event GW151226 were found to be
closer to the ones usually assumed for stellar BHs, namely:

m1 = 14.2+8.3
−3.7M� ; m1 = 7.5+2.3

−2.3M� ;χeff = +0.21+0.20
−0.10 . (97)

In that case, the lower masses implies that the squared signal-to-noise-ratio was
mainly accumulated during about 50 cycles before the merger, with relatively lit-
tle contribution to the signal coming from the merger. The theoretical EOB[NR]
waveform corresponding to the parameters (97) is displayed in Fig. 13, while the
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Figure 12: Density per octave of frequency of squared signal-to-noise-ratio, dρ2/d ln f , for
GW150914.

Figure 13: EOB[NR] BBH coalescence waveform computed with the EOB model of [141], using the
best-fit parameters (97)

density of squared signal-to-noise-ratio dρ2/d ln f (which now shows no significant
contribution from merger) is displayed in Fig. 14.

14 Conclusions

The momentous first detection, by the two LIGO interferometers, of transient gravi-
tational wave signals, and their interpretation in terms of inspiralling and coalescing
binary black holes has been significantly helped by many theoretical works. In par-
ticular, the many-year post-Newtonian-based analytical studies of the gravitational
motion and radiation of binary black holes, followed by their resummed reformu-
lation and extension within the Effective-One-Body formalism, and completed by
extracting strong-field information from some numerical simulations, has been of
crucial importance in allowing one to have in hands a large bank of waveform tem-
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Figure 14: Density per octave of frequency of squared signal-to-noise-ratio, dρ2/d ln f , for
GW151226.

plates. The latter (Effective-One-Body-Numerical-Relativity) templates have been
used both in the search and the data analysis of the first gravitatioal wave signals.

A new astronomy is born, and many exciting discoveries lie ahead, such as: gravi-
tational wave signals from coalescing binary neutron stars, or from mixed black-hole-
neutron-star systems, a possible cosmological background of gravitational waves,
gravitational wave bursts from cusps and kinks on cosmic-size strings, etc.
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[28] Damour, T., Jaranowski, P. and Schäfer, G., “Dimensional regularization of
the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155,
(2001). [http://arxiv.org/abs/gr-qc/0105038gr-qc/0105038].

[29] Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation
of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D,
68, 121501, (2003). [http://arxiv.org/abs/gr-qc/0310028gr-qc/0310028].

[30] Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Grav-
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[55] T. Damour, G. Esposito-Farèse: Gravitational-wave versus binary-pulsar tests
of strong-field gravity, Phys. Rev. D 58, 042001 (1998).

[56] W. D. Goldberger and I. Z. Rothstein, “An Effective field theory
of gravity for extended objects,” Phys. Rev. D 73, 104029 (2006)
doi:10.1103/PhysRevD.73.104029 [hep-th/0409156].
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