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Abstract. Despite the important experimental success of General Relativity, there are
several theoretical reasons indicating that gravitational phenomena may change rad-
ically from the predictions of Einstein’s theory at very short distances. A main mo-
tivation comes from studies of unifying all fundamental forces in the framework of a
consistent quantum theory, called string theory. This theory introduces a new physical
constant, the string length, under which a new elementary structure shows up, chang-
ing drastically all physical laws of nature. In particular, lowering the string scale in the
TeV region provides a theoretical framework for solving the so-called mass hierarchy
problem: the apparent weakness of gravity can then be accounted by the existence of
large internal dimensions, in the submillimeter region, and transverse to a braneworld
where our observed universe is confined. I review the main properties of this scenario
and its implications for new gravitational phenomena that can be observed at both
particle colliders, and in non-accelerator experiments searching for new short range
forces at submillimeter distances. I also discuss the warped metric case and possible
localization of gravity in the presence of infinite size extra dimensions that can modify
Newton’s law at cosmological distance scales.

1 Introduction

During the last few decades, physics beyond the Standard Model (SM) was guided by
the problem of mass hierarchy. This can be formulated as the question of why gravity
appears to us so weak compared to the other three known fundamental interactions
corresponding to the electromagnetic, weak and strong nuclear forces. Indeed, grav-
itational interactions are suppressed by a very high energy scale, the Planck mass
MP ∼ 1019 GeV, associated to a length lP ∼ 10−35 m, where they are expected to
become important. In a quantum theory, the hierarchy implies a severe fine tuning
of the fundamental parameters in more than 30 decimal places in order to keep the
masses of elementary particles at their observed values. The reason is that quantum
radiative corrections to all masses generated by the Higgs vacuum expectation value
(VEV) are proportional to the ultraviolet cutoff which in the presence of gravity is
fixed by the Planck mass. As a result, all masses are “attracted” to become about
1016 times heavier than their observed values.

Besides compositeness, there are two main ideas that have been proposed and
studied extensively during the last years, corresponding to different approaches of
explaining the mass hierarchy problem. (1) Low energy supersymmetry with all su-
perparticle masses in the TeV region. Indeed, in the limit of exact supersymmetry,
quadratically divergent corrections to the Higgs self-energy are exactly cancelled, while
in the softly broken case, they are cutoff by the supersymmetry breaking mass split-
tings. (2) TeV scale strings, in which quadratic divergences are cutoff by the string
scale and low energy supersymmetry is not needed. Both ideas are experimentally
testable at high-energy particle colliders and in particular at LHC. Below, I discuss
their implementation in string theory.

The appropriate and most convenient framework for low energy supersymme-
try and grand unification is the perturbative heterotic string. Indeed, in this theory,
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gravity and gauge interactions have the same origin, as massless modes of the closed
heterotic string, and they are unified at the string scale Ms. As a result, the Planck
mass MP is predicted to be proportional to Ms:

MP = Ms/g , (1)

where g is the gauge coupling. In the simplest constructions all gauge couplings are
the same at the string scale, given by the four-dimensional (4d) string coupling, and
thus no grand unified group is needed for unification. In our conventions αGUT =
g2 ' 0.04, leading to a discrepancy between the string and grand unification scale
MGUT by almost two orders of magnitude. Explaining this gap introduces in general
new parameters or a new scale, and the predictive power is essentially lost. This is
the main defect of this framework, which remains though an open and interesting
possibility.

The other idea can be naturally realized in the framework of type I string theory
with D-branes. Unlike in the heterotic string, gauge and gravitational interactions
have now different origin. The latter are described again by closed strings, while the
former emerge as excitations of open strings with endpoints confined on D-branes [1].
This leads to a braneworld description of our universe, which should be localized on
a hypersurface, i.e. a membrane extended in p spatial dimensions, called p-brane (see
Fig. 1). Closed strings propagate in all nine dimensions of string theory: in those
extended along the p-brane, called parallel, as well as in the transverse ones. On the
contrary, open strings are attached on the p-brane. Obviously, our p-brane world must
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Figure 1: In the type I string framework, our Universe contains, besides the three known spatial
dimensions (denoted by a single blue line), some extra dimensions (d‖ = p − 3) parallel to our
world p-brane (green plane) where endpoints of open strings are confined, as well as some transverse
dimensions (yellow space) where only gravity described by closed strings can propagate.

have at least the three known dimensions of space. But it may contain more: the extra
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d‖ = p − 3 parallel dimensions must have a finite size, in order to be unobservable
at present energies, and can be as large as TeV−1 ∼ 10−18 m [2]. On the other
hand, transverse dimensions interact with us only gravitationally and experimental
bounds are much weaker: their size should be less than about 0.1 mm [3]. In the
following, I review the main properties and experimental signatures of low string
scale models [4, 5].

2 Framework

In type I theory, the different origin of gauge and gravitational interactions implies
that the relation between the Planck and string scales is not linear as (1) of the het-
erotic string. The requirement that string theory should be weakly coupled, constrain
the size of all parallel dimensions to be of order of the string length, while transverse
dimensions remain unrestricted. Assuming an isotropic transverse space of n = 9− p
compact dimensions of common radius R⊥, one finds:

M2
P =

1

g4
M2+n

s Rn
⊥ , gs ' g2 . (2)

where gs is the string coupling. It follows that the type I string scale can be chosen
hierarchically smaller than the Planck mass [6, 4] at the expense of introducing extra
large transverse dimensions felt only by gravity, while keeping the string coupling
small [4]. The weakness of 4d gravity compared to gauge interactions (ratio MW /MP )
is then attributed to the largeness of the transverse space R⊥ compared to the string
length ls = M−1

s .
An important property of these models is that gravity becomes effectively (4+n)-

dimensional with a strength comparable to those of gauge interactions at the string
scale. The first relation of Eq. (2) can be understood as a consequence of the (4 + n)-
dimensional Gauss law for gravity, with

M(4+n) = Ms/g4/2+n (3)

the effective scale of gravity in 4 + n dimensions. Taking Ms ' 1 TeV, one finds a
size for the extra dimensions R⊥ varying from 108 km, .1 mm, down to a Fermi for
n = 1, 2, or 6 large dimensions, respectively. This shows that while n = 1 is excluded,
n ≥ 2 is allowed by present experimental bounds on gravitational forces [3, 7]. Thus,
in these models, gravity appears to us very weak at macroscopic scales because its
intensity is spread in the “hidden” extra dimensions. At distances shorter than R⊥,
it should deviate from Newton’s law, which may be possible to explore in laboratory
experiments (see Fig. 2).

3 Experimental implications in accelerators

The main experimental signal is gravitational radiation in the bulk from any physical
process on the world-brane. In fact, the very existence of branes breaks translation
invariance in the transverse dimensions and gravitons can be emitted from the brane
into the bulk. During a collision of center of mass energy

√
s, there are ∼ (

√
sR⊥)n

KK excitations of gravitons with tiny masses, that can be emitted. Each of these
states looks from the 4d point of view as a massive, quasi-stable, extremely weakly
coupled (s/M2

P suppressed) particle that escapes from the detector. The total effect
is a missing-energy cross-section roughly of order:

(
√

sR⊥)n

M2
P

∼ 1

s

(√
s

Ms

)n+2

. (4)

Explicit computation of these effects leads to the bounds given in Table 1. However,
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Figure 2: Torsion pendulum that tested Newton’s law at 130 nm.

Table 1: Limits on R⊥ in mm.

Experiment n = 2 n = 4 n = 6

Collider bounds
LEP 2 5 × 10−1 2 × 10−8 7 × 10−11

Tevatron 5 × 10−1 10−8 4 × 10−11

LHC 4 × 10−3 6 × 10−10 3 × 10−12

NLC 10−2 10−9 6 × 10−12

Present non-collider bounds
SN1987A 3 × 10−4 10−8 6 × 10−10

COMPTEL 5 × 10−5 - -

larger radii are allowed if one relaxes the assumption of isotropy, by taking for instance
two large dimensions with different radii.

Fig. 3 shows the cross-section for graviton emission in the bulk, corresponding
to the process pp → jet + graviton at LHC, together with the SM background [8].
For a given value of Ms, the cross-section for graviton emission decreases with the
number of large transverse dimensions, in contrast to the case of parallel dimensions.
The reason is that gravity becomes weaker if there are more dimensions because there
is more space for the gravitational field to escape. There is a particular energy and
angular distribution of the produced gravitons that arise from the distribution in mass
of KK states of spin-2. This can be contrasted to other sources of missing energy and
might be a smoking gun for the extra dimensional nature of such a signal.

In Table 1, there are also included astrophysical and cosmological bounds. As-
trophysical bounds [9, 10] arise from the requirement that the radiation of gravitons
should not carry on too much of the gravitational binding energy released during
core collapse of supernovae. In fact, the measurements of Kamiokande and IMB for
SN1987A suggest that the main channel is neutrino fluxes. The best cosmological
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Figure 3: Missing energy cross-section due to graviton emission at LHC, as a function of the higher-
dimensional gravity scale M(4+n), for n extra dimensions, produced together with a hadronic jet.

bound [11] is obtained from requiring that decay of bulk gravitons to photons do
not generate a spike in the energy spectrum of the photon background measured by
the COMPTEL instrument. Bulk gravitons are expected to be produced just before
nucleosynthesis due to thermal radiation from the brane. The limits assume that the
temperature was at most 1 MeV as nucleosynthesis begins, and become stronger if
temperature is increased.

At energies higher than the string scale, new spectacular phenomena are ex-
pected to occur, related to string physics and quantum gravity effects, such as possible
micro-black hole production [12]. Particle accelerators would then become the best
tools for studying quantum gravity and string theory.

4 Supersymmetry in the bulk and short range forces

Besides the spectacular predictions in accelerators, there are also modifications of
gravitation in the sub-millimeter range, which can be tested in “table-top” exper-
iments that measure gravity at short distances. There are three categories of such
predictions:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, which can be ob-
servable for n = 2 large transverse dimensions of sub-millimeter size. This case is
particularly attractive on theoretical grounds because of the logarithmic sensitivity
of SM couplings on the size of transverse space [13], that allows to determine the
hierarchy [14].
(ii) New scalar forces in the sub-millimeter range, related to the mechanism of super-
symmetry breaking, and mediated by light scalar fields ϕ with masses [15, 4]:

mϕ '
m2

susy

MP
' 10−4 − 10−6 eV , (5)
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for a supersymmetry breaking scale msusy ' 1−10 TeV. They correspond to Compton
wavelengths of 1 mm to 10 µm. msusy can be either 1/R‖ if supersymmetry is broken
by compactification [15], or the string scale if it is broken “maximally” on our world-
brane [4]. A universal attractive scalar force is mediated by the radion modulus ϕ ≡
MP ln R, with R the radius of the longitudinal or transverse dimension(s). In the
former case, the result (5) follows from the behavior of the vacuum energy density
Λ ∼ 1/R4

‖ for large R‖ (up to logarithmic corrections). In the latter, supersymmetry is
broken primarily on the brane, and thus its transmission to the bulk is gravitationally
suppressed, leading to (5). For n = 2, there may be an enhancement factor of the
radion mass by ln R⊥Ms ' 30 decreasing its wavelength by an order of magnitude [14].

The coupling of the radius modulus to matter relative to gravity can be easily
computed and is given by:

√
αϕ =

1

M

∂M

∂ϕ
; αϕ =







∂ lnΛQCD

∂ ln R ' 1
3 for R‖

2n
n+2 = 1 − 1.5 for R⊥

(6)

where M denotes a generic physical mass. In the longitudinal case, the coupling
arises dominantly through the radius dependence of the QCD gauge coupling [15],
while in the case of transverse dimension, it can be deduced from the rescaling of the
metric which changes the string to the Einstein frame and depends slightly on the
bulk dimensionality (α = 1 − 1.5 for n = 2 − 6) [14]. Such a force can be tested in
microgravity experiments and should be contrasted with the change of Newton’s law
due the presence of extra dimensions that is observable only for n = 2 [3, 7]. The
resulting bounds from an analysis of the radion effects are [3]:

M∗ >∼ 3 − 4.5 TeV for n = 2 − 6 . (7)

In principle there can be other light moduli which couple with even larger strengths.
For example the dilaton, whose VEV determines the string coupling, if it does not
acquire large mass from some dynamical supersymmetric mechanism, can lead to a
force of strength 2000 times bigger than gravity [16].
(iii) Non universal repulsive forces much stronger than gravity, mediated by possible
abelian gauge fields in the bulk [9, 17]. Such fields acquire tiny masses of the order
of M2

s /MP , as in (5), due to brane localized anomalies [17]. Although their gauge
coupling is infinitesimally small, gA ∼ Ms/MP ' 10−16, it is still bigger that the
gravitational coupling E/MP for typical energies E ∼ 1 GeV, and the strength of
the new force would be 106 − 108 stronger than gravity. This is an interesting region
which will be soon explored in micro-gravity experiments (see Fig. 4). Note that in
this case supernova constraints impose that there should be at least four large extra
dimensions in the bulk [9].

In Fig. 4 we depict the actual information from previous, present and upcoming
experiments [7, 14]. The solid lines indicate the present limits from the experiments
indicated. The excluded regions lie above these solid lines. Measuring gravitational
strength forces at short distances is challenging. The dashed thick lines give the ex-
pected sensitivity of the various experiments, which will improve the actual limits by
roughly two orders of magnitude, while the horizontal dashed lines correspond to the
theoretical predictions for the graviton in the case n = 2 and for the radion in the
transverse case. These limits are compared to those obtained from particle accelerator
experiments in Table 1. Finally, in Figs. 5 and 6, we display recent improved bounds
for new forces at very short distances by focusing on the right hand side of Fig. 4,
near the origin [7].
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Figure 4: Present limits on non-Newtonian forces at short distances (yellow regions), as a function
of their range λ and their strength relative to gravity α. The limits are compared to new forces
mediated by the graviton in the case of two large extra dimensions, and by the radion.

5 Non-compact extra dimensions and localized gravity

There are several motivations to study localization of gravity in non-compact extra
dimensions: (i) it avoids the problem of fixing the moduli associated to the size of
the compactification manifold; (ii) it provides a new approach to the mass hierarchy
problem; (iii) there are modifications of gravity at large distances that may have in-
teresting observational consequences. Two types of models have been studied: warped
metrics in curved space [18], and infinite size extra dimensions in flat space [19]. The
former, although largely inspired by stringy developments and having used many
string-theoretic techniques, have not yet a clear and calculable string theory realiza-
tion [20]. In any case, since curved space is always difficult to handle in string theory,
in the following we concentrate mainly on the latter, formulated in flat space with
gravity localized on a subspace of the bulk. It turns out that these models of induced
gravity have an interesting string theory realization [21] that we describe below, after
presenting first a brief overview of the warped case [22].

5.1 Warped spaces

In these models, space-time is a slice of anti de Sitter space (AdS) in d = 5 di-
mensions while our universe forms a four-dimensional (4d) flat boundary [18]. The
corresponding line element is:

ds2 = e−2k|y|ηµνdxµdxν + dy2 ; Λ = −24M3k2 , (8)
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Figure 5: Bounds on non-Newtonian forces in the range 6-20 µm (see S. J. Smullin et al. in Ref. [7]).

where M, Λ are the 5d Planck mass and cosmological constant, respectively, and
the parameter k is the curvature of AdS5. The fifth coordinate y is restricted on the
interval [0, πrc]. Thus, this model requires two ‘branes’, a UV and an IR, located at the
two end-points of the interval, y = 0 and y = πrc, respectively. The vanishing of the
4d cosmological constant requires to fine tune the two tensions: T = −T ′ = 24M3k2.
The 4d Planck mass is given by:

M2
P =

1

k
(1 − e−2πkrc)M3 . (9)

Note that the IR brane can move to infinity by taking the limit rc → ∞, while
MP is kept finite and thus 4d gravity is always present on the brane. The reason is
that the internal volume remains finite in the non-compact limit along the positive
y axis. As a result, gravity is kept localized on the UV brane, while the Newtonian
potential gets corrections, 1/r + 1/k2r3, which are identical with those arising in the
compact case of two flat extra dimensions. Using the experimental limit k−1 <∼ 0.1
mm and the relation (9), one finds a bound for the 5d gravity scale M >∼ 108 GeV,
corresponding to a brane tension T >∼ 1 TeV. Notice that this bound is not valid in
the compact case of six extra dimensions, because their size is in the fermi range and
thus the 1/r3 deviations of Newton’s law are cutoff at shorter distances.

5.2 The induced gravity model

The dgp model and its generalizations are specified by a bulk Einstein-Hilbert (eh)
term and a four-dimensional eh term [19]:

M2+n

∫

M4+n

d4xdny
√

GR(4+n) + M2
P

∫

M4

d4x
√

gR(4) ; M2
P ≡ rn

c M2+n (10)

with M and MP the (possibly independent) respective Planck scales. The scale M ≥
1 TeV would be related to the short-distance scale below which uv quantum gravity
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Figure 6: Bounds on non-Newtonian forces in the range around 200 nm (see R. S. Decca et al. in
Ref. [7]). Curves 4 and 5 correspond to Stanford and Colorado experiments, respectively, of Fig. 5
(see also J C. Long and J. C. Price of Ref. [7]).

or stringy effects are important. The four-dimensional metric is the restriction of
the bulk metric gµν = Gµν | and we assume the world1 rigid, allowing the gauge
Giµ| = 0 with i ≥ 5. Finally, only intrinsic curvature terms are omitted but no
Gibbons–Hawking term is needed.

5.2.1 Co-dimension one

In the case of co-dimension one bulk (n = 1) and δ-function localization, it is easy to
see that rc is a crossover scale where gravity changes behavior on the world. Indeed,
by Fourrier transform the quadratic part of the action (10) with respect to the 4d
position x, at the world position y = 0, one obtains M 2+n(p2−n + rn

c p2), where p
is the 4d momentum. It follows that for distances smaller than rc (large momenta),
the first term becomes irrelevant and the graviton propagator on the “brane” exhibits
four-dimensional behavior (1/p2) with Planck constant MP = M3rc. On the contrary,
at large distances, the first term becomes dominant and the graviton propagator
acquires a five-dimensional fall-off (1/p) with Planck constant M . Imposing rc to be
larger than the size of the universe, rc >∼ 1028 cm, one finds M <∼ 100 MeV, which
seems to be in conflict with experimental bounds. However, there were arguments
that these bounds can be evaded, even for values of the fundamental scale M−1 ∼ 1
mm that one may need for suppressing the quantum corrections of the cosmological
constant [19].

On the other hand, in the presence of non-zero brane thickness w, a new crossover

1We avoid calling M4 a brane because, as we will see below, gravity localizes on singularities of
the internal manifold, such as orbifold fixed points. Branes with localized matter can be introduced
independently of gravity localization.
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length-scale seems to appear, Rc ∼ (wrc)
1/2 [23] or r

3/5
c w2/5 [24].

4d 5d

w Rc rc

↗ ↑
UV cutoff 5d or strong coupling

Below this scale, the theory acquires either again a five-dimensional behavior, or
a strong coupling regime. For rc ∼ 1028 cm, the new crossover scale is of order
Rc ∼ 10−4 − 10 m.

5.2.2 Higher co-dimension

The situation changes drastically for more than one non-compact bulk dimensions,
n > 1, due to the ultraviolet properties of the higher-dimensional theories. Indeed,
from the action (10), the effective potential between two test masses in four dimensions

∫

[d3x] e−ip·x V (x) =
D(p)

1 + rn
c p2 D(p)

[

T̃µνT µν − 1

2 + n
T̃ µ

µ T ν
ν

]

(11)

D(p) =

∫

[dnq]
fw(q)

p2 + q2
(12)

is a function of the bulk graviton retarded Green’s function G(x, 0; 0, 0) =
∫

[d4p] eip·x

D(p) evaluated for two points localized on the world (y = y′ = 0). The integral (12)
is uv-divergent for n > 1 unless there is a non-trivial brane thickness profile fw(q)
of width w. If the four-dimensional world has zero thickness, fw(q) ∼ 1, the bulk
graviton does not have a normalizable wave function. It therefore cannot contribute
to the induced potential, which always takes the form V (p) ∼ 1/p2 and Newton’s law
remains four-dimensional at all distances.

For a non-zero thickness w, there is only one crossover length scale, Rc:

Rc = w
(rc

w

)
n

2

, (13)

above which one obtains a higher-dimensional behaviour [25]. Therefore the effective
potential presents two regimes: (i) at short distances (w � r � Rc) the gravitational
interactions are mediated by the localized four-dimensional graviton and Newton’s
potential on the world is given by V (r) ∼ 1/r and, (ii) at large distances (r � Rc)
the modes of the bulk graviton dominate, changing the potential. Note that for n = 1
the expressions (11) and (12) are finite and unambiguously give V (r) ∼ 1/r for r � rc.
For a co-dimension bigger than 1, the precise behavior for large-distance interactions
depends crucially on the uv completion of the theory.

4d higher d

Rc

At this point we stress a fundamental difference with the finite extra dimensions
scenarios. In these cases Newton’s law gets higher-dimensional at distances smaller
than the characteristic size of the extra dimensions. This is precisely the opposite of
the case of infinite volume extra dimensions that we discuss here.
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As mentioned above, for higher co-dimension, there is an interplay between UV
regularization and IR behavior of the theory. Indeed, several works in the literature
raised unitarity [26] and strong coupling problems [27] which depend crucially on the
uv completion of the theory. A unitary uv regularization for the higher co-dimension
version of the model has been proposed in [28]. It would be interesting to address
these questions in a precise string theory context. Actually, using for UV cutoff on
the “brane” the 4d Planck length w ∼ lP , one gets for the crossover scale (13):
Rc ∼ M−1(MP /M)n/2. Putting M >∼ 1 TeV leads to Rc <∼ 108(n−2) cm. Imposing
Rc >∼ 1028 cm, one then finds that the number of extra dimensions must be at least six,
n ≥ 6, which is realized nicely in string theory and provides an additional motivation
for studying possible string theory realizations.

5.3 String theory realization

In the following, we explain how to realize the gravity induced model (10) with n ≥ 6
as the low-energy effective action of string theory on a non-compact six-dimensional
manifold M6 [21]. We work in the context of N = 2 supergravities in four dimensions
but the mechanism for localizing gravity is independent of the number of supersym-
metries. Of course for N ≥ 3 supersymmetries, there is no localization. We also start
with the compact case and take the decompactification limit. The localized properties
are then encoded in the different volume dependences.

In string perturbation, corrections to the four-dimensional Planck mass are in
general very restrictive. In the heterotic string, they vanish to all orders in perturba-
tion theory [29]; in type I theory, there are moduli-dependent corrections generated
by open strings [30], but they vanish when the manifold M6 is decompactified; in type
II theories, they are constant, independent of the moduli of the manifold M6, and
receive contributions only from tree and one-loop levels that we describe below (at
least for supersymmetric backgrounds) [21, 31]. Finally, in the context of M-theory,
one obtains a similar localized action of gravity kinetic terms in five dimensions,
corresponding to the strong coupling limit of type IIA string [21].

The origin of the two eh terms in (10) can be traced back to the perturbative
corrections to the eight-derivative effective action of type II strings in ten dimensions.
These corrections include the tree-level and one-loop terms given by:

1

l8s

∫

M10

1

g2
s

R(10) −
1

l2s

∫

M10

(

2ζ(3)

g2
s

∓ 4ζ(2)

)

R ∧ R ∧ R ∧ R ∧ e ∧ e + · · · (14)

where φ is the dilaton field determining the string coupling gs = e〈φ〉, and the ± sign
corresponds to the type iia/b theory. On a direct product space-time M6 × R

4, at
the level of zero modes, the second term in (14) splits as:

∫

M6

R ∧ R ∧ R ×
∫

M4

R(4) = χ

∫

M4

R(4) , (15)

where χ is the Euler number of the M6 compactification manifold. We thus obtain
the expressions for the Planck masses M and Mp:

M2 ∼ M2
s /g1/2

s ; M2
P ∼ χ(

c0

g2
s

+ c1)M
2
s , (16)

with c0 = −2ζ(3) and c1 = ±4ζ(2) = ±2π2/3.
It is interesting that the appearance of the induced 4d localized term preserves

N = 2 supersymmetry and is independent of the localization mechanism of matter
fields (for instance on D-branes). Localization requires the internal space M6 to have
a non-zero Euler characteristic χ 6= 0. Actually, in type iia/b compactified on a
Calabi-Yau manifold, χ counts the difference between the numbers of N = 2 vector
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multiplets and hypermultiplets: χ = ±4(nV − nH) (where the graviton multiplet
counts as one vector). Moreover, in the non-compact limit, the Euler number can in
general split in different singular points of the internal space, χ =

∑

I χI , giving rise
to different localized terms at various points yI of the internal space. A number of
conclusions (confirmed by string calculations in [21]) can be reached by looking closely
at (14)-(16):

. Mp � M requires a large non-zero Euler characteristic for M6, and/or a weak
string coupling constant gs → 0.

. Since χ is a topological invariant the localized R(4) term coming from the closed
string sector is universal, independent of the background geometry and dependent
only on the internal topology. It is a matter of simple inspection to see that if one
wants to have a localized eh term in less than ten dimensions, namely something
linear in curvature, with non-compact internal space in all directions, the only possible
dimension is four (or five in the strong coupling M-theory limit).

. In order to find the width w of the localized term, one has to do a separate
analysis. On general grounds, using dimensional analysis in the limit MP → ∞, one
expects the effective width to vanish as a power of lP ≡ M−1

P : w ∼ lνP /lν−1
s with

ν > 0. The computation of ν for a general Calabi-Yau space, besides its technical
difficulty, presents an additional important complication: from the expression (16),
lP ∼ gsls in the weak coupling limit. Thus, w vanishes in perturbation theory and
one has to perform a non-perturbative analysis to extract its behavior. Alternatively,
one can examine the case of orbifolds. In this limit, c0 = 0, lP ∼ ls, and the hierarchy
MP > M is achieved only in the limit of large χ. One then finds that the width is
given by the four-dimensional induced Planck mass

w ' lP = ls χ−1/2 , (17)

and the power ν = 1.

5.3.1 Summary of the results

Using w ∼ lP and the relations (16) in the weak coupling limit (with c0 6= 0), the
crossover radius of eq. (13) is given by the string parameters (n = 6)

Rc =
r3
c

w2
∼ gs

l4s
l3P

' gs × 1032 cm , (18)

for Ms ' 1 TeV. Because Rc has to be of cosmological size, the string coupling can
be relatively small, and the Euler number |χ| ' g2

s lP ∼ g2
s × 1032 must be very large.

The hierarchy is obtained mainly thanks to the large value of χ, so that lowering the
bound on Rc lowers the value of χ. Our actual knowledge of gravity at very large
distances indicates [32] that Rc should be of the order of the Hubble radius Rc ' 1028

cm, which implies gs ≥ 10−4 and |χ| >∼ 1024. A large Euler number implies only a
large number of closed string massless particles with no a-priori constraint on the
observable gauge and matter sectors, which can be introduced for instance on D3-
branes placed at the position where gravity localization occurs. All these particles are
localized at the orbifold fixed points (or where the Euler number is concentrated in the
general case), and should have sufficiently suppressed gravitational-type couplings, so
that their presence with such a huge multiplicity does not contradict observations.
Note that these results depend crucially on the scaling of the width w in terms of the
Planck length: w ∼ lνP , implying Rc ∼ 1/l2ν+1

P in string units. If there are models with
ν > 1, the required value of χ will be much lower, becoming O(1) for ν ≥ 3/2. In this
case, the hierarchy could be determined by tuning the string coupling to infinitesimal
values, gs ∼ 10−16.

The explicit string realization of localized induced gravity models offers a con-
sistent framework that allows to address a certain number of interesting physics prob-
lems. In particular, the effective UV cutoff and the study of the gravity force among
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matter sources localized on D-branes. It would be also interesting to perform explicit
model building and study in detail the phenomenological consequences of these models
and compare to other realizations of TeV strings with compact dimensions.
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