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Cutting-edge physics at the end of nineteenth century

Long-time behavior of a (dilute) classical gas

Take many (say 1020) small hard balls,

bouncing against each other, in a box

Let the gas evolve according to Newton’s equations









Prediction by Maxwell and Boltzmann

The distribution function is asymptotically Gaussian

f(t, x, v) ≃ a exp
(
−|v|

2

2T

)
as t→∞



Based on four major conceptual advances 1865-1875

• Major modelling advance: Boltzmann equation

• Major mathematical advance: the statistical entropy

• Major physical advance: macroscopic irreversibility

• Major PDE advance: qualitative functional study of

the large-time limit

Let us review these advances

=⇒ journey around centennial scientific problems



Probabilistic point of view

y1 = (x1, v1), y2, ..., yN ...

Microscopic state: e.g. N & 1010 ≫ 1

A priori symmetric microscopic probability distribution

µN
0 (dy1 dy2 . . . dyN) =⇒ µN

t (dy1 dy2 . . . dyN)

µ̂N(dy) =
1

N

N∑

i=1

δyi(t) = empirical measure ≃ f(t, y) dy

Molecular chaos: µ̂N is approximately deterministic iff

(y1, y2) approximately independent (no correlations!)

If molecular chaos at times t ≥ 0 then

for almost all initial microstates, observation ≃ f(t, y) dy

Closed equation on f?



The Boltzmann equation

Models rarefied gases (Maxwell 1865, Boltzmann 1872)

f(t, x, v) : density of particles in (x, v) space at time t

f(t, x, v) dx dv = fraction of mass in dx dv



The Boltzmann equation (without boundaries)

Unknown = time-dependent distribution f(t, x, v):

∂f

∂t
+

3∑

i=1

vi
∂f

∂xi

= Q(f, f) =

∫

R3
v∗

∫

S2

B(v−v∗, ω)
[
f(t, x, v′)f(t, x, v′

∗
)−f(t, x, v)f(t, x, v∗)

]
dv∗ dω



The Boltzmann equation (without boundaries)
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
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The Boltzmann equation (without boundaries)

Unknown = time-dependent distribution f(t, x, v):
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Conceptually tricky!

One-sided chaos: No correlations on pre-collisional

configurations, but correlations on post-collisional

configurations [which topology??]

...and this should be preserved in time,

although correlations continuously form!

... Valid approximation? 100 years of controversy



Lanford’s Theorem (1973)

• Rigorously derives the Boltzmann equation from

Newtonian mechanics of N hard spheres of radius r, in

the scaling Nr2 → 1, for microscopic distributions with

Gaussian velocity decay, under an assumption of strong

molecular chaos at initial time, on a short but

macroscopic time interval.

• Improved (Illner & Pulvirenti): rare cloud in R
3



Leaves many open issues

• Large data? Box? Long-range interactions?

• Nontrajectorial proof??

• Propagation of one-sided chaos???

Qualitative properties?

• Fundamental properties of Newtonian mechanics:

preservation of volume in configuration space

• What can be said about the volume in this

infinite-dimensional limit??



Boltzmann’s H functional

S(f) = −H(f) := −
∫

Ωx×R3
v

f(x, v) log f(x, v) dv dx

Boltzmann identifies S with the entropy of the gas

and proves that S can only increase in time

(strictly unless the gas is in a hydrodynamical state)

— an instance of the Second Law of Thermodynamics



The content of the H functional

Mysterious and famous, also appears

in Shannon’s theory of information

In Shannon’s own words:

I thought of calling it ‘information’. But the word was overly used,

so I decided to call it ‘uncertainty’. When I discussed it with John

von Neumann, he had a better idea: (...) “You should call it

entropy, for two reasons. In first place your uncertainty has been

used in statistical mechanics under that name, so it already has a

name. In second place, and more important, no one knows what

entropy really is, so in a debate you will always have the

advantage.”



Information theory

The Shannon–Boltzmann entropy S = −
∫

f log f

quantifies how much information there is in a “random”

signal Y , or a language.

Hµ(ν) =

∫
ρ log ρ dµ; ν = ρ µ.



Microscopic meaning of the entropy functional

Measures the volume of microstates associated,

to some degree of accuracy in macroscopic observables,

to a given macroscopic configuration (observable

distribution function)

=⇒ How exceptional is the observed configuration?

Note: “Entropy is an anthropic concept”

Boltzmann’s formula

S = k log W





−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj



−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 0, 1, 0, 0, 0, 0)

ΩN(f) = 1



−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 0, 3/4, 0, 1/4, 0, 0)

Ω8(f) =
8!

6! 2!



−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 1/6, 1/3, 1/4, 1/6, 1/12, 0)

ΩN(f) =
N !

N1! . . . Nk!



−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

Then as N →∞

#ΩN(f1, . . . , fk) ∼ e−N
P

fj log fj

1

N
log #ΩN(f1, . . . , fk) ≃ −

∑
fj log fj



Sanov’s theorem

A mathematical translation of Boltzmann’s intuition

x1, x2, . . . (“microscopic variables”) independent, law µ;

µ̂N :=
1

N

N∑

i=1

δxi
(random measure, “empirical”)

What measure will we observe??

Fuzzy writing: P [µ̂N ≃ ν] ∼ e−NHµ(ν)

Rigorous writing: Hµ(ν) = lim
k→∞

lim sup
ε→0

lim sup
N→∞

− 1

N
log Pµ⊗N

[


∀j ≤ k,
˛

˛

˛

ϕj(x1) + . . . + ϕj(xN )

N
−

Z

ϕj dν
˛

˛

˛
< ε

ff
]



Universality of entropy

Lax entropy condition

Entropy is used to select physically relevant shocks in

compressible fluid dynamics

(Entropy should increase,

i.e. information be lost, not created!!)



Universality of entropy

Voiculescu’s classification of II1 factors

Think of (A1, . . . , An) in (A, τ) as the observable limit of

a family of “microscopic systems” = large matrices

Ω(N, ε, k) :=
{

(X1, . . . , Xn), N ×N Hermitian; ∀P polynomial of degree ≤ k,

∣∣∣∣
1

N
tr P (X1, . . . , Xn)− τ(P (A1, . . . , An))

∣∣∣∣ < ε

}

χ(τ) := lim
k→∞

lim sup
ε→0

lim sup
N→∞

[
1

N2
log vol(Ω(N, ε, k))− n

2
log N

]



Universality of entropy

Ball–Barthe–Naor’s quantitative central limit theorem

X1, X2, . . . , Xn, . . . identically distributed, independent

real random variables;

EX2
j <∞, EXj = 0

Then
X1 + . . . + XN√

N
−−−→
N→∞

Gaussian random variable

Ball–Barthe–Naor (2004): Irreversible loss of information

Entropy

(
X1 + . . . + XN√

N

)
increases with N

(some earlier results: Linnik, Barron, Carlen–Soffer)



Back to Boltzmann: The H Theorem

Boltzmann computes the rate of variation of entropy

along the Boltzmann equation:

1

4

∫ (
f(v)f(v∗)− f(v′)f(v′

∗)
)

log
f(v)f(v∗)

f(v′)f(v′
∗)

B dω dv dv∗ dx

Obviously ≥ 0

Moreover, = 0 if and only if f(x, v) = ρ(x)
e−

|v−u(x)|2

2T (x)

(2π T (x))3/2

= Hydrodynamic state



Reversibility and irreversibility

Entropy increase, but Newtonian mechanics is reversible!?

Ostwald, Loschmidt, Zermelo, Poincaré... questioned

Boltzmann’s arguments
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Reversibility and irreversibility

Entropy increase, but Newtonian mechanics is reversible!?

Ostwald, Loschmidt, Zermelo, Poincaré... questioned

Boltzmann’s arguments



Power of combinatorics

Gas in half-box =⇒ gas in whole box

Entropy goes up by log 2, say N = 1017

=⇒ Volume of microstates is 21017
times larger

Vol of microstates in whole box

Vol of microstates in half box
≥

(
Vol of galaxy

Vol of electron

)200000000000000



Loschmidt’s paradox

At time t, reverse all velocities (entropy is preserved),

start again (entropy increases) but go back to initial

configuration (and initial entropy!)

Boltzmann: “Go on, reverse them!”

Later allowed by the spin echo experiment

... Subtleties of one-sided chaos

... Importance of the prepared starting state:

• low macroscopic entropy (unlikely observed state),

• high microscopic entropy (no initial correlations)

Knowing µ̂N
0 ≃ µ0, µ⊗N

0 is the microscopic probability

with maximum entropy (Cf. max likelihood)



Micro/macro (ir)reversibility

If there is macroscopic determinism:

All typical microstates at time 0 (profile µ0)

remain typical microstates at time t (profile µt)

... By microscopic volume conservation, there are at least

as many typical configurations for µt than for µ0

... i.e. entropy is no less

Microscopic reversibility =⇒ macroscopic increase of entropy

... Microscopic irreversibility usually leads to nothing!!



Back to Boltzmann – Mathematicians chose their side

All of us younger mathematicians stood by Boltzmann’s
side.

Arnold Sommerfeld (about a 1895 debate)

Boltzmann’s work on the principles of mechanics suggest
the problem of developing mathematically the limiting
processes (...) which lead from the atomistic view to the
laws of motion of continua.

David Hilbert (1900)

Boltzmann summarized most (but not all) of his work in
a two volume treatise Vorlesungen über Gastheorie. This
is one of the greatest books in the history of exact
sciences and the reader is strongly advised to consult it.

Mark Kac (1959)



Back to Boltzmann equation: Major PDE advance

Recall: The most important nonlinear models of

classical mechanics have not been solved

(compressible and incompressible Euler, compressible and

incompressible Navier–Stokes, Boltzmann, even

Vlasov–Poisson to some extent)

But Boltzmann’s H Theorem was the first qualitative

estimate!

• Finiteness of the entropy production prevents

clustering, providing compactness, crucial in the Arkeryd

and DiPerna–Lions stability theories

• The H Theorem is the main “explanation” for the

hydrodynamic approximation of the Boltzmann equation



Large-time behavior

The state of maximum entropy given the conservation of

total mass and energy is a Gaussian distribution

... and this Gaussian distribution is the only one which

prevents entropy from growing further



Plausible time-behavior of the entropy

S

Smax

If this is true, then f becomes Gaussian as t→∞!



What do we want to prove?

Prove that a “nice” solution of the Boltzmann equation

approaches Gaussian equilibrium: short and easy

(basically Boltzmann’s argument)

Get quantitative estimates like “After a time ....., the

distribution is close to Gaussian, up to an error of 1 %”:

tricky and long (1989–2004 starting with Cercignani,

Desvillettes, Carlen–Carvalho)

One big problem: degeneracy: If the distribution

becomes hydrodynamical but not homogeneous then

entropy production vanishes although not at equilibrium!



Conditional convergence theorem (Desvillettes – V)

Let f(t, x, v) be a solution of the Boltzmann equation,

with appropriate boundary conditions. Assume that

(i) f is very regular (uniformly in time): all

moments (
∫

f |v|k dv dx) are finite and all derivatives (of

any order) are bounded;

(ii) f is strictly positive: f(t, x, v) ≥ Ke−A|v|q .

Then f(t) −→ f∞ at least like O(t−∞) as t→∞

• Regularity assumptions can be weakened

• Gualdani–Mischler–Mouhot complemented this with

a rate O(e−λt) for hard spheres



The proof uses differential inequalities of first and second

order, coupled via many inequalities including:

- precised entropy production inequalities (information

theoretical input)

- Instability of hydrodynamical description (fluid

mechanics input).

- decomposition of entropy in kinetic and hydrodynamic

parts

- functional inequalities coming from various fields

(information theory, quantum field theory, elasticity

theory, etc.)

It led to the discovery of oscillations in the entropy

production



Numerical simulations by Filbet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Local Relative Entropy
Global Relative Entropy

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16

Local Relative Entropy
Global Relative Entropy

These oscillations of the entropy production slow down

the convergence to equilibrium (fluid mechanics effect)

and are related to current research on the convergence for

nonsymmetric degenerate operators (“hypocoercivity”)



Other quantitative use of entropy a priori estimates

• Instrumental in Nash’s proof of continuity of solutions

of linear diffusion equations with nonsmooth coefficients

• Allowed Perelman to prove the Poincaré conjecture

• Used by Varadhan and coworkers/students for

(infinite-dimensional) hydrodynamic problems

• Basis for the construction of the heat equation in

metric-measure spaces (... Otto ... V ... Savaré, Gigli ...)

• ...

A final example of universality of entropy: Ricci curvature



Distortion interpretation of Ricci
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the observer
location of

the light source looks like
how the observer thinks

the light source

by curvature effects

geodesics are distorted

Because of positive curvature effects, the observer overestimates the

surface of the light source; in a negatively curved world this would

be the contrary.

[ Distortion coefficients always ≥ 1 ] ⇐⇒ [ Ric ≥ 0 ]



The lazy gas experiment (Otto.... Lott–Sturm–Villani)

Describes the link between Ricci, optimal transport and

entropy

t = 1

t = 0

t = 1/2

t = 0 t = 1

S = −

R

ρ log ρ



1946: Landau’s revolutionary paradigm

Landau studies equations of plasma physics: collisions

essentially negligible (Vlasov–Poisson equation)

Landau suggests that there is dynamic stability near a

stable homogeneous equilibrium f 0(v)

... even if no collisions, no diffusion, no H Theorem, no

irreversibility. Entropy is constant!!

Landau and followers prove relaxation only in the

linearized regime, but numerical simulations suggest

wider range. Astrophysicists argue for relaxation with

constant entropy = violent relaxation



force F [f ](t, x) = −
∫∫
∇W (x− y) f(t, y, w) dy dw



But ... Is the linearization reasonable?? f = f 0 + h

∂h

∂t
+ v · ∇xh + F [h] ·

(
∇vf

0 +∇vh
)

= 0 (NLin V)

∂h

∂t
+ v · ∇xh + F [h] ·

(
∇vf

0 + 0
)

= 0 (Lin V)

• OK if |∇vh| ≪ |∇vf
0|, but |∇vh(t, · )| ≥ ε t→ +∞

“destroying the validity of the linear theory” (Backus 1960)

• Natural nonlinear time scale = 1/
√

ε (O’Neil 1965)

• Neglected term ∇vh is dominant-order!

• Linearization removes entropy conservation

• Isichenko 1997: approach to equilibrium only O(1/t)

• Caglioti–Maffei (1998): at least some nontrivial

solutions decay exponentially fast



Theorem (Mouhot–V. 2009)

Landau damping holds for the nonlinear Vlasov equation:

If i.d. very close to a stable homogeneous equilibrium

f 0(v), then convergence in large time to a stable

homogeneous equilibrium.

• Information still present, but not observable (goes

away in very fast velocity oscillations)
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Theorem (Mouhot–V. 2009)

Landau damping holds for the nonlinear Vlasov equation:

If i.d. very close to a stable homogeneous equilibrium

f 0(v), then convergence in large time to a stable

homogeneous equilibrium.

• Information still present, but not observable (goes

away in very fast velocity oscillations)

• Proof uses plasma echo paradox paradigm (1967)

• and has strong analogy with K-A-M theory

• Relaxation by regularity, driven by confined mixing.

• First steps in a virgin territory? Universal problem of

constant-entropy relaxation in particle systems




