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Abstract.
The groundbreaking detection of gravitational waves on 14 September 2015

ushered in a new era in our exploration of one of nature’s most profound fun-
damental forces: gravity. With gravitational waves now routinely detected, we
have gained a novel observational framework to test gravity and investigate the
properties of their sources. We gain new observational windows of the gravita-
tional force.

In this text, we describe an innovative analytical computational framework
for the inspiral phase of binary systems, achieved by embedding Einstein’s the-
ory of gravity into a quantum gravity effective action. Einstein’s gravity is the
leading contribution of a quantum gravity effective field theory. This frame-
work relies on the separation of scales between long-range and short-distance
physics. This setup provides a novel approach to tackling the intricate challenges
of gravitational radiation. This approach provides a framework for incorporat-
ing derivations from, including quantum gravity corrections opening possibility
of constraining quantum gravity corrections to classical observables.

1 Dancing massive bodies

Les physiciens disent des trous noirs qu’à
force de se concentrer dans le ciel nocturne, il
leur arrive d’enrouler, dans la substance
ténébreuse, l’espace qu’ils épanchent dans le
temps.

Pascal Quignard
La barque silencieuse Chap XXV Extase et

enstase

Our conception of the force of gravity conditions our vision of the shape and
dynamic of our observable Universe. The current cosmological paradigm relies on
General Relativity, Einstein’s theory of gravity [1,2] – crafted as a relativistic theory
of curved space-time. Gravity is inferred universal – with dynamics that couple
equally to all type of matter and energy. Einstein proposed three classical tests of
this theory of gravity [3]: the perihelion precession of Mercury, the deflection of light
by the Sun and the gravitational redshift of light. These classical tests illustrate the
ubiquity of the gravitational force. In addition, several modern tests are routinely
performed to test general relativity as well as effects that, in principle, could occur
in a theory of gravitation different from Einstein’s theory of gravity [4]

Unfortunately, the weakness of the gravitational force compared to the other
forces of Nature makes difficult to perform these tests. Detecting signals for devi-
ations from Einstein’s theory of gravity in gravitational effects is very challenging.
For a long time, there was a huge observational gap in the scales where gravity
could be measured with precision between the solar system range, like the test of
the equivalence principle [5] and the cosmological range [6] as shown in this figure
from the ESA Fundamental Physics Road-map of 2010 [7, 8].

The detection of gravitational waves from binary systems has revolutionized
our ability to probe gravity. Before discussing how this data has changed our under-
standing of gravity, let us review some highlights of the long journey from Einstein’s
conception of general relativity in 1915 to the detection of gravitational waves in
2015.



Gravité Quantique, Vol. XXIV, 2023 The symphony of gravity 117

quantum gravity

10−35 m

lab tests
poorly tested

10−6 m

lab test
very good
knowledge

1 m

spatial probes
pretty good
knowledge

109 m

astrophysics
no precise data

1019 m

astrophysics
poorly tested

1021 m

CMB

1027 m

Figure 1: How well do we test gravity in 2010 adapted from fig. 2 in [7] and [8].

1.1 Gravitational radiation

Einstein’s theory of gravity is a broader interpretation of Newton’s classical dynam-
ics. When dealing with small masses and low velocities, the two-body gravitational
interaction described by general relativity approximates to Newton’s inverse-square
law. Constrained by the finite speed of light, general relativity predicts the existence
of gravitational radiation.

Prior to Einstein’s conception of general relativity, Henri Poincaré theorized
that the gravitational force is not instantaneous but rather propagates at the speed
of light. This implies a time delay, known as retardation, between any alteration in
gravity and its subsequent effect. Poincaré explicitly stated that these changes are
transmitted by gravitational waves, which he termed ondes gravifiques, though he
didn’t delve into their specific form.

In the article [9] he wrote in the last section “Hypothesis on Gravitation” that1

Il importait d’examiner cette hypothèse de plus près et en particulier
de rechercher quelles modifications elle nous obligerait à apporter aux lois
de la gravitation. C’est ce que j’ai cherché à déterminer; j’ai été d’abord
conduit à supposer que la propagation de la gravitation n’est pas instan-
tanée, mais se fait avec la vitesse de la lumière. (...)

Quand nous parlerons donc de la position ou de la vitesse du corps
attirant, il s’agira de cette position ou de cette vitesse à l’instant où l’onde
gravifique est partie de ce corps; quand nous parlerons de la position ou
de la vitesse du corps attiré, il s’agira de cette position ou de cette vitesse
à l’instant où ce corps attiré a été atteint par l’onde gravifique émanée de
l’autre corps; il est clair que le premier instant est antérieur au second.

This is precisely the retardation, the fact that the force is not instantaneous,
that field theory needs to produce gravitational waves, from the acceleration of
massive body.

In 1916, Einstein realized that gravitational radiation emitted by an electron
orbiting a nucleus would affect the stability of the atom in the same way that classical
electromagnetic radiation does in [10].

Gleichwohl müßten die Atome zufolge der inneratomischen Elektronen-
bewegung nicht nur elektromagnetische, sondern auch Gravitationsenergie

1An english translation is “It was important to examine this hypothesis more closely, and in particular to
investigate what modifications it would require us to make to the laws of gravitation. This is what I sought to
determine; I was first led to suppose that the propagation of gravitation is not instantaneous, but takes place at the
speed of light. (...)

Therefore, when we speak of the position or velocity of the attracting body, we will be referring to that position
or velocity at the instant when the gravitational wave left that body; when we speak of the position or velocity of
the attracted body, we will be referring to that position or velocity at the instant when that attracted body was
reached by the gravitational wave emitted by the other body; it is clear that the first instant is prior to the second.”
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ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der
Natur nicht zutreffen dürfte, so scheint es, daß die Quantentheorie nicht
nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitations-
theorie wird modifizieren müssen2

He made the same claim in his famous 1918 paper [11] where he derived the
quadrupole formula that

Aus (27) ist ersichtlich, daß die Ausstrahlung in keiner Richtung ne-
gativ werden kann, also sicher auch nicht die totale Ausstrahlung. Be-
reits in der fritheren Abhandlung ist betont geworden, daß das Endergeb-
nis dieser Betrachtung, welches einen Energieverlust der Körper infolge
der thermischen Agitation verlangen würde, Zweifel an der allgemeinen
Gültigkeit der Theorie hervorrufen muß. Es scheint, daß eine vervollkomm-
nete Quantentheorie eine Modifikation auch der Gravitationstheorie wird
brigen müssen.3

Einstein was troubled by idea that the atom could not be stable due to emission
of gravitational radiation. The electromagnetic radiation of the electron orbiting
around the nucleus leads to a collapse of the atom in 10−10 s whereas the collapse
under gravitational radiation is of the order of 1037 s. The important difference
in the time is due to huge weakness of the gravitational force compared to the
electromagnetic force. Something that has been a challenge for detecting the classical
gravitational radiation from massive binaries and is at the heart of the difficulties
of find experimental signature of quantum gravity. Therefore, Einstein motivation
was not of an empirical but more of a theoretical nature based on an analogy with
electrodynamics.

The quantization of gravity was carried out by Feynman [13] and DeWitt [14–16]
in the 1960s. By modern standards, the quantization itself is not problematic. How-
ever, subsequent investigations showed that the high-energy behaviour of quantum
corrections did not resemble that of renormalizable field theories. The question of the
quantum nature of gravity is still an open subject because of a lack of experimental
evidence of quantum gravity effects, mainly due to the weakness of the gravitational
force.4

Still we assume that a quantum theory of gravity exists and that the force
of gravity is mediated by the graviton a massless spin 2 particle [17]. Using idea
from effective field theories [18,19], we present an approach to classical gravitational
radiation by computing quantum gravity scattering amplitudes. This approach has
brought a new eye on some important questions about gravitational radiation. While
the quantization of gravity is primarily employed as a computational tool to explore
classical radiation effects in line with the suggestion by Kovàcs and Thorne in [20],
but we will argue that one can as well safely predict long range low-energy (infrared)

2An english translation could read “However, according to the inner-atomic electron movement, atoms would
have to emit not only electromagnetic, but also gravitational energy, even if in a tiny amount. Since this is unlikely
to be the case in nature, it seems that quantum theory will have to modify not only Maxwell’s electrodynamics, but
also the new gravitational theory.”

3English translation from [12] “One sees from (27) that the emission cannot turn negative in any direction;
consequently, the total emission certainly cannot turn negative, either. It has already been emphasized in a previous
paper that the end result of this investigation— which would require a loss of energy of bodies due to the thermal
agitation—must raise doubts as to the general validity of the theory. It seems that a more complete quantum theory
would also have to bring about a modification of the theory of gravitation.”

4The question of the very short distance high-energy (ultraviolet) regime of quantum gravity is still an open
question which will be discussed by Zvi Bern in this volume.
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quantum gravity effects correcting the classical contribution from Einstein theory.
The validity of this approach is not proof of the need to quantize gravity however,
the formalism provides a framework that could potentially lead to a method for
observing the quantization of gravity from long-range infrared contributions, which
will be discussed in Section 6.

1.2 Rising the classical gravitational waves

In 1918, Einstein derived his famous quadrupole formula [11], which gives the rate at
which gravitational waves are emitted from a system of masses based on the change
in the (mass) quadrupole moment. However, Einstein wrote that it was unlikely that
anyone would ever find a system whose behaviour would be measurably influenced
by gravitational waves. He was pointing out that the waves from a typical binary
star system would carry away so little energy that we would never even notice that
the system had changed.

In General relativity gravitational waves are waves of the intensity of gravity
that are generated by the accelerated masses of binary stars and other motions of
gravitating masses, and propagate as waves outward from their source at the speed
of light.

In 1936, Einstein and Rosen submitted an article to Physical Review titled “Do
Gravitational Waves Exist?” in which they claimed to have a proof that general
relativity does not allow for exact gravitational wave solutions because any such so-
lution of the field equations would have a singularity. This paper was rejected by the
renowned cosmologist Howard P. Robertson, who pointed out a mistake and sug-
gested some revisions. Einstein and Rosen’s revised work, titled “On Gravitational
Waves,” appeared in the Journal of the Franklin Institute. In this paper, they rig-
orously proved the existence of cylindrical gravitational waves without singularities
for Euclidean space [21]. A rigorous mathematical proof of the existence of gravita-
tional waves in Einstein theory was given by Choquet-Bruhat in 1952 [22] and [23].
Choquet-Bruhat’s local theorem of 1952 was a breakthrough and has since been
fundamental for further investigations of the Cauchy problem and proved crucial to
the possibility of numerically simulating the motion and gravitational radiation of
coalescing binary black holes. A survey of the mathematical work on the general
relativity can be found in [24].

The quadrupole formula quantifies the total power emitted from a binary sys-
tem. This prediction was confirmed by observations of the energy loss due to grav-
itational radiation in the Hulse-Taylor binary pulsar, PSR 1913+16, discovered in
1974. The orbit of this binary system has decayed since it was discovered, in precise
agreement with Einstein’s quadrupole formula to within 0.2% precision [4,25]. This
system provided an important confirmation of the existence of gravitational waves,
but it only provides a weak-field test of Einstein’s theory. The lifetime to final in-
spiral due to the emission of gravitational radiation is calculated to be 300 million
years.

On September 14, 2015, the LIGO Scientific Collaboration detected a transient
gravitational wave signal produced by a binary black hole system with a total mass
of approximately 65 solar masses, about 1 billion years ago, prior to impact [26]. This
detection occurred 100 years after Einstein predicted the existence of gravitational
waves in general relativity. The detection of the complete signal merger and ring-
down has opened a new window on the physics of gravity.
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The direct detection of gravitational waves from a binary black hole system is a
major confirmation of two of Einstein’s theory gravity most significant predictions:
gravitational waves and black holes. This direct detection finally puts to rest Ein-
stein’s own doubts about the physical significance of gravitational waves and the
reality of black holes.

The routine detection of gravitational waves now opens up a completely new
way to analyse the properties of black holes and probe gravity in our Universe at
scales that were previously inaccessible.

Subrahmanyan Chandrasekhar, a Nobel Prize winner in physics, said that “the
most perfect macroscopic objects there are in the universe: the only elements in
their construction are our concepts of space and time.” Although the solutions for
black holes were found shortly after the inception of general relativity, with the
Schwarzschild solution given in 1916 and the Reissner and Nordström solutions
given in 1916 and 1918, respectively, Einstein doubted the physical reality of black
holes.

In his 1939 paper on the Schwarzschild solution [27], Einstein asked whether “it
is possible to build up a field containing such singularities with the help of the actual
gravitating masses, or whether such regions with vanishing g44 do not exist in cases
which have physical reality.”

It was not until the 1950s, with the work of Robert Oppenheimer and John
Wheeler, that black holes began to be seriously considered as possible astrophysical
objects existing in our Universe. Subrahmanyan Chandrasekhar (Nobel Prize in
Physics 1983) and Roger Penrose (Nobel Prize in Physics 2020) explained that
sufficiently massive stars at the end of their lives, having depleted their nuclear
fuel, must gravitationally collapse to become a spacetime singularity.

We have progressively obtained hints of the presence of black holes from their
effects on the surrounding matter. For example, the presence of Sagittarius A*, the
supermassive black hole at the centre of our galaxy, was suspected since the detection
of its radio emission in February 1974, but it was difficult to observe because it is
concealed by a multilayered veil. Its presence was only confirmed by the images from
the Event Horizon Telescope collaboration in 2022 [28].

We now estimate that there are more than 100 million black holes of a solar
mass in our galaxy and at least 100 billion supermassive black holes of mass of a
million or a billion solar masses in the universe. We also believe that a black hole
is created every second in a supernova event and that primordial (quantum) black
holes were created after the Big Bang.
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microscopic
black holes

no detection

103 m 106 m

solar mass
black holes

GW detection

1010 m 1015 m

supermassive
black holes
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Figure 2: Sizes of Black Holes Throughout the Universe.

All of this evidence for black holes was based on their static properties and
their influence on their environment. The detection of gravitational waves emitted
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by a binary black hole system was the first direct detection of the dynamics of black
holes [26]. By analysing gravitational wave events, we can reconstruct the physical
properties (mass and spin) and location in space and time of black holes, and follow
the dynamics of the inspiral regime until the merging of the binary system.

1.3 Riding the gravitational waves

The gravitational waves emitted by compact binary systems, composed of neutron
stars and black holes are routinely detected by the LIGO, VIRGO and KAGRA
detector. And with the launch of LISA we will be able to detect them in space
before their reach the Earth. The loss of gravitational energy results in a decrease
of the orbital separation of the binaries and an increase of the orbital frequency.
As the binaries get closer the frequency of the gravitational-waves becomes higher
pitched, the signal chirps, until the two objects collide and merge.

These detections are important because we can compare the way the gravita-
tional waves propagate from the source to the detector with the other emissions,
such as X-ray and radio signals. This is a powerful tool for studying gravity at dif-
ferent scales, including the dynamics of black holes and their interactions with their
surroundings.

The analysis of gravitational wave data from binary systems will precisely fill
the gap in testing the law of gravity that was presented in the 2010 roadmap in
Fig. 1.

The detection of the first gravitational wave signal has opened a new era of
precision gravity. Gravitational waves can tell us about gravity at various scales,
including the dynamics of black holes. This will ultimately tell us how well we
understand gravity in both the weak and strong coupling regimes.

The binary mergers detected so far by LIGO-Virgo are clean sources of grav-
itational waves [29, 30], and the gravitational wave signal is currently modelled by
general relativity in vacuum to second order in the mass ratio parameter. However,
next-generation gravitational wave detectors, such as the Laser Interferometer Space
Antenna (LISA), will be influenced by the environment of the sources, and the signal
will be more “dirty” [31].

The lack of clear predictions for non-linearities (for example, from the accretion
disk) in the post-merger phase means that these could be confused with modifi-
cations of the signal predicted by theories beyond general relativity. To accurately
interpret the data from these new detectors, we need to produce accurate theoreti-
cal gravitational waveform templates and understand the limitations of our current
theoretical understanding of gravity. In particular, we need to know how much we
can learn about gravity in the weak and strong coupling regimes, and whether we
can use gravitational wave observations to detect evidence of new physics beyond
general relativity, such as modified gravity theories or quantum effects.

The profile of a gravitational wave depends on the physics of the merger and how
the wave has propagated in space. There are three typical regimes for the merger:

• Inspiral phase: The two binaries are far apart with relatively slow motion and
weak gravitational interaction.

• Merger phase: The binaries are close together and the gravitational interaction
is strong.
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• Ring-down phase: The final state of the system is relaxing.

After the binary system has merged into a black hole, the ring-down phase tells us
about the structure of the black hole’s horizon. We estimate that there are more
than 100 million black holes in our galaxy and 100 billion supermassive black holes in
the universe. These numbers indicate the potential for gravitational wave detections
from black hole binary mergers at intermediate distances in the universe.

For neutron star binary mergers, we can compare the propagation of the gravita-
tional waves to the radio signals and visible emissions. The analysis of gravitational
waves will allow for precision tests of general relativity and the black hole paradigm
itself. The combined gravitational wave and electromagnetic signals will allow us to
determine the properties of the binary and its environment.

The recently enhanced observatories (LIGO, Virgo, and KAGRA) and the vastly
improved sensitivity of the third generation of gravitational wave observatories (the
Einstein Telescope, the Cosmic Explorer, and the future space-based LISA) will
permit detailed measurements of the sources’ physical parameters and complement,
in a multi-messenger approach, the observation of signals emitted by cosmological
sources obtained through other kinds of telescopes [31,32].

1.4 Reading the gravitational waves

General relativity is not enough to explain all the observed properties of our universe.
It fails to explain the observed dynamics and stability of galaxies or the accelerated
expansion of the universe. Dark matter and dark energy, of unknown nature, have
been introduced to quantify our lack of understanding.

“We wouldn’t call it a tension or a problem, but rather a crisis,” commented
the Nobel Prize winner David Gross, about the different measurements of the ex-
pansion rate of the Universe from local and cosmological observations [33, 34]. The
signal contains information about the sources and how the gravitational waves have
propagated in space and time till their detections on Earth. The knowledge of the
mass distribution of sources of gravitational waves can be used to infer cosmological
parameters in the absence of redshift measurements obtained from electromagnetic
observations [35–37]. This is a strong invitation to consider modifications of the law
of gravity over large astrophysical scales.

Black holes and compact stars and gravitational waves are amongst the most
spectacular predictions of general relativity. It is therefore natural to use them
as probes of the most fundamental principles of Einstein’s theory [38, 39]. The
gravitational-wave event constrain a plethora of mechanisms associated with the
generation and propagation of gravitational waves, including the activation of scalar
fields [40], gravitational leakage into large extra dimensions [41], the variability of
Newton’s constant [42,43], the speed of gravitational waves, their propagation [44],
gravitational Lorentz violation and the strong equivalence principle [45] and higher-
derivative corrections [46]. The LIGO Scientific Collaboration and the Virgo Collab-
oration have verified that the observations are consistent with Einstein’s theory of
gravity, constraining the presence of certain parametric anomalies in the signal [37].
However, the true potential for gravitational-wave detections to both rule out ex-
otic objects and constrain physics beyond General Relativity is severely limited by
the lack of understanding of the coalescence regime in almost all relevant modified
gravity theories.
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Current predictions for gravitational-wave signals are based on a variety of com-
plementary theoretical approaches: the weak field and small velocity expansion in
the inspiral regime, numerical relativity for the merger, and the quasi-normal modes
for the relaxation of the final black hole. They have been used for analysing suc-
cessful detections, but they have their limitations. Astrophysical evidence suggests
that black holes can have a variety of intrinsic angular momenta, including close to
maximally allowed values. The presence of spin can lead to qualitative changes in
the dynamics of a binary system, such as the orbital-plane precession when the spins
are not aligned with the orbital angular momentum. Such an effect would lead, in
particular, to a modulation of the amplitude, frequency and phase of the observed
gravitational-wave signal.

For this, we need to produce accurate theoretical gravitational waveform tem-
plates. We have to clarify how much can be understood from exact theoretical com-
putations. We have to answer the questions about how much we understand gravity
in the weak and strong coupling regimes. And whether we can learn about gravita-
tional physics beyond Einstein gravity.

1.5 Dynamics of massive binaries

Einstein’s theory of gravity minimal coupled to matter fields is given by the Einstein-
Hilbert action

SEH =

∫
d4x
√
−g

[
c3

16πGN

R + gµνTmatter
µν

]
. (1)

which encodes the classical dynamics of the space-time metric gµν with µ, ν =
0, 1, 2, 3. There g = det(g) and R is the Ricci curvature (see [47,48] for instance)

R = gµνgλκRµνλκ, Rλ
µνκ =

∂Γλµν
∂xκ

−
∂Γλµκ
∂xν

+ ΓηµνΓ
ν
κη − ΓηµκΓ

λ
νη (2)

with the Christoffel symbols Γλµν = 1
2
gλκ
(
∂gκµ
∂xν

+ ∂gκν
∂xµ
− ∂gµν

∂xκ

)
, and Tmatter

µν is the

stress-tensor for matter minimally coupled to the metric. We will be using the mostly
minus metric (+ − −−). The strength of the gravitational force is set by Newton
constant GN . The speed of light is c which we will set to 1 from now.

The variation of this action with respect to the metric gives (see [47, 48] for
instance)

Rµν −
1

2
gµνR = 8πGNT

matter
µν (3)

where the Ricci tensor is given by Rµν = Rµνλκg
λκ.

Solving this equation of motion is a difficult task because of the non-linearity
of the gravitational interaction. The Schwarzschild black hole solution is an exact
solution in four dimensions in vacuum with Tmatter

µν = 0 and reads in the standard
form

ds2 =

(
1− 2GNM

r

)
dt2 −

(
1− 2GNM

r

)−1

dr2 − r2(dθ + (sin(θ))2dφ2). (4)

We will show how to recover this metric using effective field theory methods in
Section 4.
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Two massive binaries (black holes or neutron stars) will attract gravitationally
until they will merge. During the inspiral phase the system slowly loses energy
through gravitational radiation. In this regime the kinetic energy is of the same
order as potential energy so that v2 ∼ GNM/r where v is the relative velocity
between the two binaries, r the relative distance and M the total mass of the system.
One can solve the equation of motion in perturbation in powers GN and v/c � 1
and computes the deviation from Newtonian dynamics by treating the sources non-
relativistically. This is the post-Newtonian expansion initiated in [49] (see [48, §9]
for some introduction). Although this historical approach has been pushed to quite
some high order in GN and the relative velocity v/c [50–53]. This approach has been
described by Damour’s contribution to a previous Séminaire Poincaré [54].

This approach has some important shortcomings. The fact that one performs
a small relative velocity expansion v � c forbids studying the ultra relativistic
regime where v ' c which brings crucial insight on the nature of the gravitational
radiation (see for instance for a recent review on the modern approach [55] to this
question). Another crucial issue is the treatment of the diverging integrals. Some
divergences arise from the point-like approximation of the source and are familiar
ultraviolet problems, but these divergences are mixed with infrared divergences from
the propagation long range effects of the gravitational interaction.

For the third generation of gravitational waves detectors the majority of the cy-
cles in the detector’s band will occur during the inspiral phase. Therefore, building
a framework that delivers analytic expressions for the classical gravitational observ-
ables in a post-Minkowskian expansion to high-loop orders is very much needed.

Different lines of approaches based on effective field theories have been pro-
posed for computing analytically the inspiral phase the binary systems. A first ap-
proach is the non-relativistic general relativity formalism of [56–58] that uses an
effective field theory to model the gravitationally bound binary system as point-like
massive particles coupled to the gravitational field. This approach valid for widely
separated massive objects can have spinning objects. Integrating out the suitably
non-relativistically decomposed graviton field in the path integral yields a Feynman
diagrammatic expansion for the classical effective potential of the binary system
and associated gravitational radiation [52, 56–59]. This is a reformulation of the
post-Newtonian expansion inspired by techniques and method effective field theory
in particle physics (in particular the small velocity expansion for computing the po-
tential between in heavy quarks in QCD). This approach has led to a clarification in
the treatment of the short distance (ultraviolet) and long distance (infrared) diver-
gences in the post-Newtonian expansion thanks to the natural separation of scales
in the problem.

These methods have seen a rapid development thanks to the adaptation of meth-
ods for evaluating amplitude in particle physics to the gravitational case. This text is
not an exhaustive review of this rapidly developing field, we refer to the following re-
views for the effective field theory methods for the post-Newtonian expansion [52,60],
the world-line formalism5 applied to classical gravity [56,58], scattering amplitudes
for post-Minkowskian expansion [55, 62–66] and effective field theory for quantum
gravity [18,19,67].

5It has been shown [61] that the world-line formalism is equivalent to the scattering amplitude we will not discuss
this further.
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2 Einstein gravity as an effective field theory

In this text we present the approach consisting in embedding the classical Einstein
theory of gravity into a quantum gravity framework where the Einstein-Hilbert
action (1) is only the first terms of a low-energy effective action

Seff =

∫
d4x
√
−g

[
R

16πGN

+ gµνTmatter
µν + Lcorrections

]
. (5)

The contributions Lcorrections arise from extension of Einstein gravity induced either
by high-energy quantum corrections from a high-energy completion like string theory
or new interactions from extra massless fields yet undetected.

This approach is based on the idea that long range interactions in gravity can be
described by a low-energy effective field theory, even if the high-energy behaviour
of quantum gravity is still unknown [18, 19, 67]. Although the status of the high-
energy behaviour of quantum gravity is still open, considering effective field theory
of gravity at low energy does not pose a problem. One can safely extract low-energy
physics from the quantization of the gravitational interactions observables that are
independent of the high-energy behaviour. We quote J. D. Bjorken in [68] who argues
for this approach

I also question the assertion that we presently have no quantum field
theory of gravitation. It is true that there is no closed, internally consistent
theory of quantum gravity valid at all distance scales, But such theories are
hard to come by, and in any case, are not very relevant in practice. But as
an open theory, quantum gravity is arguably our best quantum field the-
ory, not the worst. Feynman rules for interaction of spin-two gravitons have
been written down, and the tree-diagrams (no closed loops) provide an ac-
curate description of physical phenomena at all distance scales between
cosmological scales, down to near the Planck scale of 10−33 cm. The diver-
gent loop diagrams can be renormalized at the expense of an in-principle
infinite number of counterterms appended to the Einstein-Hilbert action.
However, their effects are demonstrably small until one probes phenomena
at the Planck scale of distances and energies

One way of characterizing the success of a theory is in terms of band-
width, defined as the number of powers of ten over which the theory is
credible to a majority of theorists (not necessarily the same as the domain
over which the theory has been experimentally tested). From this view-
point, quantum gravity, when treated—as described above—as an effective
field theory, has the largest bandwidth; it is credible over 60 orders of mag-
nitude, from the cosmological to the Planck scale of distances.

We will assume that the effective field theory satisfies the standard require-
ments of locality, unitarity and Lorentz invariance, and of course that the theory is
diffeomorphism invariant (i.e. we have the symmetries of General relativity). The
low-energy degrees of freedom are the massless graviton (from the Einstein-Hilbert
term in (5)) and the usual massive matter fields coupled minimally as in (5). Since
we will only be interested in the long distance regime (the infrared regime) we will
throw away any contributions that diverges at high-energy. That will allow use to
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quantum gravity techniques at loop order extending the computational power ad-
vertised by Bjorken to the loop expansion.

One important application of this idea is that the classical gravity contributions
to the two-body interaction, like the classical post-Minkowskian expansion needed
for the inspiral phase of gravitational-wave physics, are only sensitive to low-energy
degrees of freedom, as long as the energy transfer is small compared to the classical
scale of the problem set by the masses of binary system.

We can then use the formalism of quantum field theory and capitalize on
the methods developed in particle physics for analytically computing the post-
Minkowskian expansion of binary systems. Traditional perturbative (off-shell) quan-
tum field theory calculations in gravity are far from optimal computation-wise. Di-
rect computation from Feynman diagrams is notoriously complex and tiresome due
to the complication from tensor calculus. Stimulated by early examples of grav-
ity scattering amplitude computations [69–71] and [72,73], variety of dedicated ap-
proaches [52,57,58,62,64–66,74,75] have been developed and this has been a catalyst
for new ideas in connecting Einstein gravity to quantum scattering amplitudes.

In the rest of this text we will explain how one can derive various classical
gravity observables realizing the suggestion by Kovàcs and Thorne in [20] to use
quantum theory for deriving

• The relativistic two-body potential in Section 3

• Black-hole metrics in Section 4

• Scattering angle in Section 5

• Long-range quantum corrections from the effective field theory in Section 6

One advantage of this approach is that the framework that will be presented
in the rest of this text is not restricted to four dimensional physics, but it can be
applied to gravity in higher dimensional space-time. This could be important as a
step to understand why our four dimensional world is special. As well, the formalism
can include any modification of Einstein gravity as long as these modifications are
compatible with the locality and unitarity of field theory and respect diffeomorphism
invariance.

We will therefore present an effective field theory point of view from the compact
binary system dynamics. We will show how this framework can lead to accurate
theoretical gravitational waveform templates and by using effective field theories of
gravity, we can use gravitational wave observations to study gravity in both the
weak and strong coupling regimes, and to search for evidence of new physics beyond
general relativity.

We will model black-hole gravitational scattering by massive point particles.
For the case without spin, see, for instance [76–90]. Current state of the art for
such computations is [91–93] reaching fourth post-Minkowskian order while the fifth
post-Minkowskian order approached in the probe limit [94]. While our principal
emphasis here will be the non-spinning amplitude-based computations, there are
also significant improvements for spinning black holes, see, e.g., [95–113] and some
based on the world-line approaches, e.g., [113–118].



Gravité Quantique, Vol. XXIV, 2023 The symphony of gravity 127

3 Classical gravity from quantum gravity

We explain how classical physics emerges from quantum scattering in the regime
when the energy transfer is small compared to the mass or the energy of the source.

We are interested in extracting physical observables from the gravitational in-
teractions,6 between two massive body of masses mi and spin Si with i = 1, 2
interacting via the exchange of massless spin-2 graviton [14–17,121]

p2, m2 p′2, m2

p1, m1 p′1, m1

The classical scattering matrix M(p1, p2, p
′
1, p
′
2) depends on the relativistic factor

energy γ := p1 ·p2/(m1m2) = 1/
√

1− (~v/c)2 where v is the relative velocity between
the two massive objects, the momentum transfer (p1 − p′1)2 =: ~q 2. At a given order
in perturbation one gets the exchange of gravitons (curly lines) between massive
external matters (solid lines)

In the case of absence of radiation in the final state the two-body scattering
matrix can be expanded in perturbation

M(p1, p2, p
′
1, p
′
2) =

∞∑
L= 0

GL+1
N ML(γ, q2). (6)

where ML(γ, q2) is the Lth post-Minkowskian contribution at the order GL+1
N in

Newton’s constant, and it has the polynomial mass dependence

ML(γ, q2) =
m2

1m
2
2

q2+
(2−D)L

2

L∑
i=0

cL−i+2,i+2(γ)mL−i
1 mi

2. (7)

The classical result is finite in D = 4, but at intermediate state of the computation
infrared pole appear, but they do not contribute to the observables. In the case of
radiation as will be discussed later the matrix elements of the observables still have a
polynomial dependence, but the expression has a different expansion in the masses,
and it is not only a function of the relativistic factor γ due to asymmetry induced
by the radiation on the external lines.

The Klein-Gordon equation for the propagation of a massive scalar field reads(
�−

(mc
~

)2
)
ϕ(t, ~x) = 0, (8)

where � = ∂2
t −

∑3
i=1 ∂

2
xi

is the D’Alembertien therefore in quantum mechanics the
mass of the field appears in the combination of its inverse Compton wave-length
mc/~. As well the momenta entering the quantum scattering are the wave-numbers
q = ~q.

6One could as well include electro-magnetic interactions as considered in [119] or standard model contributions
as in e.g. [120] but here we will only consider the exchange of the graviton and focus on the gravitational sector. We
will return to the effect of extra massless fields in Section 6.
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A traditional argument (see for instance [122]) gives that the L-loop contribu-
tion is of order ML(γ, q2) = O(~L−1). A different behaviour emerges when keeping
fixed the classical momentum q = q/~ and taking both the ~ → 0 and the small
momentum transfer q → 0 limit [74, 123, 124]. The L-loop two-body scattering am-
plitude has the Laurent expansion around four dimensions

ML(γ, q, ~) =
M(−L−1)

L (γ,D)

~L+1|q|
L(4−D)

2
+2

+ · · ·+ M(−1)
L (γ,D)

~|q|
L(4−D)

2
+2−L

+O(~0). (9)

The full quantum amplitude contains three types of contributions:

1) the term of order 1/~r with L + 2 ≤ r ≤ 2 that are more singular than the
classical piece in the ~→ 0 limit.

2) the classical piece of order 1/~ from which the classical Einstein gravity contri-
bution is extracted. It showed the presence of a classical piece in the quantum
gravitational two-body amplitude at one-loop [69], as articulated as an all order
statement in [123]. The expansion in (9) is unusual, but this is a natural when
considering a huge external mass expansion of the two-body gravitational scat-
tering. At the L+ 1 post-Minkowskian order, the two-body scattering amplitude
between two massive particles have the following mass dependence given in (7).
This classical contribution emerges from the 1/~ piece of the quantum amplitude
in (9) remembering that the mass dependence in quantum field theory appears as
the Compton wave-length mc/~. Expressing the classical contribution by making
this explicit gives

ML(γ, q2, ~) = · · ·+ m2
1m

2
2

q2+
(2−D)L

2

~L−1GL+1
N

∑
i

(m1c

~

)L−i (m2c

~

)i
︸ ︷︷ ︸

=
ML(γ,q2)

~

+ · · · (10)

Therefore the polynomial mass dependence of the classical amplitude in (7) ex-
pected for the conservative part of the scattering angle [78, 125] arises consis-
tently from the classical limit of the quantum amplitude. The q2 dependence of
the classical contributions are exactly what one anticipates to contribute to the
three-dimensional potential at the L+ 1 post-Newtonian order since

GL+1
N

∫
d3~q

eiq·~r

|q|2−L
∝
(
GN

r

)L+1

. (11)

The expansion in (9) indicates that a given ~ order has a prescribed analytic de-
pendence in q2. We utilize this to elucidate the classical contribution from specific
unitarity cuts [74]. The extraction of the classical part has been since system-
atized using a heavy-mass effective theory approach [90,126], or the velocity cut
formalism [87,88,94].

3) the quantum corrections of order ~r (with r ≥ 0) leads to quantum gravity
corrections to the classical Einstein gravity results [127].

All these contributions are constrained by the unitarity of the S-matrix as we will
explain in Section 5.3. We illustrate in sections 3.1 and 3.2 how the small ~ → 0
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expansion arises from tree-level and one-loop amplitude and how the classical piece
of the scattering amplitude can be simply recovered.

There is a systematic procedure for connecting the classical contribution of
order ~−1 of the scattering amplitude in perturbative gravity with post-Minkowskian
potentials in classical General Relativity.

Assuming the existence of a relativistic one-particle Hamiltonian of only particle
states describing what in bound-state problems is known as the Salpeter equation,

HPM(r, p) =
√
p2 +m2

1 +
√
p2 +m2

2 + V (p, r) (12)

with in the centre-of-mass frame the momenta of the scattering particle are parametrized
as p1 = (E1, ~p), p2 = (E2, ~p

′), p′1 = (E1,−~p) and p′2 = (E2,−~p′) with |~p| = |~p′|.
The relativistic potential V (p, r) has an expansion in the powers of Newton’s

constant V (p, r) =
∑

n≥1G
n
NVn−PM(p, r) where the nth post-Minkowskian poten-

tial sums an infinite number of post-Newtonian contributions in the small velocity
expansion v/c� 1, as VL+1−PM(p, r) =

∑
n≥0 cL,n(r)vn, with p = p1 − p′1 = (E, v).

The position space potential is obtained by

V (p, r) =

∫
d3q

(2π)3
eiq·r〈p|V |p′〉 (13)

with the Lippmann-Schwinger equation connecting the scattering matrix elements
to the potential

〈p|T̂ (z)|p′〉 = 〈p|V̂ |p′〉+

∫
d3k

(2π)3

〈p|V̂ |k〉〈k|T̂ (z)|p′〉
z − Ek

(14)

and use the crucial relation

lim
ε→0
〈p|T̂ (Ep + iε)|p′〉 =M(p, p′) (15)

which provides the link to the conventionally defined scattering amplitude M in
quantum field theory restricted to the particle sector.

The scattering amplitude approach completes the post-Newtonian computations
by providing information beyond its regime of validity and leads to surprising results
connecting the conservative part and gravitational radiation effects [73, 81, 83–87,
128]. It gives a new perspective on the traditional methods [52,53,57,129,130] used
for computing the gravitational-wave templates. This approach allows connecting the
re-summed post-Newtonian results [77,79,91] and the high-energy behaviour [82,85].
We can then explore the behaviour of the post-Minkowskian expansion for higher-
dimensional gravity. One can as well consider higher derivative corrections induced
from string theory for instance, and study their effects on the gravitational-wave
signals [131–133] or various quantum effects [127] induced from the higher-order
terms in the ~ expansion in (9).

3.1 The relativistic potential at the first Post-Minkowskian order

We illustrate the emergence of the classical and quantum pieces at tree-level order.
The tree-level scattering between two massive fields has the following ~ expan-

sion
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M0(γ, q2, ~) = ~q

m1,p1

m2,p2

m1,p′1

m2,p′2

= −16πGNm
2
1m

2
2 (2γ2 − 1)

~|q|2
+ ~4πGNp1 · p2.

(16)
In this expression, the contribution GNm

2
1m

2
2(2γ2 − 1) is the classical first post-

Minkowskian matching the results from general relativity see e.g. [128], and the
higher order quantum correction ~p1 · p2 due to the contact term as mandated by
the full quantum amplitude. This corresponds to short distance interaction. Since
we are only interested into the long range effect these contributions are negligible.

Taking the three-dimensional Fourier transform using∫
ei~r·~q|q|α dD~q

(2π)D
=

(2π)1−D

2

Γ
(
α+D

2

)
Γ
(

2−α−D
2

) (2

r

)α+D

(17)

From this we deduce the relativistic invariant potential at the first post-Minkowskian
order

V1PM(p, r) =
1

E1E2

GNm
2
1m

2
2(1− 2γ2)

r
(18)

where Ei is the energy of the particle i.

3.2 The relativistic potential at the second Post-Minkowskian order

In reference [71], we elucidated that generalized unitarity is an excellent tool to calcu-
late terms that resemble long-range contributions in amplitudes. Such non-analytic
terms provide us with classical scattering potentials in theories such as QED, gravity,
and quantum modifications. Since we are exclusively interested in non-polynomial
contributions, we are not required to generate the full amplitude. Identifying those
terms in the amplitude is adequate for classical and leading quantum corrections.
Thus, a pathway is established to streamline such computations. At one-loop order,
we fetch coefficients corresponding to 1/

√
−q2 and log(−q2) terms in the amplitude

from on-shell unitarity. Following the approach provisioned in [134], this can, e.g.
be done through evaluating the phase-space integrals by reinstating the off-shell cut
propagators with on-shell cut conditions in numerators.

Formally at one loop, we thus have to consider the cut associated with the integral
expression

iM1−loop
∣∣
disc

=

∫
dD`

(2π)D

∑
λ1,λ2

M tree
λ1λ2

(p1, p
′
1,−`

λ2
2 , `

λ1
1 )(M tree

λ1λ2
(p2, p

′
2, `

λ2
2 ,−`λ11 ))∗

`2
1`

2
2

∣∣∣
cut
,

(19)
Here we have the cut conditions `2

1 = `2
2 = 0, and we sum over all feasible physical

graviton helicity arrangements across the cut: λ1 and λ2. Box, triangle, and bubble
graph topologies supply the basis for the quantum and classical contributions at one
loop. In the cut, we can directly pinpoint the integral functions and thus isolate the
coefficients for the non-analytic terms we are pursuing. In [88], we separated the
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classical non-analytically contributions by evaluating the triple cut and recognizing
the coefficients for the two-loop basis of integral functions. We expand at one-loop
order, the full quantum two-body scattering amplitude on the standard basis of
scalar one-loop integrals in four dimensions

M1 =
i16π2G2

Nm
2
1m

2
2

E1E2

(
3
(
1−5γ2

) (
m2

1I. +m2
2I/
)
+4m2

1m
2
2

(
1−2γ2

)2
(I� + I./)+· · ·

)
,

(20)
where E2

i = ~p2
i +m2

i with i = 1, 2 is the energy of the particle i = 1, 2. The expression
contains the massive scalar triangles, which have the large mass expansion exhibiting
the classical 1/~ term [69,74,123]

I. = − i

32m1

1

~|q |
+ · · · , I/ = − i

32m2

1

~|q |
+ · · · (21)

and the scalar box and cross-box integrals

I� =
i

16π2~2|q |2

(
− 1

m1m2

+
m1(m1 −m2)

3m2
1m

2
2

+
iπ

|p|(E1 + E2)

)(
2

3− d
− ~2 log |q|2

)
+ · · ·

I./ =
i

16π2~2|q |2

(
1

m1m2

− m1(m1 −m2)

3m2
1m

2
2

)(
2

3− d
− ~2 log |q|2

)
+ · · ·

(22)

putting everything together, we get that expansion of the total quantum one-loop
amplitude read

M1(γ, q2, ~) =
π2G2

Nm
2
1m

2
2

E1E2

[
−

3
(
1− 5γ2

)
2~|q |

(m1 +m2)

+
im1m2

(E1 + E2)

4
(
1− 2γ2

)2

|~p |
( 2

3−d − ~2 log |q|2)

π~2|q|2

]
+ · · · . (23)

This expression contains

• at order 1/~2 a contribution given by the square of the classical tree-level con-
tribution from (16). This piece we need for the exponentiation of the S-matrix
in (56) as detailed in [89].

• At order 1/~ the classical second post-Minkowskian contribution [74] that
matches the classical second post-Minkowskian result for generic masses.

• A quantum piece of order ~0 which is a long-range infrared quantum gravity
effect. Because this is the first quantum correction to the classical result, the
value of the quantum gravity-induced correction is universal and independent
of the ultraviolet regularization [71,127].

In order to consider a post-Minkowskian potential at second order in G2
N , we

will need to consider a contribution coming from the iterated tree-level amplitude,
as dictated by (14)

V2PM(p, q) =M1−loop(p, p′) +MIterated(p, p′) (24)
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MIterated(p, p′) ≡ −
∫

ddk

(2π)d
Mtree(p, k)Mtree(k, p′)

Ep − Ek + iε
. (25)

The imaginary part of this which arises from the box and crossed-box integrals
is the infrared divergent Weinberg phase [135]. By restoring the ~-counting, one sees
that it scales as ~−1, a behaviour dubbed super-classical in [124]. We will show
below that it cancels in the properly defined potential, a fact already noted in the
post-Newtonian expansion [136].

MIterated =
iπG2

N

(E1 + E2)E1E2

4c2
1

|~p|
(log |~q|2 − 2

3−d)

|~q|2

+
2π2G2

N(E1 + E2)

E2
1E

2
2 |~q|

(
c2

1(E1E2 + E2
1 + E2

2)

2E1E2(E1 + E2)2
− 4c1p1 · p3

)
(26)

The second-order post-Minkowskian potential in momentum space is thus given by

V2PM(p, q) =M1−loop +MIterated (27)

leading to

V2PM(p, q ) =
π2G2

N

E1E2|~q |

[
1

2

(
c.
ma

+
c/
mb

)
+

2(E1 + E2)

E1E2

(
c2

1(E1E2 + E2
1 + E2

2)

2(E1 + E2)2E1E2

−4c1p1·p3

)]
(28)

or, in coordinate space,

V2PM(p, r) =
G2
N

r2

1

E1E2

[
1

4

(
c.
ma

+
c/
mb

)
+

(E1 + E2)

E1E2

(
c2

1(E1E2 + E2
1 + E2

2)

2(E1 + E2)2E1E2

−4c1p1·p3

)]
.

(29)
This agrees with what has been previously obtained in ref. [75]. As expected on phys-
ical grounds, the imaginary part which is composed of super-classical and infrared
divergent pieces has cancelled, leaving a finite and well-defined post-Minkowskian
potential at d = 3. That such cancellation had to occur was expected on physical
ground, since the imaginary part clearly cannot affect classical motion.

4 Classical black holes metrics

Black-hole solutions are a perfect play ground to validate the formalism of deriving
classical gravity from quantum scattering amplitudes. This also opens new avenues
for studying black holes in generalized theories of gravity.

In 1973 Duff analysed [137] the question of the classical limit of quantum grav-
ity by extracting the Schwarzschild back hole metric from quantum tree graphs to
G3
N order. This was a consistency check on the way classical Einstein’s gravity is

embedded into the standard massless spin-2 quantization of the gravitational inter-
actions.

By evaluating the vertex function of the emission of a graviton from a particle
of mass m, spin S and charge Q, in d dimensions

m1,p1

m1,p′1

q = −i
√

32πGN

2

∑
l≥0

〈T (l)µν(q2)〉εµν (30)
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with the action

S =

∫
dd+1x

√
−g
(

R

16πGN

+
1

2
gµν∂µφ∂νφ−

1

2
m2φ2

)
. (31)

one can extract the metric of physical black holes [138]

• Schwarzschild black hole: Scalar field S = 0, mass m [56, 70,139,140]

• Reissner-Nordström black hole: Scalar field S = 0, charge Q, mass m [119]

• Kerr-Newman black hole: Fermionic field S = 1
2
, charge Q, mass m [119,139]

At each loop order we extract the l-loop contribution to the transition density of

the stress-energy tensor 〈Tµν(q2)〉 =
∑

l≥0〈T
(l)
µν (q2)〉

iM(l)
3 (p1, q) = −i

√
32πGN

2
〈T (l)µν(q2)〉εµν , (32)

where εµν is the polarization of the graviton with momentum q = p1 − p2 is the
momentum transfer.

The scattering amplitude computation is not done in the harmonic gauge coordi-
nates gµνΓλµν(g) = 0, but in the de Donder gauge coordinate system [17,56,141–143]

ηµνΓλµν(g) = ηµνgλρ
(
∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)
= 0 (33)

the metric perturbations gµν = ηµν +
∑

n≥1 h
(n)
µν satisfy7

∂

∂xλ
hλ(n)
ν − 1

2

∂

∂xν
h(n) = 0 . (34)

The de Donder gauge relation between the metric perturbation and the stress-energy
tensor reads

h(l+1)
µν (~x) = −16πGN

∫
dd~q

(2π)d
ei~q·~x

1

~q2

(
〈T (l)

µν 〉class.(q2)− 1

d− 1
ηµν〈T (l)〉class.(q2)

)
.

(35)

In this relation enters the classical contribution at l loop order 〈T (l)
µν 〉class.(q2) defined

by the classical limit of the quantum scattering amplitude [74, 123, 124] and its
application to black hole solutions [102].

In [140], the Schwarzschild metric up to G4
N obtained in four (d = 3), five

(d = 4) and six (d = 5) dimensions. The Schwarzschild-Tangherlini metric in the de
Donder coordinate system

ds2 =

(
1− 4

d− 2

d− 1

ρ(r, d)

f(r)d−2

)
dt2 − f(r)2d~x2

−

(
−f(r)2 − f(r)d−2 (f(r) + r df(r)

dr
)2

f(r)d−2 − 4d−2
d−1

ρ(r, d)

)
(~x · d~x)2

~x2
(36)

7The harmonic gauge linearized at the first order in perturbation gives (34) with n = 1. The higher-order
expansions of the harmonic gauge differ from these conditions.
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and to the first order the components of the metric are given [140] In four dimensions
(d = 3)8

hdD0 (r) = 1−
2GNm

r
+ 2

(
GNm

r

)2

+ 2

(
GNm

r

)3

+

(
4

3
log

(
rC3

GNm

)
− 6

)(
GNm

r

)4

+ · · · (37)

hdD1 (r) = 1 + 2
GNm

r
+ 5

(
GNm

r

)2

+

(
4

3
log

(
rC3

GNm

)
+ 4

)(
GNm

r

)3

+

(
−

4

3
log

(
rC3

GNm

)
+

16

3

)(
GNm

r

)4

+

(
64

15
log

(
rC3

GNm

)
−

26

75

)(
GNm

r

)5

+

(
4

9
log

(
rC3

GNm

)2

−
24

5
log

(
rC3

GNm

)
+

298

75

)(
GNm

r

)6

+ · · ·

One notices that in this gauge the metric components contains finite-size powers of
log(rC3/GNm) where C3 is the single constant of integration. These logarithms are
generated by the cancellation of the ultraviolet divergences of the scattering ampli-
tudes in (32) regulated by the introduction of higher-derivative non-minimal cou-
plings [56,140,143]. These contributions are finite size effects [52,56,59,133,144–147].
At the level of the metric components, they are reabsorbed in the coordinate change
from the de Donder gauge used for the amplitude computation to the standard
Schwarzschild-Tangherlini metric in spherical coordinates

ds2 =

(
1− 4

d− 2

d− 1
ρ(r, d)

)
dt2 − d~x2 −

4d−2
d−1

ρ(r, d)

1− 4d−2
d−1

ρ(r, d)

(~x · d~x)2

r2
(38)

with

ρ(r, d) =
Γ
(
d−2

2

)
π
d−2
2

GNm

rd−2
, (39)

and the finite-size effects do not affect the static metric.
Several amplitudes based methods have been developed for deriving black hole

metrics, in particular the Kerr metric [63]. Many black holes involved in the pro-
duction of gravitational waves are Kerr black, and the inclusion of the angular
momentum (classical spin) of the black hole is important [62].

5 Classical scattering angle

The scattering angle is an essential observable for connecting the scattering regime
presented in the previous section with the bound-state region describing the inspiral
phase of the binary system. The scattering angle is the main link for connecting the
scattering amplitudes to the dynamics of the two-body system. It has been derived
in many independent methods in different regimes [79,81,84–86,114,118,148,149].

We start by discussing the scattering angle from classical general relativity for
the conservative sector, and we then show how to extend it to include radiation.

5.1 Radial action

In the conservative sector the total energy E given by the Hamiltonian (12) and
angular momentum J are conserved quantities so that the total momentum in the

8Similar results are obtained in higher dimensions where we matched the Schwarzschild-Tangherlini up to the
order G4

N .
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centre-of-mass can be decomposed as p(r, E)2 = p2
r(r, J, E)− J2/r2. The Hamilton-

Jacobi equations applied to the principal function

S(r, ϕ; J,E) = Jϕ+

∫
pr(r; J,E)dr (40)

leads to the radial action [47,72,150]

Sradial(J,E) =

∮
pr(r;E, J)dr =

1

π

∫ r+

r−

√
p2(r, E)− J2

r2
dr (41)

where the integration is between the root of p2(r, E) − J2

r2
= 0 with the convention

that 0 < r− < r+. so that the periastron advance is obtained in the bound state
problem E < 0 by

Φ

2π
= −∂Sradial

∂J
(42)

and the scattering angle in the scattering regime E > 0 by a similar formula. The
two regimes are connected by analytic continuation as discussed in [148,149] in the
context of gravitational interaction.

For the Newtonian potential VNewton = −GNm1m2/r the scattering angle takes
a closed form expression

tan

(
χNewton(J,E)

2

)
=
GNm1m2

J

√
M

E −M

√
m1m2

2(m1 +m2)2
. (43)

In the post-Minkowskian expansion no closed form formula is known, but the
scattering angle can be expanded powers of GN [72, 128,148,149,151,152]

χPM(J,E)

2
=
∑
n≥1

χ(n)(E)

(
GNm1m2

J

)n
. (44)

Once we have reconstructed the post-Minkowskian Hamiltonian, along the lines
presented above, we can compute the scattering angle in perturbation in GN . Be-
cause at least up to and including third post-Minkowskian order, there exists, in
isotropic coordinates, a very simple relationship between centre-of-mass momentum
p and the effective classical potential V (r, p) of the form [152] and [149]

p(r, E)2 = p2
∞ − V (r, E); V (r, E) = −

∑
n≥1

fn

(
GN(m1 +m2)

r

)n
(45)

where the coefficients fn are directly extracted from the scattering angle

χPM(J,E) =
∑
k≥1

2J

k!

∫ ∞
0

du

(
d

du2

)k  1

u2 + J2

(
V
(√

J2 + b2/p2
∞, E

)
(u2 + J2)

γ2 − 1

)k
 .

(46)
By computing the two-body scattering in perturbation one derives a Lorentz

invariant expression valid in all regime of relative velocity between the two interact-
ing massive bodies. One route to connect the scattering regime to the bound-state
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regime is based on the Effective One-Body (EOB) formalism [153, 154], suitably
adapted from post-Newtonian to post-Minkowskian formulations [72, 73, 128, 155].
Importantly, the relation between the scattering amplitude and the Effective-One-
Body Effective potential in (46) is valid in any space-time dimension and applies to
gravity in higher dimensions [156, 157]. Something that we will comment further in
Section 6.

5.2 The eikonal formalism

It has been proposed in [91] a relation between the scattering amplitude and the
radial action (see [158] for the probe limit case)

iM∝
∫ (

eiIradial(E,J) − 1
)
dJ. (47)

This relation looks similar to the eikonal approach.
The eikonal method is a technique in quantum field theory for relating the

scattering amplitude to the scattering angle [55,82,85,127,159]. For this, one converts
the amplitude to the b-space9 by performing a Fourier transform with respect to the
momentum transfer

ML(γ, b) =
1

4m1m2

√
γ2 − 1

∫
RD−2

dD−2~q

(2π)D−2
ML(p1, p2, p

′
1, p
′
2)ei~q·

~b. (48)

The classical eikonal phase δ(γ, b) is defined by the exponentiation of the S-matrix

1 + iT = (1 + i2∆)e
2iδ(γ,b)

~ . (49)

The eikonal phase has the perturbation expansion

δ(γ, b) =
∑
L≥0

δL(γ, b)GL+1
N , (50)

which is then connected to the ~ Laurent expansion of the scattering amplitude
in (9), through the expansion of the full scattering matrix in b-space

1 + iT = 1 + i
∑
L≥0

GL+1
N ML(γ, b). (51)

Having determined the classical eikonal contribution at a given loop order one can
then evaluate the scattering angle at this order in perturbation [81,85,87,88]

sin
(χ

2

) ∣∣∣
L

= −
√

(p1 + p2)2

m1m2

√
γ2 − 1

∂δL(γ, b)

∂b
. (52)

By plugging the perturbative expansion for the angle in (44) one recovers the link
between the scattering amplitude and the angle described above.

This link between the eikonal phase and the scattering amplitude explains why
the small ~ expansion of the amplitude takes the form given in (9).

9This is not the impact parameter bJ orthogonal to the asymptotic momentum in the centre-of-mass frame. The
relation between the two quantities is bJ = b cos(χ/2) [81,85].
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The expansion of the exponentiation formula in (49) gives the double series
expansion in ~ and GN

e
2iδ(γ,b)

~ =
∑
L≥0

GL+1
N

∑
n1+2n2+···=L

ni≥0

∏
r≥1

(
2iδr−1(γ, b)

~

)nr
(53)

which show that each given order in GN the inverse powers of ~ in (9) are needed
for the exponentiation of the eikonal phase.

Unfortunately, this approach leads to complicated computations. In the first
place, the eikonal exponentiation in (49) is obtained after a careful separation, or-
der by order, of the various terms that go into the exponent and those terms that
remain as prefactor at the linear level. A second complication is that after exponen-
tiation in impact-parameter space one must apply the inverse transformation and
seek from it two crucial ingredients: (1) the correct identification of the transverse
momentum transfer ~q in the centre-of-mass frame and (2) the correct identification
of the scattering angle from the saddle point. At low orders in the eikonal expansion,
this procedure works well, but it hinges on the impact-parameter transformation be-
ing able to undo the convolution product of the momentum-space representation.
When q2-corrections are taken into account it is well-known that this procedure
requires amendments. This motivates why alternative pathways are rooted in the
WKB approximation [89,91,158].

5.3 An exponential representation of the S-matrix

Another approach, introduced in [89], uses an exponential representation of the S-
matrix at the operator level

Ŝ = I +
i

~
T̂ = exp

(
iN̂

~

)
, (54)

with the completeness relation

I =
∞∑
n=0

1

n!

∫ 2∏
i=1

dD−1ki
(2π~)D−1

1

2Ek1

n∏
j=1

dD−1`j
(2π~)D−1

1

2E`j
|k1, k2; `1, . . . `n〉 〈k1, k2; `1, . . . `n| ,

(55)
which includes all the exchange of gravitons for n ≥ 1 entering the radiation-reaction
contributions N̂ rad. With this exponential representation of the S-matrix, we sys-
tematically relate matrix elements of the operator in the exponential N̂ to ordinary
Born amplitudes minus pieces provided by unitarity cuts [89]. This is seen by the
perturbation expansion

N̂0 = T̂0, N̂ rad
0 = T̂ rad

0 ,

N̂1 = T̂1 −
i

2~
T̂ 2

0 , N̂ rad
1 = T̂ rad

1 − i

2~
(T̂0T̂

rad
0 + T̂ rad

0 T̂0),

N̂2 = T̂2 −
i

2~
(T̂ rad

0 )2 − i

2~
(T̂0T̂1 + T̂1T̂0)− 1

3~2
T̂ 3

0 , (56)

and similarly for higher orders. The simplicity of this method seems very appealing
and suggests that it may be used to streamline post-Minkowskian amplitudes in
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gravity by means of a diagrammatic technique that systematically avoids the evalu-
ation of the cut diagrams that must be subtracted, but simply discards them at the
integrand level. This decomposition is in correspondence with the 1/~|q| expansion

of the scattering amplitude in (9). The scattering matrix operator T̂ is related to

the scattering amplitude ML ∝ 1
~〈p1, p2|T̂L|p′1, p′2〉. The tree-level matrix element

for the two-body scatteringM0 ∝ 1
~〈p1, p2|T̂0|p′1, p′2〉 is of order O(1/~). At one-loop

order amplitude decomposes into two pieces

M1 ∝
1

~
〈p1, p2|T̂1|p′1, p′2〉 ∝

1

~
〈p1, p2|N̂1|p′1, p′2〉+

i

2~2
〈p1, p2|T̂ 2

0 |p′1, p′2〉. (57)

By unitarity the coefficient of the O(1/~2) contribution in the scattering amplitude

is 〈p1, p2|T̂ 2
0 |p′1, p′2〉, and the matrix element 〈p1, p2|N̂1|p′1, p′2〉 is given by the classical

piece is of order O(1/~). Therefore, for the classical two-body scattering only the

matrix elements of N̂ are needed. They are extracted from the scattering amplitude
by the velocity cuts introduced recently [87,88] which are a practical way of realizing
the decomposition (57) at the amplitude level. These velocity cuts provide a natural
way to organize amplitude calculations [94].

By construction, the scattering angle is reproduced in perturbation theory.
The completeness relation implies that the two-body scattering contains the multi-
graviton exchanges. Therefore, the result is not limited to what is known as the
potential region of the multi-loop amplitudes [77, 79, 91], but include also radiation
reaction pieces [82, 84,85,87,88].

5.4 Gravitational observables

We now show how to use the previous quantum scattering formalism for evaluat-
ing classical gravitational observables. The KMOC formalism as originally defined
in [124] considers an initial in-state of two massive scalars at time t = −∞,

|in〉 =

∫
dΠp1dΠp2Φ̃1(p1)Φ̃2(p2)e

i
~ bp1 |p1, p2; 0〉 (58)

where the state |p1, p2; 0〉 is a momentum eigenstate of two massive scalars and the
“0” indicates that there is no radiation present at t = −∞. In the classical limit
the wave-functions Φ̃(pi) are chosen to represent two localized scalars separated by
impact parameter bµ. A complete set of states containing an arbitrary number of
gravitons is as described in (55), but the initial state at t = −∞ is taken to be free
of gravitons, as shown.

A change in an observable corresponding to an operator Ô from t = −∞ to
t = +∞ is then [124],

〈∆Ô〉 = 〈in| Ŝ†ÔŜ |in〉 − 〈in| Ô |in〉 = 〈in| Ŝ†[Ô, Ŝ] |in〉 . (59)

Using the linear Born representation of the S-matrix (54) leads to the KMOC for-
mula [124]

〈∆Ô〉 =
i

~
〈in| [Ô, T̂ ] |in〉+

1

~2
〈in| T̂ †[Ô, T̂ ] |in〉 (60)

In the small ~ limit this expression leads to the evaluation of the change in a clas-
sical observable after the delicate cancellations of higher powers of 1/hbar in the
expansion.
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Here we instead explore consequences of using the exponential representation
of the S-matrix. This will lead to a simple and efficient way to extract the change
in a classical observable, including dissipative effects.

In an alternative viewpoint we consider the change ∆Ô of an operator Ô from
t = −∞ to t = +∞ as

∆Ô = Ŝ†ÔŜ − Ô . (61)

which then has to be evaluated between in-states of t = −∞. Inserting the exponen-
tial representation of the Ŝ operator of eq. (54) together with the crucial property

of Hermiticity of N̂ ,

∆Ô = e−
iN̂
~ Ôe

iN̂
~ − Ô . (62)

allows us to rewrite eq. (62) by means of the Campbell identity that expands the
two exponentials as an infinite sum of nested commutators,

∆Ô =
∑
n≥1

(−i)n

~nn!
[N̂ , [N̂ , . . . , [N̂ , Ô]]]︸ ︷︷ ︸

n times

. (63)

This rewriting, which is where we use unitarity of the S-matrix, will play a crucial
role in our all-order proofs because it displays the iterative structure of the KMOC
formalism when combined with the exponential representation. It is convenient to
define

ÂÔn ≡
1

~n
[N̂ , [N̂ , . . . , [N̂ , Ô]]]︸ ︷︷ ︸

n times

. (64)

The nested commutator structure implies the operator relation

ÂÔn = Â
ÂÔn−1

1 = Â
Â·
··
ÂÔ1

1
1 . (65)

Importantly, when we evaluate matrix elements by means of insertions of complete
sets of states, this iterative structure is preserved (since all we do is to insert factors
of unity).

Repeating the steps described in ref. [124], we can insert the above expression
in the KMOC-expression and take the limit of localized massive states. The result
is

〈∆Ô〉(p1, p2, b) =

∫
dDq

(2π)D−2
δ(2p1 · q − q2)δ(2p2 · q + q2)ei

b·q
~ 〈p′1p′2|∆O|p1p2〉 (66)

where p′1 = p1 − q and p′2 = p2 + q. In this form it is clear that a first step is
the evaluation of the matrix element 〈p′1p′2|∆O|p1p2〉, followed by the shown Fourier
transform to b-space.

One noticeable feature of the KMOC-formalism for (non-spinning) black-hole
scattering is that it always entails the evaluation of matrix elements of an operator
(61) between two-particle scalar states. For an observable corresponding to an Her-

mitian operator Ô the corresponding ∆O is clearly Hermitian as well. Two-particle
scalar matrix elements of this ∆O are then real, as follows from time-reversal sym-
metry. The reality of the expectation value is preserved by the insertion of the
completeness relation since it just amounts to the insertion of factors of unity.
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6 Quantum gravity corrections

So far we have discussed the classical gravitational radiation induced by the classical
fluctuation of the space-time metric. When quantum field is considered these waves
become quantized, carrying energy ~ω and spin ±2~.

We have used that at low-energy a massive object, of mass M , behaves as a
classical source interacting gravitationally through the fluctuations of the metric
of the spacetime fabric. At large distance the spacetime differs from flat space by
post-Newtonian corrections organized into a power series in the Schwarzschild radius
2GNM/c2 over the distance r

g00 = 1− 2
GNM

c2r
+ 2

G2
NM

2

c4r2
+ · · · (67)

which have been discussed in the Section 4 on the black hole metric.
The ~ expansion of the quantum scattering amplitudes in (9) contains positive

powers of ~ that are quantum corrections. Some of these corrections are induced
from the low energy part of the theory and are long range non-local effects, that do
not depend on the ultraviolet completion of the theory.

Following the analysis of Section 4, but this time keeping some long-range quan-
tum corrections to this metric (in harmonic gauge) we obtain [139,160–162]

δg00 = ~
62

15π

G2
NM

c5r3
+ · · · (68)

These quantum effects are not sensitive to high-energy gravitational effects because
they arise solely from the quantum uncertainty on the gravitational field surrounding
the massive source.

The logic described above is that of effective field theory. This technique pro-
vides a method for separating the known low-energy physics from the high-energy
physics which may be either unknown or dynamically irrelevant. Indeed, in all of
our fundamental theories we expect changes in the theory at the highest energy.
Effective field theory method allows us to make reliable predictions using only the
low-energy degrees of freedom and works even for theories that are deemed “non-
renormalizable”. In effective field theories we learn to focus on the predictions that
follow from the reliable low energy end and such predictions often are non-local
because of the Uncertainty Principle.

We illustrate how the techniques presented previous can lead to a derivation of
the bending of light from a geodesic motion in the space curved by the Sun, and
infrared quantum corrections.

The technique presented in the previous section applied to the scattering ampli-
tude between a massive scalar of mass M� and a massless particle of spin S of energy
ω has the low-energy limit, for small momentum transfer q2, given by [127,163]

iMtree+1−loop
S ' 1

~
(M�ω)2

4

[ κ2

~q 2
+ κ4 15

512

M�√
−~q 2

+ ~κ4 15

512π2
log

(
−~q 2

M2
�

)
− ~κ4 bu(S)

64π2
log

(
−~q 2

µ2

)
+ ~κ4 3

128π2
log2

(
−~q 2

µ2

)
− κ4 M�ω

8π

i

~q 2
log

(
−~q 2

M2
�

)]
. (69)
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where bu(S) a constant depending on the spin S of the massless particle: bu(0) =
3/40 and bu(1) = −161/120.

The ln ~q 2 term arises from the loop calculation. It corresponds to the non-local
effect and, if translated into a näıve bending angle using the formalism of [127] would
result in

χ ≈ 4
GNM�

b
+

15π

4

(
GNM�

b

)2

+ +
8bu(S)− 48 log(b/b0)

π

~G2
NM�
b3

. (70)

The first two terms in χ reproduces the leading gravitational potential as well as
its first post Newtonian correction to the gravitational potential in (67) computed by
Einstein a century ago. They are organized in increasing powers of GNM�/b. They
arise from the first line of (69), the last line is imaginary and does not contribute
to the observables.

The last term in χ arises from the second line gives the quantum corrections
to the gravitational interaction between the massless field and the massive source
Part of these corrections arise from the uncertainty in the fluctuations of the virtual
massless particles and gravitons. These corrections involve the product of the Planck
length ~ and classical Schwarzschild radius GNM� of the massive object. But there
exists as well a dependence on the spin of the massless particle through the coefficient
bu(S) due to the delocalized nature of a massless field, which induces tidal like effects.

The possibility of embedding Einstein theory of gravity into an effective field
theory framework is important because this open a systematic way of investigating
the causal structure of scattering amplitudes in the eikonal regime including variety
of contributions from quantum fluctuations from the dynamics of particles arising
from either the standard model or from high energy completion [164–166]

For instance the quantum electrodynamics (QED) corrections to the scattering
angle of a charged particle is [167]

δχ =
8GNM�

b

β

e
(lnmb+ γE − ln 2)− 4βGNM�

E2b2
, (71)

which involves the β function for the particle running in the loop. Studying these
effects, assuming analyticity and unitarity of the scattering amplitudes, give positiv-
ity constraints on the effective field theory which represent the imprint of causality
on infrared observables.

7 Conclusion

Einstein theories of gravity has received a lot of experimental and observational
confirmations [4]. But there are many reasons to think that this is not the ultimate
theory of gravity. In this text we have presented an embedding of Einstein theory
of gravity into an effective field theory framework.

It is therefore important to validate our current understanding of the connection
between the quantum scattering amplitudes and classical general relativity in general
dimensions [156,157]. By reproducing the classical Schwarzschild-Tangherlini metric
from scattering amplitudes in four, five and six dimensions, we validate the proce-
dure for extracting the classical piece from the quantum scattering amplitudes. The
method can be applied to derive other black-hole metrics, like the Kerr-Newman and
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Reissner-Nordström metrics by considering the vertex function of the emission of the
graviton from a massive particle with spin and charge [98,100,101,119,139,168–170].

The scattering amplitude approach presented in this work can be applied to
any effective field theory of gravity coupled to matter fields. One can include quan-
tum corrections and examine the impact of quantum effects on the black-hole solu-
tions [139], the effects of modified gravity models [171] or study the impact of higher
derivative contributions [131–133] to the gravitational-wave templates.

The amplitudes computations, being performed in general dimensions, lead to
results that have an analytic dependence on the space-time dimensions. It is remark-
able that in this approach classical gravity physics contributions are determined by
unitarity of the quantum amplitudes [74].

The advantage of this adaption of gravity is that it allows a direct unification
with other fundamental forces at low energies in the context of the standard model.
For instance, we verify the classical equivalence principle at the microscopic level by
considering the scattering of different types of matter in the context of the bending
of light around a huge massive star and demonstrate that the classical scattering
angle is universal, as expected. But assuming unitarity and analyticity of the scat-
tering amplitude lead to constraint on possible corrections to Einstein gravity from
causality [164–166].

The raise of the quantum field theory approach to classical gravity has led to an
improved understanding of the relation between general relativity and the quantum
theory of gravity. This leads to many new exciting developments leading to a better
understanding of the gravitational interactions in a binary system. This provides new
techniques that can be applied to any gravitational effective field theories which have
amplitude description: opening the possibility to search for deviation from Einstein
gravity.
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Gravité Quantique, Vol. XXIV, 2023 The symphony of gravity 143

[5] P. Touboul et al. [MICROSCOPE], “MICROSCOPE Mission: Final Results
of the Test of the Equivalence Principle,” Phys. Rev. Lett. 129 (2022) no.12,
121102 [arXiv:2209.15487 [gr-qc]].

[6] N. Aghanim et al. [Planck], “Planck 2018 results. I. Overview and the cosmo-
logical legacy of Planck,” Astron. Astrophys. 641 (2020), A1 [arXiv:1807.06205
[astro-ph.CO]].

[7] S. G. Turyshev, “Experimental Tests of General Relativity: Recent Progress and
Future Directions,” Usp. Fiz. Nauk 179 (2009), 3034 [arXiv:0809.3730 [gr-qc]].

[8] Fundamental Physics Roadmap Advisory Team, “A ROADMAP
FOR FUNDAMENTAL PHYSICS IN SPACE,” 27 July 2010,
https://sci.esa.int/s/wQdDBZA
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tween Kmoc and Worldline Formalisms for Classical Gravity,” JHEP 09 (2023),
059 [arXiv:2306.11454 [hep-th]].

[62] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon and M. Zeng,
“Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,”
[arXiv:2204.05194 [hep-th]].

[63] T. Adamo, J. J. M. Carrasco, M. Carrillo-González, M. Chiodaroli, H. Elvang,
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Gravité Quantique, Vol. XXIV, 2023 The symphony of gravity 147

[65] D. A. Kosower, R. Monteiro and D. O’Connell, “The SAGEX review on scat-
tering amplitudes Chapter 14: Classical gravity from scattering amplitudes,” J.
Phys. A 55 (2022) no.44, 443015 [arXiv:2203.13025 [hep-th]].
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