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Résumé.

Abstract : We summarize the double copy approach to perturbative gravity.
This formulation is based on the idea that gravity is mediated by massless spin
2 gravitons, and that the complete perturbative interactions can be directly
expressed in terms of products of spin 1 interactions. While equivalent to the
standard geometric formulation of gravity, it is well suited for problems that
can be phrased as perturbative expansions around flat space. We present two
examples where the method has proven useful : high-order studies of the ultra-
violet properties of supergravity theories and high-order calculations relevant
for gravitational-wave physics.

1 Introduction

General relativity, as originally formulated by Albert Einstein, is a geometric
theory formulated in the language of Riemannian geometry. As understood long
ago by Richard Feynman [1], we can instead formulate gravity as a field theory
of massless spin 2 gravitons. From this vantage point the principle of equivalence
and the associated geometry become emergent phenomena in the classical limit.
The idea of formulating gravity in the language closer of field theory was further
advocated by Steven Weinberg, in the preface to his celebrated book on gravitation
and cosmology [2] to emphasize the deep connection between gravitation and the
other forces. This sentiment will echo throughout this lecture, showing that not
only should gravity be thought of as a spiritual cousin of gauge theory, but that
in detail the dynamics of gravity follows directly from gauge theory [3–6]. Gauge
theories describe three of the four known forces, with gravity being the fourth one ;
it is quite remarkable that all four forces can have a unified description. While this
“double copy” formulation is inherently perturbative because it begins with the
notion of spin 2 gravitons in flat space, it offers powerful insight to problems that
fit into this framework. These ideas are most useful in the context of the S-matrix,
which is defined in terms of incoming and outgoing particles in asymptotically flat
space. The associated scattering amplitudes are independent of gauge or coordinate
choices, making it much simpler to identify novel useful structures.

We will focus on two concrete examples : The first is the ultraviolet properties
of supergravity theories and binary dynamics to two compact astrophysical objects
in the context of gravitational-wave physics. There are a number of developments
feed into this : Primary among them is the development of on-shell methods for com-
puting scattering amplitudes. These methods are designed around the notion that
we should focus on gauge-invariant quantities that have physical meaning. On-shell
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recursion [7] allows us to systematically build all tree-level scattering amplitudes in
Einstein’s theory or its supersymmetric extensions, starting only from the gauge-
invariant on-shell three-point interactions. The generalized unitarity method [8–13]
gives a systematic means for obtaining higher-order (loop) amplitudes from simpler
tree amplitudes. A central idea is that gauge and gravity theories can be treated
identically, and more surprisingly that one can obtain gravity scattering amplitudes
directly from gauge-theory ones, without ever passing through the gravitational La-
grangian or equations of motion. The double copy relations between the gravity and
gauge theory were first observed in string theory expressing closed-string (gravity)
tree amplitudes to those of open strings (gauge theory) [3]. The relation between
gravity and gauge theory becomes much simpler when re-phrased in terms of the so
called duality between color and kinematics, also known as BCJ duality [4, 5].

The existence of such relations gives us new ways to think about gravity as well
as to carry out nontrivial high-order calculations. One example is high-order stu-
dies of the ultraviolet properties of (super)gravity theories. Standard power counting
following from the dimensionful nature of Newton’s constant suggests that all point-
like theories of gravity should to be ultraviolet divergent at some sufficiently high
perturbative order. This is the nonrenomalizability of point-like theories of gravity.
Of course, such arguments necessarily assume that all possible hidden symmetries
have been taken into account properly. Otherwise, with unaccounted symmetries
the derived bounds will be too weak, suggesting divergences when none are present.
Conversely, if one were to discover the absence of divergences when there are no
known symmetry reasons, it would strongly suggest the existence of a novel sym-
metry or structure. We can therefore view the problem of determining ultraviolet
divergences in gravity theories as a search for new symmetries that would other-
wise remain hidden. At present the only known means for carrying out the required
multi-loop supergravity calculations are based on the double copy and the generali-
zed unitarity method. This have been used for studies through five loops [14–19]. A
key result of these calculations are the existence of enhanced ultraviolet cancellations
for which are cancellations beyond the standard symmetry explanation. The case of
N = 5 supergravity is especially interesting : it does not diverge at four points at the
four-loop order [18] despite there being no known symmetry mechanism protecting
it [20, 21]. In this lecture we summarize the situation and point out an important
calculation that should be carried out at the fifth loop order.

A second example where these ideas have proven fruitful is for gravitational-
wave physics. This type of physics has risen to prominence because of the remarkable
detection of gravitational waves [22], with a promise to fundamentally transform key
areas in astronomy, cosmology, and particle physics. Moreover the anticipated in-
crease in sensitivity of up to two orders in magnitude as well as sensitivity at much
lower frequencies [23] offers a nontrivial challenge to theorists to produce predictions
that match the unprecedented precision of the detectors. To properly meet the chal-
lenge multiple techniques will be needed to cover the full parameter space. This chal-
lenge has galvanized new work in multiple directions, including a program [24–26]
for understanding the nature of gravitational-wave sources using ideas from quan-
tum scattering amplitudes and effective field theory (EFT) [27]. The connection of
scattering amplitudes to general relativity corrections to two-body interactions has
long been understood [28, 29] and emphasized especially by Damour in Ref. [30].
This new effort utilizes basic tools from scattering amplitudes including generali-
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zed unitarity [8, 9, 11, 13], double-copy relations between gauge and gravity theo-
ries [3–6], and advanced multiloop integration [31–34]. These ideas have been used
in various calculations advancing the state of the art through O(G4) (with G being
Newton’s constant) for spinless gravitationally interacting binaries [25, 26, 35, 36].
(See also Refs. [37–42].) Recent progress suggests that the next order should be
doable as well [43]. The scattering-amplitudes based approach complements tradi-
tional approaches to binary dynamics, such as effective one-body [44], numerical re-
lativity [45], gravitational self-force [46], and the post-Newtonian (PN) approach (see
e.g. Refs [27,37,47–49]). Since it naturally generates expansions at fixed order in G
and all orders in velocity it naturally fits into the post-Minkowskian (PM) [30,50,51]
approach. Here we will outline the methods and give a brief summary of some of
the recent developments.

Although we will not discuss it here there have also been very interesting de-
velopments on understanding the double copy for nontrivial classical solutions and
on understanding how various theories are linked via the double copy. We refer the
reader to recent reviews [6, 52].

2 Double-copy relation between gravity and gauge theory.

Consider the Yang-Mills and Einstein-Hilbert Lagrangians,

LYM = −1

4
F a
µνF

aµν , LEH =
2

κ2

√−gR . (1)

These two Lagrangians have rather different properties. In particular with standard
gauge choices, gauge theories have three- and four-point interactions, while gravity
has an infinite number of contact interactions. Moreover, an inspection of the three-
gluon and three-graviton interactions [53], reveal no simple connection between the
two theories. Nevertheless, the double copy is a statement of precisely such simple
relations in their scattering amplitudes.

The story of the double copy began in string theory. In the early day of string
theory it was understood that at four points closed-string tree amplitudes could be
expressed as a product of open-string amplitudes [54],

M(s, t, u) =
sin(πα′s)

πα′
A(s, t)A(s, u) , (2)

where α′ is the inverse string tension and s, t, u are the usual Mandelstam variables,
s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2, where the pi are the external
momenta. Such relation hold for all string states, including the gluons of the open
string and the gravitons of the closed string. At tree level, Kawai, Lewellen and
Tye (KLT) [3] derived such relations for larger numbers of external particles. An
immediate consequence is that in the low-energy limit where string theory reduced
to field theory, one obtains relations between Einstein gravity and Yang-Mills tree-
level scattering amplitudes for any number of external legs [10].

Subsequently, these relations were simplified using a duality between color and
kinematics for gauge theories [4–6]. To describe this we first need to reorganize
gauge-theory amplitudes. For simplicity here we discuss the case where all particles
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Figure 1 – The Jacobi relation at four points for the three channels labeled by s, t and u. These
diagram represent either color factors or kinematic numerators.

are in the adjoint representation ; the case of fundamental representation particles
works as well [55].

In general, we can write any m-point tree-level gauge-theory amplitude with all
particles in the adjoint representation as,

Atree(1, 2, 3, . . . ,m) = gm−2
∑
i

ni ci∏
αi
p2
αi

, (3)

where the sum runs over the set of m-point L-loop diagrams with only cubic vertices.
These include distinct permutations of external legs. The product in the denominator
runs over all propagators of each cubic diagram. The ci are the color factors obtained
by dressing every three vertex with an f̃abc = i

√
2fabc structure constant, the ni

are kinematic numerator factors depending on momenta, polarizations and spinors
and g is the coupling constant. The form (3) can be obtained straightforwardly,
for example, from Feynman diagrams, by representing all contact terms as inverse
propagators in the kinematic numerators that cancel propagators.

The ci color factors satisfy Jacobi identities. In Fig. 1 the basic four-point iden-
tity is shown, where the diagrams represent color factors obtained by dressing each
vertex with an f̃abc. The duality requires there to exists a way of reorganizing the
diagrams so that the numerators ni satisfy equations in one-to-one correspondence
with the Jacobi identities of the color factors. That is, for each triplet of color factors
satisfying a Jacobi identity, the corresponding numerators satisfy a similar identity :

ci = cj − ck ⇒ ni = nj − nk . (4)

The duality states that there exists representations of the amplitude, such that the
color factors and numerators of the diagrams satisfy the relations. This duality holds
to all multiplicity at tree level in a large variety of theories, including the important
case of supersymmetric extensions of Yang-Mills theory. Fig. 1 displays the Jacobi
relation at four points. The numerator relations are functional equations, depending
nontrivially on the momenta and external polarizations and spinors. Beyond the
four-point tree level, the relations are highly nontrivial and hold only after appro-
priate rearrangements of the amplitudes.

Explicit forms of tree-level amplitudes satisfying the duality have been given for
an arbitrary number of external legs [56,57]. An interesting consequence of the dua-
lity is that color-ordered partial tree amplitudes satisfy nontrivial relations [4, 58],
proven in gauge theory and in string theory [59]. Although we do not yet have a
satisfactory Lagrangian understanding, some progress in this direction can be found
in Refs. [60–63]. A partial understanding of the underlying infinite-dimensional kine-
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Figure 2 – An example of a duality relation satisfied by diagram numerators and color factors
of the three-loop four-point amplitude. In this relation all but one propagator is identical in the
three diagrams.

matics Lie algebra responsible for the duality is found in Refs. [61,63–66], although
a complete understanding is still lacking.

Perhaps more surprising than the duality itself is a related conjecture that once
gauge-theory amplitudes are put into a form satisfying the duality (4), corresponding
gravity amplitudes are obtained simply by replacing the ci color factor in Eq. (3)
with a second copy of a numerator factor ñi [4, 5],

ci → ñi . (5)

That is, the corresponding gravity amplitude i

Mtree(1, 2, . . . ,m) = i
(κ

2

)∑
i

ni ñi∏
αi
p2
αi

, (6)

where κ is the gravitational coupling. The nj and ñj are kinematic numerator factors
from gauge-theory amplitudes, whose underlying theories can be different. The sum
runs over the same set of diagrams with cubic vertices, as for gauge theory in Eq. (3).
The double-copy formula hold, even if only one of the gauge-theory amplitudes has
been put into a form that manifests the duality (4) [5, 60].

The above relations are conjectured to hold at loop level [5] as well. Any m-
point L-loop gauge-theory amplitude with all particles in the adjoint representation
can be written in the form,

AL−loop
m = iLgm−2+2L

∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

njcj∏
αj
p2
αj

, (7)

where the sum labeled by j runs over the set of distinct m-point L-loop graphs with
only cubic vertices, including distinct relabelings of external legs. The factor Sj is
the symmetry factor of graph j that removes overcounts from internal symmetry.
In this representation contact terms are absorbed into graphs with cubic vertices
by multiplying and dividing by appropriate inverse propagators. The integrals are
over L independent D-dimensional loop momenta. The product in the denominator
runs over all Feynman propagators of graph j. As at tree level, the cj are the color
factors of the diagrams, and the nj are kinematic numerators of graph j depen-
ding on momenta, polarizations and spinors. According to the duality conjecture of
Ref. [5], a representation of L-loop m-point amplitudes should exist where kinema-
tic numerators satisfy the same algebraic properties as corresponding color factors
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(4). As a simple example of a look level duality relation, Fig. 2 shows a three-loop
relation that both numerators and color factors need to satisfy. The duality has
been confirmed to hold in numerous cases at loop level in both supersymmetric and
nonsupersymmetric (see e.g. Refs. [5, 5, 16, 57, 67–73]). Nevertheless, it remains a
conjecture. While this complicates its applications at loop level, because the uni-
tarity methods directly builds loop-level amplitudes from tree-level ones where the
duality has been proven to hold, one can still use it as a powerful means for building
loop integrands.

As at tree level, gravity amplitudes can be obtained from gauge-theory ampli-
tudes simply by replacing the color factors with a second gauge-theory numerator
factor, cj → ñj. That is, associated with the conjectured duality between color and
kinematics is a double-copy formula for m-point L-loop gravity amplitudes [5]

Mloop
m = iL+1

(κ
2

)m−2+2L∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

njñj∏
αj
p2
αj

. (8)

The particular gravity theory obtained by the double-copy formula (8) is dictated
by the choice of gauge theories. As at tree level, in Eq. (8) only one of the two copies
needs to satisfy the duality (4) [5, 60]. The other gauge-theory amplitude can be in
another convenient representation arranged into graphs with only cubic vertices.

At sufficiently high loop orders it becomes difficult to find forms of gauge theory
amplitudes that manifest the BCJ numerator relations [74, 75]. For N = 4 super-
Yang-Mills four-point amplitudes this difficulty first occurs at five loops [74]. This
can then greatly complicate the corresponding supergravity calculations because a
simple double-copy procedure no longer holds. For a time the question of whether
one could find BCJ representations of high-loop gauge-theory amplitudes became a
major stumbling block to carrying out five-loop calculations in N = 8 supergravity.
This was solved by introducing the “generalized double copy” [76] where one can
still apply the double copy, aided by a set of correction formulas that give missing
contact contributions in the double copy whenever BCJ duality is not manifest. In
this way, the five-loop four-point integrand of N = 8 supergravity was successfully
constructed [77] and its ultraviolet properties determined [19], as summarized in
Sect. 4.

3 Generalized Unitarity Method

Unitarity has been a useful tool in quantum field theory since its inception. The
Cutkosky rules [78] allow one to obtain the imaginary parts of one-loop amplitudes
directly from products of tree amplitudes. (By imaginary we mean the absorptive
part containing discontinuities across branch cuts.) This is generally substantially
easier than a full diagrammatic calculation because one can greatly simplify the tree
amplitudes before feeding them into cut calculations. Having obtained the imagi-
nary parts, one traditionally uses dispersion relations to reconstruct real (dispersive)
parts, up to additive rational function ambiguities. Here we describe an alternative
integrand-based approach [8, 9, 11–13]. This approach avoids these issues by using
on-shell quantities to directly construct an integrand equivalent the one obtained



Quantum Gravity, Vol. XXIV, 2023 The Double-Copy Approach to Gravity 97

1

2 3

4
← l1

l3→

(a)

l2
l4

1

2 3

4
(b)

→←

Figure 3 – The usual s- and t-channel two-particle cuts of the one-loop four-point amplitude,
indicated by the dashed red lines. The exposed internal lines are all on-shell and integrated over
phase space.

using Feynman diagrams. Because all quantities entering the calculation are on-shell
it can be carried out in a gauge-invariant format.

To explain this approach, consider the s-channel cut of the four-point amplitude
represented pictorially in Fig. 3a. The Mandelstam variables are as usual s = (k1 +
k2)2 and t = (k2 + k3)2. According to the Cutkosky rules, the s-channel cut (with
s > 0 and t < 0) of this amplitude is

−iDisc A4(1, 2, 3, 4)
∣∣∣
s-cut

=

∫
d4−2εp

(2π)4−2ε
2πδ(+)(`2

1) 2πδ(+)(`2
3)

× Atree
4 (−`1, 1, 2, `3)Atree

4 (−`3, 3, 4, `1) , (9)

where `1 = p and `3 = p − k1 − k2, δ(+) is the positive-energy branch of the delta-
function and ‘Disc’ means the discontinuity across the branch cut. Color-ordering
requires us to maintain the clockwise ordering of the legs in sewing the tree ampli-
tudes.

Suppose the amplitude had the form A4 = c ln(−s) + · · · = c(ln |s| − iπ) + · · · ,
where the coefficient c is a rational function. Then the phase space integral (9) would
generate the iπ term but drop the ln |s| term. Since we wish to obtain both types
of terms, real and imaginary, we replace the phase-space integral by the cut of an
unrestricted loop momentum integral [8] ; that is, we replace the δ-functions with
Feynman propagators,

A4(1, 2, 3, 4)
∣∣∣
s-cut

=[∫
d4−2εp

(2π)4−2ε

i

`2
1 + iε

Atree
4 (−`1, 1, 2, `3)

i

`2
3 + ıε

Atree
4 (−`3, 3, 4, `1)

]∣∣∣∣
s-cut

. (10)

In contrast to Eq. (9) which includes only imaginary parts, Eq. (10) contains both
real and imaginary parts. As indicated, Eq. (10) is valid only for those terms with an
s-channel branch cut. Terms without an s-channel cut will in general not be correct,
and need to be determined from other cuts. A key simplifying property of this
formula is that one may continue to use on-shell conditions for the cut intermediate
legs inside the tree amplitudes without affecting the result. Only terms containing no
cut in this channel would change on application of the unitarity. A similar equation
holds for the t-channel cut depicted in Fig. 3b. Combining the two cuts into a
single function, one obtains the full amplitude, up to possible ambiguities in rational
functions.

Cuts are usually taken as including phase-space integrals, but for our purposes it
is simpler to define them as not including the phase-space integration. This procedure
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Figure 4 – The generalized cuts for a one-loop four-point amplitude organized according the
method of maximal cuts. The cuts are organized according (a) maximal, (b) next-to-maximal and
(c) next-to-next-to-maximal cuts. We dispense with the dashed lines to indicate cuts, and leave
the integration for later. The complete set of cuts is obtained from the independent relabelings of
external legs.

generalizes to an arbitrary number of external legs. To construct all terms with cuts
in an amplitude, we combine the contributions from the various channels into a
single function with the correct cuts in all channels. This procedure generalizes to
all loop orders.

An especially useful class of generalized cuts are those that decompose a loop
amplitude into a sum over m tree amplitudes of form,

C =
∑
states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (11)

where the sum runs over all physical states that can cross the cuts. In N = 4 super-
Yang-Mills theory, it is especially useful to consider the maximal cuts [12], where
the maximum number of propagator lines are placed on shell. Other useful classes
are single cuts where only a single internal line is placed on shell [79] or prescriptive
unitarity [80,81] which diagonalizes the method of maximal cuts.

In general, the complete amplitude is determined from a “spanning set” of cuts.
Such sets are found by considering all potential independent contributions to the
integrand that can enter an amplitude (and which do not integrate to zero), based on
power counting or other constraints. One simply needs to ensure that all terms are
non-vanishing in at least one cut that can then be used to determine its coefficient.
In the N = 4 case one can often construct an ansatz for the entire amplitude using
various conjectured properties. Once one has an ansatz, by confirming it over the
spanning set, either numerically or analytically, we fully determine the ansatz.

One spanning set follows from the method of maximal cuts obtained [12] by
starting from “maximal cuts”, where the maximum numbers of internal propagators
are placed on shell. The method of maximal cuts is quite helpful at higher-loop
orders. In this method, the unitarity cuts (11) are arranged in levels according to
the number k of internal propagators that remain off shell. As a simple example,
the next-to-kth-maximaximal cuts NkMC are illustrated for the one-loop four-point
amplitude in Fig. 4 for k = 0, 1, 2 corresponding respectively to the cuts (a), (b)
and (c). We refer to the generalized cut (a) as a maximal cut, cut (b) as a next-
to-maximal cut and (c) as a next-to-next-to-maximal cut. This is an overcomplete
set of cuts in the sense that cut (c) contains terms that are determined in cuts (a)
and (b) and cut (b) contains terms found in cut (a). Each time a cut condition
is released, potential contact terms which would not be visible at earlier steps are
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Figure 5 – Examples of generalized cuts for a three-loop four-point amplitude organized via
the method of maximal cuts. The exposed lines are all on-shell and the blobs represent tree-level
amplitudes.

captured. The process terminates when the only remaining potential contact terms
exceed power counting requirements of the theory (or integrate to zero in dimensional
regularization). It is useful to think of this as an upper triangular organization, where
one first evaluate the maximal cuts, then subtracts out these terms from cut (b) and
then subtract out the cut (a) and (b) terms from cut (c). This way of organizing
the cuts has been used in a variety of applications in QCD [13] and supergravity,
including for studies of ultraviolet properties of N = 8 supergravity through five
loops [14,16,18] and in multiloop calculations of interest for gravitational wave. As
a more complicated example, a variety of cuts organized via the method of maximal
cuts are illustrated for a three-loop four-point amplitude in Fig. 5.

Given a spanning set of unitarity cuts, the task is to find an expression for the
integrand of the amplitude with the correct cuts in all channels. This can be done
either either via an ansatz whose arbitrary coefficients are determined by requiring
that the expression has the correct cuts in all channels, or by systematically merging
the cuts by adding missing pieces as each new cut is computed [82].

The method of maximal cuts can be applied just as well to either gauge or
gravity amplitudes. As illustrated in the first diagram in Fig. 5, at the maximal cut
(MC) level the maximum number of propagators are replaced by on-shell conditions
and all tree amplitudes appearing in Eq. (11) are three-point amplitudes. At the
next-to-maximal-cut (NMC) level, illustrated in the second cut of Fig. 5, a single
propagator is placed off shell and so forth.

With this organization of generalized cuts, the integrands for L-loop amplitudes
are obtained by first establishing an integrand whose maximal cuts are correct, then
adding to it terms so that NMCs are all correct and systematically proceeding
through the nextk maximal cuts (NkMCs), until no further contributions are found.
One straightforward way to implement this is by writing down an ansatz for diagrams
of diagrams, which encompasses all possible terms that can appear in the integrand
with an arbitrary parameter for each distinct term. Where this process completes
is dictated by the power counting of the theory and by choices made at each level.
For example, for four-point N = 4 sYM, maximal cuts are sufficient at one and two
loops. For theories with less supersymmetry one needs deeper cuts. For example at
one-loop in pure gravity one one needs up to N2MC and at two loops one needs up
to N4MC.

Many calculations (see e.g. Refs. [14, 16–18, 68, 69, 75, 83]) find it convenient
to organize the integrands in terms of diagrams with purely cubic vertices. Re-
presentations with only cubic diagrams have certain advantages : they are useful
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for establishing minimal power counting in each diagram, and the number of dia-
grams used to describe the result proliferate minimally with the loop order and
multiplicity. A disadvantage is that ansätze are required for imposing various pro-
perties on each diagram, including the desired power counting, symmetry, and the
multiple unitarity cuts to which a given diagram contributes. As the loop order
increases, it becomes cumbersome to solve the requisite system of equations that
imposes these constraints. One strategy for avoiding large systems is to use pres-
criptive unitarity [80,81]. For gravity calculations, the unitarity method is best used
in conjunction with the double copy.

These methods are most effective when the particles are all massless or when
wavefunction renormalization of the external particles is unimportant, such as in the
classical limit. For cases, where the full mass dependence is required these methods
need to be augmented with additional information [84–86] such as from known in-
frared and ultraviolet singularities, because of the appearance of terms such as (mi)

ε

which have no branch cuts in any channel.
For problems involving supersymmetric amplitudes, it can be very advantageous

to use an on-shell superspace to evaluate unitarity cuts [87,88]. On-shell superspaces
provides a convenient means for dealing with all states of the theory simultaneously,
and for carrying out intermediate sums of states crossing cuts. On-shell superspaces
organize the amplitudes according to physical helicity states. N = 4 super-Yang-
Mills has a particularly simple structure because all states can be incorporated into
a self CPT superfield,

Φ(η) = g+ + ηaf+
a +

1

2
ηaηbφab +

1

3!
εabcdη

aηbηcfd− +
1

4!
εabcdη

aηbηcηdg− . (12)

Similar constructions hold also for theories with fewer supersymmetries [89] and for
supergravity theories. The N = 4 superspace was applied by Nair [87] to the maxi-
mally helicity violating amplitudes. The N = 4 super-Yang-Mill maximally helicity
violating amplitudes take the form

AMHV
n (1, 2, · · · , n) =

i∏n
j=1〈j(j + 1)〉 δ

(8)

(
n∑
j=1

λαj η
a
j

)
, (13)

where the ηaj are anti-commuting Grassmann parameters track the contributions
from the different states, In Eq. (13) n+ 1 is to be identified with leg 1, and

δ(8)

(
n∑
j=1

λαj η
a
j

)
=

4∏
a=1

n∑
i<j

〈ij〉ηai ηaj . (14)

The component amplitudes are the coefficients in the η expansion of An, with the
external states identified according to their organization within the superfield, as in
Eq. (12).

While here we do not go into details of super-amplitudes, for our purposes
the key point is that it offers a simple way to track different particles crossing the
unitarity cuts. In the context of unitarity he generalized N = 4 supercut is then
given by simple Grassmann integrations which effectively performs the sum over
states crossing the cuts,

C =

∫ [ k∏
i=1

d4ηi

]
Atree

(1) Atree
(2) Atree

(3) · · · Atree
(m) , (15)
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where Atree
(j) are the tree superamplitudes connected by k on-shell cut legs. Various

efficient methods have been devised for evaluating the supersums that appear in
unitarity cuts [90, 91]. One technical complication is that usually we are interested
in computing loop amplitudes in the context of dimensional regularization, which
is usually best dealt with by using higher-dimensional superspaces [92] and then
dimensionally reducing to four dimensions [93].

4 Ultraviolet properties of supergravity theories

The study of the ultraviolet properties of theories of gravity has a long his-
tory, starting with the seminal work of ’t Hooft and Veltman [94], who showed that
pure Einstein gravity is finite at one loop but divergent in the presence of matter.
Subsequently, pure Einstein gravity was shown to diverge at two loops [95,96]. The
ultraviolet behavior improves with the addition of supersymmetry. By the late 1970s
it was clear that pure ungauged supergravities do not have divergences prior to three
loops [97]. The consensus from studies in the 1980s was that all pure supergravity
theories would likely diverge at the third loop order (see, for example, Ref. [98–100]).
With additional assumptions on the existence of unconstrained superspaces one can
raise the loop order of the predicted potential divergences [101] for N ≥ 5 supergra-
vities. It turns out such unconstrained superspaces do not exist. Nevertheless, as we
shall see, cancellations extend even beyond these optimistic expectations [18].

The situation changed due to the ability to carry out high loop calculations di-
rectly showing finiteness of N = 8 supergravity through four loops [14–16]. This led
to more refined arguments based on supersymmetry and known duality symmetries
reveal that ultraviolet divergences are delayed to surprisingly high-loop orders. In
particular, such arguments show thatN = 8 supergravity is ultraviolet finite through
at least six loops and N = 5 supergravity through three loops [20, 102–105]. A na-
tural question is then whether this is the final story or whether there is more to
learn.

Happily, there are indeed more surprises. So far, the only explicitly calculated
divergence for a pure supergravity is N = 4 supergravity at four loops [17]. The
interpretation of this divergence is, however, complicated by the presence of a U(1)
duality anomaly which might be behind its appearance [106, 107]. Such anomalies
are absent in N ≥ 5 supergravities [108], making it is best to focus on these theories.
Studies of unitarity cuts in D = 4 suggest the interesting possibility that divergences
in N = 8 supergravity may be further delayed [109, 110] in this dimension. The
case of N = 5 supergravity is especially interesting : it does not diverge at four
points at the four-loop order [18] despite there being no known symmetry mechanism
protecting it [20, 21].

Table 1 collects the consensus power counting results suggesting where the first
first valid counterterms and possible divergences can occur in N = 4, 5, 8 supergra-
vity. These constraints includes using extended off-shell superpaces together with
duality symmetries [20,21,102,102,104,105], using the Berkovits pure spinor forma-
lism [111] to fully expose supersymmetry [103], and using maximal cuts [12] of am-
plitudes to expose minimum powers of loop momenta that must appear in covariant
Feynman-like diagrams [18, 112]. Each of these power counts give identical results.
Of course, all assume that all symmetries have been identified and that there are
no further hidden cancellations between diagrams. In the table, D is the space-time
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Theory Counterterm Loop Order divergence

D = 4, Q = 32, N = 8 D8R4 7 unknown

D = 4, Q = 16, N = 4 R4 3 no

D = 4, Q = 20, N = 5 D2R4 4 no

D = 24/5, Q = 32 D8R4 5 yes

D = 5, Q = 16 R4 2 no

Table 1 – Counterterms corresponding to the first potential divergence that satisfy all proven
supersymmetry and duality-symmetry constraints [20,21,102,103,105,114]. The number of super-
charges is Q and D is the space-time dimension. The fourth column shows the results of com-
puting the coefficients of the divergences. In three cases the coefficients vanish and there is no
divergence [18,115,116].

Figure 6 – Sample generalized cuts used in the construction of the five-loop four-point amplitude of
N = 8 supergravity. The exposed lines are all on-shell and the blobs represent tree-level amplitudes

dimensions and Q is the number of supercharges. Cancellations that occur beyond
this cannot be manifested diagram by diagram whenever a covariant diagrammatic
organization is used. Any further cancellations beyond the ones that occur within co-
variant diagrams are by definition enhanced ultraviolet cancellations [18]. For further
details, see the recent review [113].

How do these power-counting symmetry constraints compared to the actual
results obtained by direct calculations of the coefficients of potential divergences ?
As shown in the fourth column of Table 1 enhanced cancellation do indeed exist in
multiple examples. This follows from a series of direct calculations of the divergences
forN = 4, 5, 8 [17–19,115–117] supergravity that have shed considerable light on this
question. These calculations are possible through use of the double copy and method
of maximal cuts as described above in previous sections.

As a nontrivial example, at five loops a few of the cuts used in the calculation
of the ultraviolet properties of N = 8 are illustrated in Fig. 6. Table 2 summarizes
the critical dimension where divergences actually first appear at a given loop order
in N = 8 supergravity, collecting the results of Refs. [15, 16, 19, 83, 98, 117]. The
explicit values of the divergences that appear in the critical dimensions are are best
summarized in terms of vacuum diagrams that encode the UV divergences. For
example the divergences in the critical dimensions for three to five loops is explicitly
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Loops Dc for N = 8 sugra
1 8
2 7
3 6
4 11/2
5 24/5

Table 2 – The critical dimension Dc where ultraviolet divergences first occur in N = 8 supergra-
vity, as determined by explicit calculations [20,21,102,103,105,114].

given by
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(16)

where the universal factor is KG ≡ stuM tree
4 (1, 2, 3, 4). and s = (k1 + k2)2, t =

(k2 + k3)2 and u = −s − t are the usual four-point Mandelstam invariants. The
blue dots on the vacuum diagrams indicate that the corresponding propagator is
squared. Through four loops analytic expressions exist for these integrals ; in any
case, they directly demonstrate a nonvanishing divergence in the indicated critical
dimension. To be well defined these vacuum integrals require a mass regulator ; the
simplest choice is a uniform mass. It is of course quite remarkable that divergences
have simple expressions in terms of vacuum diagrams. Note that the five-loop critical
dimension is D = 24/5, which requires an analytic continuation away from integer
dimension, where the theory can be properly defined.

The most interesting outcome of these explicit calculations is the identification
of enhanced cancellations in various cases. As the fourth column of Table 1 shows,
in three of the listed cases cancellations appear that are not explained by the well
studied power counting arguments, showing that enhanced cancellations do indeed
exist. The case ofN = 4 supergravity inD = 4 does exhibit an enhanced cancellation
at three loops as indicated in the table [115], but by four loops it does diverge [17].
Unfortunately, this theory suffers from a U(1) anomaly, which then brings up the
obvious question of whether the divergence is tied to this. The case of N = 5 su-
pergravity at four loops is probably the most interesting example because it occurs
in D = 4 and it does not have an analogous U(1) anomaly. For N = 5 supergra-
vity, the apparent existence of a valid four-loop D2R4 counterterm [20,21] suggests
that a divergence should appear at four loops. As further explained in Ref. [20],
these counterterms cannot be written as full-superspace integrals, but they do ap-
pear to respect all known standard-symmetries. However, as shown in Ref. [18] and
summarized in Table 1 the potential divergence cancels nontrivially.

By increasing the space-time dimensions, one can lower the loop order at which
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2 3

1 4

Figure 7 – The tree level scattering amplitude for two particles via a graviton. The straight lines
represent massive scalars and wiggly lines are gravitons.

a divergence can first appear. In particular, half-maximal 16-supercharge supergra-
vity in D = 5 exhibits a possible two-loop counterterm invariant under all known
symmetries [114, 114]. This theory does not have an anomaly and is indeed finite
at two loops despite the existence of an apparently valid counterterm. Very in-
terestingly, the cancellation has been directly interpreted as a consequence of the
double-copy structure. [116]. Unfortunately, this argument does not extend easily
beyond one loop. For N = 8 supergravity in D = 4, a counterterm is allowed at
L = 7 loops [102, 102–105], putting it out of reach of currently available methods
for carrying out multiloop calculations [118]. By taking an unphysical dimension of
D = 24/5 for maximal 32-supercharge supergravity, corresponding to N = 8 super-
gravity in D = 4, the loop order where a valid counterterm first appears is lowered
from L = 7 to L = 5 [103]. In this case, the theory does diverge, as suggested
by power counting, but one might wonder if working in an unphysical dimension
might prevent nontrivial cancellations. Indeed, there is strong evidence from uni-
tarity cuts that in D = 4 additional cancellations are present at seven loops and
beyond [109, 110]. Various attempts and associated difficulties for putting tighter
restrictions on the counterterms are found in Refs. [114,119–124].

In light of the intriguing enhanced ultraviolet cancellations in Table 1 an obvious
question is what calculations can be carried out that can help track down their ori-
gin. One possible tactic is to study the cancellations in unitarity cuts along the lines
of Refs. [109,110]. An obvious direct calculation that would be very helpful would be
to determine the coefficient of the potential D4R4 N = 5 supergravity counterterm,
to see whether its coefficient vanishes. This is a particularly interesting calculation
because if finite it would be the second enhanced cancellation for the theory. Very im-
portantly, unlike for the potential seven-loop divergence of N = 8 supergravity, this
calculation is within reach of currently available methods. This calculation would,
however, be more difficult than the calculation of N = 8 supergravity at five loops.

5 Applications to gravitational waves

The discovery of gravitational waves [22] has stimulated a new direction in
theoretical high-energy particle physics : using past advances in quantum scattering
amplitudes to obtain new theoretical results for gravitational-wave physics. The
scattering amplitudes-based approach derives classical binary dynamics taking ad-
vantage of Lorentz invariance, on-shell methods [7–9, 11, 13], double-copy relations
between gauge and gravity theories [3–5], advanced multiloop integration [31–34],
and EFT methods [27].

The post-Minkowskian approximation which maintains Lorentz invariance is
the natural framework to apply scattering amplitude methods [30]. In the post-
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Figure 8 – The two generalized unitarity cuts for extracting the conservative two-body potential
at 2PM order. The blobs represent tree amplitudes and exposed lines are all on shell.

Minkowskian framework one expands in Newton’s constant but keeps all orders in
velocity. An obvious first question is : what do quantum scattering amplitudes have
to do with gravitational wave physics ? Perhaps the simplest way to see the link
is via the observation that the leading order in Newton’s constant G contribution
to the two-body potential is precisely the Fourier transform of the appropriately
normalized scattering amplitude. That is,

V (r,p) = − 8πG

E1E2

∫
d3q

2π3
Mtree

4 (q,p) , (17)

where the diagram giving the amplitude Mtree
4 is depicted in Fig. 7. The tree level

two-to-two gravitational scattering amplitude is simple enough to evaluate using
either the Feynman diagram in Fig. 7 or using more advanced methods. In the
center-of-mass this amplitude is given by

Mtree
4 (q,p) =

(p1 · p2)2 − 1
2
m2

1m
2
2

q2
+O(q0) , (18)

where we drop any term that does not have a pole in q2 because it corresponds to
a short range contact interaction between the two objects ; here we are interested
only in the long-range interactions. Performing the Fourier transform this results in
a gravitational potential

V (r,p) = − G

|r|
2(p1 · p2)2 −m2

1m
2
2)

E1E2

. (19)

In the static limit where p1 = (m1, 0) and p2 = (m2, 0) this reduces to Newton’s
potential,

V (r, 0) = −Gm1m2

|r| . (20)

The PM expansion has received new attention in recent years (see e.g. [24–26,35,
36,125–131]). Beyond tree level the connection is more complicated, though the basic
connection is essentially the same. As one goes to higher orders, the procedure for
extracting the two-body Hamiltonian or physical observables becomes more compli-
cated because of the need to either remove or cancel iteration pieces. These iteration
pieces are uninteresting because they contain nothing but lower-order contributions
which have presumably already been computed. There are various procedures for
extracting observables. To extract a two-body Hamiltonian one uses and EFT mat-
ching, as explained in some detail in Refs. [24,26]. A more direct means is to extract
the radial action [35], the eikonal phase [132],and other exponential representations
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Figure 9 – The independent generalized cuts needed at O(G3) for the classical potential. The
remaining contributing cuts are given by simple relabeling of external legs. Here the straight lines
represent on-shell scalars and the wiggly lines correspond to on-shell gravitons or gluons.

of the amplitude [133], all of which can be used to obtain physical observables. One
can also set up heavy mass expansions [134,135] to simplify the perturbative expan-
sion. The Kosower, Maybee, O’Connell formalism directly gives observables [127].

The PM potential is given as an expansion in G,

V (p, r) =
∞∑
n=1

(
G

|r|

)n
cn(p2) , (21)

where the coefficients cn contain arbitrarily high powers in the velocity. The PM
potential directly feeds into a two-body Hamiltonian, which in the center of mass is
given by

H =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (22)

where p and −p are the momenta of the two particles in the center of mass system.
The masses are m1 and m2. Armed with the two-body Hamiltonian one can compute
any observable. By expanding in velocity we recover the PN approximation. In the
amplitudes based method one first starts with the generalized unitarity cuts. Figs. 8,
9 and 10 illustrate sample generalized cuts through O(G4). These are efficiently
evaluated using the double copy.

The first calculations demonstrating the utility of these methods was the third
order term in the conservative Hamiltonian(22) demonstrating that one can obtain
useful results [25,26],

c1 =
ν2m2

γ2ξ

(
1− 2σ2

)
,

c2 =
ν2m3

γ2ξ

[
3

4

(
1− 5σ2

)
− 4νσ (1− 2σ2)

γξ
− ν2(1− ξ) (1− 2σ2)

2

2γ3ξ2

]
,
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Figure 10 – Three of the thirteen generalized unitarity cuts for conservative contributions at
O(G4). Exposed lines are on-shell. Thick lines represent massive scalars and thin lines are gravitons.

c3 =
ν2m4

γ2ξ
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2(1 + γ)(1 + σ)

− 3νσ (7− 20σ2)

2γξ
+

2ν3(3− 4ξ)σ (1− 2σ2)
2

γ4ξ3

− ν2 (3 + 8γ − 3ξ − 15σ2 − 80γσ2 + 15ξσ2) (1− 2σ2)
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3

2γ6ξ4

]
. (23)

where we use center-of-mass coordinates where the incoming and outgoing particle
momenta are ±p and ±(p − q), respectively. We define the total mass m = m1 +
m2, the symmetric mass ratio ν = m1m2/m

2, the total energy E = E1 + E2, the
symmetric energy ratio ξ = E1E2/E

2, the energy-mass ratio γ = E/m, and the
relativistic kinematic invariant σ = p1 ·p2/m1m2. These results have been confirmed
in various studies [37–41].

The scattering amplitudes approach to the two-body Hamiltonian has also been
pushed to the fourth order in the coupling [35,36]. By this order one encounters the
tail effect [136] which introduces path dependence, with the net effect that the de-
rived Hamiltonian is valid for large eccentricities but not small eccentricities [48].
The inability to smoothly use the large eccentricity Hamiltonian at small eccentri-
city is similar to the situation at the 4th post-Newtonian order. This is still to be
resolved in the post-Minkowskian scattering setup which is always implicitly at large
eccentricity.

Combining the results from up to the 4PM order [35, 36, 42, 130, 131] into an
EOB-inspired resummation, gives impressive comparisons [137, 138] to the numeri-
cal relativity results of Ref. [139]. In particular, Fig. 11 shows the scattering angle
as a function of angular momentum ; the agreement to numerical relativity is quite
impressive, which strongly suggests that higher orders will continue to greatly im-
prove the precision, to help meet the precision challenge of future gravitational wave
observations. The methods outlined here make it straightforward to obtain the re-
quired integrands at the 5PM order and beyond. The nontrivial challenge, however,
is to deal with the integration. Recent progress [43] based on carefully tuning the
integration-by-parts [31] program FIRE [33] suggests that the 5PM order will be
computed in the not too distant future.
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Figure 11 – Comparison of the EOB-inspired resummed scattering angle to numerical relativity as
a function of angular momentum. The black points are numerical relativity results. From Ref. [137].

6 Outlook

In this lecture we presented an alternative approach to general relativity that
starts from the notion that gravity is mediated by a massless spin 2 particle. It is
a natural formalism for efficiently solving problems phrased as perturbative expan-
sions in Newton’s constant. It also fits well with the modern quantum amplitudes
program based on unitarity allowing us to obtain higher orders by recycling lower
orders. The double copy then give useful relations between gravity and gauge theory.
This approach to gravity is well suited to high-order calculations. We presented two
example where these methods are helpful. The first is higher-order calculations of
ultraviolet properties of supergravity theories, demonstrating that there are enhan-
ced ultraviolet cancellations, whose origin still needs to be explained. The second
are high-order calculations relevant for gravitational-wave physics pushing forward
the state of the art in the post-Minkowskian framework. This approach to perturba-
tive general relativity is far from exhausted and in the coming years we can expect
further calculations pushing forward the state of the art.
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