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Résumé.

Random tensors are the natural generalization of random matrices to hi-
gher order objects. They provide generating functions for random geometries
and, assuming some familiarity with random matrix theory and quantum field
theory, we discuss in the first part of this note the applications of such models
to quantum gravity. In a second part we review tensor field theories, that is
standard field theories in Rd but with tensor fields, which lead to a new fa-
mily of large N conformal field theories relevant for the study of the AdS/CFT
correspondence.
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1 Introduction

Random tensors [1], like random matrices [2], originated in theoretical physics.
The central goal of the 1970’s theoretical physics was the quantization of elementary
particles like quarks and gluons. Matrix models, and in particular their large N
limit, turned out to be of relevance for the quantization of the theory of strong
interactions [3]. Shortly after, random matrices where understood to provide the
correct framework for the study of two dimensional random (quantum) surfaces [4–6]
and of statistical models on such surfaces [7,8]. This line of work culminated in the
formulation of the KPZ relation [9] linking the critical exponents of a statistical
model in random geometry to the critical exponents of the same model in fixed
geometry. Together with the counter intuitive realization that critical exponents are
easier to compute for the random geometry versions, this provided a new approach
to the study of statistical models and conformal field theory in two dimensions.
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As the world sheet of a one dimensional string is two dimensional, the theory of
quantum surfaces encoded in random matrices has been extensively explored since
the 90’s in the context of string theory [10–12], by far the most mature approach to
quantum gravity to this date. The continuum limit of random matrices is understood
today in terms of Liouville quantum gravity [13,14] and the matter content in terms
of Schramm Loewner Evolution [15], see the accompanying contribution by J. Miller.
The limit of random discretized surfaces, called the Brownian sphere [16], is by now a
well understood mathematical object, see the accompanying contribution by J. F. Le
Gall.

Random matrices have a rich set of applications going well beyond random sur-
faces. In quantum chaos, the Bohigas–Giannoni–Schmit conjecture asserts that the
spectral statistics of quantum systems whose classical counterpart exhibits chaotic
behaviour is described by random matrix theory [17]. In number theory, the distri-
bution of zeros of the Riemann zeta function is modeled by the distribution of eigen-
values of certain random matrices, as pointed out by Montgomery [18] and Dyson.
In free probability theory, pioneered by Voiculescu [19] in an algebraic context, the
restriction to non crossing partitions in the definition of free cumulants is modeled
on the N →∞ planar limit of random matrices and, unsurprisingly, the limit distri-
bution in the free central limit theorem reproduces the Wigner’s semi-circle law. In
computational theory, one often considers random operators that generate families
of computational models, in the hope to improve performance [20] ; in the theory of
optimal control one uses random matrices in the state equation leading to stochastic
control [21]. And the list goes on.

While this is by no means an exhaustive list of applications of random matrices,
or relevant references on them, it illustrates their far reaching successes as versatile
tools in physics and mathematics.

Random tensors. Originally proposed in the ’90s, random tensor models [22–24] ai-
med to generalize to higher dimensions the connection between random matrices and
random surfaces. The idea was to construct generating functions for random higher
dimensional spaces using tensors of order three or more. However, trying to replicate
the success of two dimensional theories in higher dimensions is a daunting challenge,
not in the least because a continuous theory of quantum gravity, generalizing for
instance Liouville quantum gravity, is not available in three or more dimensions. As
one does not have a good description of continuum quantum gravity, one does not
really know what to aim for in the discrete setting : besides vague requirements like
“one would like to find a nice smooth Lorentzian manifold with and Einstein-Hilbert
effective action in some limit”, anything could in principle go.

It follows that in higher dimensions one is naturally pushed to survey the land-
scape of possible theories of discrete spaces and identify universal features which
are reproduced in all (or most) of them. One such feature is that, if generated by
random tensors, the discrete higher dimensional geometries are naturally organized
in powers of 1/N , with N the dimension of the Hilbert space on which the tensors
act. While by today this is a well established fact, due to some technical subtle-
ties [25], establishing this 1/N expansion for tensors requires a bit more work than
in the case of matrices [26–39]. Contrary to matrices, for which the corresponding
1/N expansion is indexed by the genus and is therefore an expansion in topologies,
for higher order tensors the 1/N expansion is indexed by a non negative half-integer,
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called the degree 1, which is not a topological invariant. Be that as it may, one at
least has at ones disposal a starting point to study the ensuing random space : the
melonic [40] large N limit, which is universal.

Indeed, the world of random tensors has a surprisingly simple access door, the
family of melonic graphs [40, 41] which is encountered at leading order in the 1/N
expansion. Despite its simplicity (see Figure 1 for some examples), the family of
melonic graphs, gives rise to surprisingly complex behaviour.

Generalized Kontsevich models. Based on the 1/N expansion of tensors, the tensor
track [42–47] program aims to formulate a reasonable theory of random geome-
try and ultimately provide a version of discretized quantum gravity in dimensions
greater than two. The cornerstone of this program is the combination of random
tensor models with a renormalization group flow in an abstract discrete space. This
approach is closely related to dynamical triangulations, either in their Euclidean
version [48], or in their more constraint “causal” one [49,50]. It is a so called “back-
ground independent” approach to quantum gravity, which does not presuppose the
existence of some embedding space. On the contrary, it aims to generate the space
ab initio, out of nothing.

Tensor models with invariant interactions and a non invariant propagator have
been called tensor field theories. Such models are closely related to the Kontsevich
model [51, 52], and will be refereed to below as generalized Kontsevich models : we
reserve the name tensor field theories for field theories with tensor fields living in
a flat Euclidean Rd space, which will be discussed separately. The renormalizable
Kontsevich like models studied so far divide into two main categories, those with [53]
and those without [54] additional group theoretical data. The combinatorial models
with no group theoretical data are better suited for the study of renormalization [55–
62]. The ones with additional data could be better suited for the study of quantum
spaces [63–68], as the additional data can encode additional geometric information
(e.g. a discretized holonomy) about the underlying space. For an up-to-date review
of distinct approaches to quantum gravity including the two discussed here, see [69].

Results obtained so far on Kontsevich like models include for instance renor-
malization theorems at all orders, constructive field theory results, computations of
beta functions at one and two loops or studies of their functional renormalization
group flow. One aim in this context would be to solve such theories in closed form
at the leading melonic order using Ward identities and Schwinger-Dyson equations,
as it has been achieved in the closely related Grosse-Wulkenhaar model [52]. Some
preliminary results in this direction on toy models have been obtained [70]. Tensor
interactions with “derivative operators”, hence with non invariant interactions, have
been introduced and investigated [71,72], enlarging maximally the space of theories
one can explore.

Of course, like any serious approach to higher dimensional quantum gravity, the
tensor track also has its limitations. Most importantly, the precise geometries one
obtains are not yet well understood. While the spaces selected at leading order (one
could call them “melonic spaces”) are topologically spheres, the metric assigned to a
such a topological space is model dependent. In the simplest models, in which both
the interactions and the propagator are invariant, the natural metric assignment is
to associate an equilateral triangulation to the topological triangulation represented

1. Sometimes referred to as the Gurau degree in the literature.
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by a graph [1]. With this metric assignment, the metric structure of melons is that
of a branched polymer [73], a space which, despite having the right topological
dimension, looks like a tree for all intents and purposes. This seems to persist in
a double scaling limit [74, 75]. The richer Kontsevich like models can endow the
melonic triangulations with a smoother geometry, but a systematic study of the
ensuing random metric space has not so far been performed.

Tensor field theories. More recently, quantum field theories for tensor fields have recei-
ved increased attention. Such theories make no claims at background independence :
they are just usual quantum field theories in an existing space (or space time). No-
netheless, they are still relevant for the problem of quantum gravity as the provide
non trivial examples of conformal field theories (CFTs) and can thus be used to
study interesting quantum gravity models via the AdS/CFT correspondence.

In 2015 the Sachdev-Ye-Kitaev (SYK) model [76–79] has been understood to
provide a simple nearly conformal dual to a nearly AdS2 black hole [80] and in
particular to display “maximally” chaotic quantum behavior [81]. This fascinating
remark generated a significant amount of progress on the study of holography, see
e.g. [82] and subsequent work. Shortly after, it has been remarked that the melonic
large N -limit, which is due to a disorder average in the SYK model, is achieved
naturally in a tensor quantum mechanical model [83–89], with no need for disorder.
Tensor quantum mechanics displays a genuine renormalization group flow, and one
can study its infrared conformal limit with standard techniques.

In higher dimensions [90–101] tensor field theories provide a new class of confor-
mal field theories, dubbed melonic CFTs [102–110]. They are examples of large N
CFTs that are at the same time non trivial and amenable to analytic computations.
This is somewhat surprising : although, as algebraic objects, higher order tensors
are more complicated than both vectors and matrices, the large N CFTs obtained in
tensor field theories are simpler than the ones of matrix field theories. This is due to
the fact that the melonic family, while richer than the family of cacti (or snail [96])
diagrams which dominate at large N in vector models, are much simpler than the
family of all the planar diagrams one encounters at leading order in the matrix case.

Tensor field theories are also interesting at their upper critical dimension and
it turns out that (in Euclidean signature) one finds models that display asymptotic
freedom while maintaining boundedness from below of the real part of the action
[111].

Plan of this paper. In the next two sections we will review in more detail the two major
applications of random tensors to physics. We will first discuss the relation between
random tensors, random geometries and Kontsevich like models. In the second part,
we will review tensor quantum mechanical models and tensor field theories.

We stress that both these lines of inquiry are very dynamical research fields
and we expect that much more is to come from each of them. Random tensors
are expected to play an increasingly important role in the future, not only in core
domains, like the study of field theories and random geometries [112], but also in
the exploration of new domains like machine learning [113–115].
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2 Random tensors and Kontsevich like models

The simplest random matrix distributions are the three Gaussian ensembles :
orthogonal, unitary and symplectic. They are often denoted by their Dyson index,
β = 1 for the orthogonal case, β = 2 for the unitary case, and β = 4 for the
symplectic one, which counts the number of real components per matrix element.
The ensembles with non integer β are equally fascinating, although they lack a
formulation in terms of random matrices.

The Gaussian Unitary Ensemble (GUE) is the probability measure :

dµ(M) = dM e−
N
2

Tr(M2) , dM = K
∏
k,l

dMkl , (1)

where M is a Hermitian N × N matrix and K is a constant chosen such that µ is
normalized. This measure is invariant under the conjugation of M with a unitary
N ×N matrix, M → UMU †, and one is interested in the expectations of invariant
observables.

The invariant observables are readily identified : an algebraic basis in the space
of polynomial invariants is provided by the traces of the powers of M . The joint
expectations :

〈Tr(Mp1) . . .Tr(Mpn)〉GUE =

∫
dM e−

N
2

Tr(M2) Tr(Mp1) . . .Tr(Mpn) , (2)

are computed using Wick’s theorem as sums over pairings (Gaussian pairings for
mathematicians, or Feynman graphs for physicists) of matrix entries, where each
pair (Mij,Mkl) is replaced by a “propagator” :∫

dM e−
N
2

Tr(M2) MijMkl =
1

N
δilδjk . (3)

Each pairing contributes a N -dependent weight (also know as Feynman amplitude)
to the correlation and any expectation displays a leading large N behaviour followed
by corrections in 1/N .

More general invariant random matrix models are obtained by perturbing the
GUE with an invariant perturbation, or interaction for physicists [6]. We stress that
the interaction is required to also be invariant under conjugation by the unitary
group. A common choice is to consider “single trace” perturbations, that is pertur-
bations of the form Sint(M) = Tr(f(M)) for some function f .

One is then interested in computing the expectations of the invariant observables
(note the normalization) :〈

1

N
Tr(Mp1) . . .

1

N
Tr(Mpk)

〉
=

1

Z

∫
dMe−

N
2

Tr(M2)−NSint(M) 1

N
Tr(Mp1) . . .

1

N
Tr(Mpk) ,

(4)

where the partition function Z is the normalization factor for the perturbed measure.
The most interesting features of this probability measure are :

— the Feynman graphs [6] of this measure represent tessellated surfaces ob-
tained by gluing polygonal patches. Each polygonal patch is associated to
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a monomial in the interaction Sint(M), and the propagators represent the
gluing of the patches along edges. The invariant obserables, Tr(Mp1) and so
on, represent boundaries, that is loops of length p1 and so on.

— the amplitude of a graph [6] is N2−2b−2g where g is the genus of the correspon-
ding tessellated surface and b the number of boundary loops, per connected
component. As each connected component must have at least one boundary
component, this weight is N0 or lower and the expectations are series in 1/N .

The matrix integral fills in all the possible bulk tessellations compatible with
the boundary loops and assigns to each tessellated bulk a weight dependent on its
topology.

Tensors and invariants. The construction described in the previous paragraph genera-
lizes to higher order tensors [1]. A complex, order D covariant tensor is a D-linear

form on
⊗D

i=1 CN , that is a hypercube of ND complex numbers transforming in the
tensor product of D fundamental representations of the unitary group :

TUb1b2...bD =
∑

a1,a2,...aD

U
(1)

b1a1U
(2)

b2a2 . . . U
(D)

bDaD
Ta1a2...aD , (5)

with U (i) unitary transformations. Note that the indices of the tensors are distin-
guished and each of them transforms with its own unitary.

The first order of business is to classify the polynomial invariants one can build
out of the tensor. It can be shown that any polynomial invariant is a linear combi-
nation of trace invariants [1]. The trace invariants are represented as bipartite edge
D-colored graphs, that is D-regular graphs such that every edge has a color 1, 2 . . . D
and exactly one edge for each color is incident at every vertex. Some examples are
depicted in Fig. 1.

Figure 1 – Examples of edge 3-colored graphs. The graphs presented in the left and center panels
are melonic, while the one on the right panel is not.

The invariant associated to a graph is built as follows :
— for each white vertex one takes a tensor, and for each black one a complex

conjugated (dual) tensor,
— for each edge one has an identification of a pair of indices, respecting their

position.
In detail, denoting V ◦ and V • the sets of white and black vertices of a bipartite D-
colored graph B and Ei the edge set of edges of color i, the trace invariant associated
to B is :

TrB(T, T̄ ) =
∑

all indices

∏
v∈V ◦

Ta1
va

2
v ...a

D
v

∏
w∈V •

T̄b1vb2v ...bDv

D∏
i=1

 ∏
(v,w)∈Ei

δaivbiw

 . (6)
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A similar construction goes through for real tensors transforming in the tensor
product of fundamental representations of the orthogonal group, if one drops the
requirement of bi partition.

Invariant probability measures. Denoting T̄ ·T =
∑

a T̄a1a2...aDTa1a2...aD the unique qua-
dratic invariant on can build out of a tensor and its dual, the orderD tensor Gaussian
unitary ensemble is the probability measure :

dµ(T̄ , T ) = dT̄dT e−
ND−1

2
T̄ ·T , dT̄ dT =

∏
a1,...aD

dT̄a1...aDdTa1...aD

2πı
,∫

dT̄dT e−
ND−1

2
T̄ ·T Tb1b2...bD T̄c1c2...cD =

1

ND−1
δb1c1δb2c2 . . . δbDcD .

(7)

An invariant random tensor model consists in perturbing the D-GUE with an inva-
riant interaction :

Sint(T, T̄ ) =
∑
B

tB TrB(T, T̄ ) , (8)

where the sum runs over some set of D-colored graphs. We typically restrict to
connected graphs B, corresponding to the single trace perturbation in random ma-
trices. The partition function and free energy of a random tensor model are then :

Z({tB};N) =

∫
dT̄dT e−

ND−1

2
T̄ ·T−ND−1Sint(T,T̄ ) , F ({tB};N) =

1

ND
logZ({tB};N) .

(9)

Feynman graphs as triangulations. The Feynman graphs of a random tensor model,
denoted generically G, are (D+1)-edge colored graphs [1]. The propagator (Gaussian
pairing) can be represented as a new kind of edge, say of color zero, connecting a
tensor and its dual. Such graphs are Poincaré dual to vertex colored D-dimensional
triangulations [1, 116] :

— for each subgraph with D-colors of G one draws a triangulation vertex and
assigns to it the color missing from the subgraph.

— two triangulation vertices are connected by a triangulation edge if their cor-
responding D-colored subgraphs share a (D − 1)-colored subgraph.

— p+ 1 vertices in the triangulation belong to a p simplex if all the D-colored
subgraphs of G corresponding to them share the same (D − p)-colored sub-
graph.

The observables TrB(T, T̄ ) have only D colors and represent D− 1 dimensional
boundary triangulations. The Feynman graphs contributing to an expectation :〈

1

N
TrB1(T, T̄ ) . . .

1

N
TrBp(T, T̄ )

〉
=

∫
dT̄dT e−

ND−1

2
T̄ ·T−ND−1Sint(T,T̄ ) 1

N
TrB1(T, T̄ ) . . .

1

N
TrBp(T, T̄ ) ,

(10)

represent D dimensional bulk triangulations connecting these boundaries.
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The 1/N expansion. The free energy as well as expectations of observables of the a
random tensor model display a 1/N expansion. The crux is the counting of bi colored
cycles, also known as faces, in a connected (D + 1)-colored graph [27–29,104] :

F (G) = D +
D(D − 1)

4
V (G)− ω̂(G) , (11)

where F (G) is the total number of bi colored cycles in G, V (G) the total num-
ber of vertices of G and ω̂(G) is a non negative half integer associated to G which
furthermore respects the bounds :

1

D
ω̂(G) ≤ ω̂(G)− ω̂(G0) ≤ ω̂(G) , (12)

where G0 is the graph obtained from G by erasing the edges of color 0. The non
negative half integer ω(Ĝ) is called the degree of the graph G [1, 73] (for historical
reasons it sometimes referred to as the reduced degree).

The amplitude of a connected Feynman graph is simply : 2

ND−DB(G)−[ω̂(G)−ω̂(G0)] , (13)

with B(G) the number of connected components of the boundary. This is to be
compared with the familiar N2−2b(G)−2g(G) scaling of the matrix case. The joint ex-
pectations of the invariants are thus series in 1/N , and at leading order graphs with
minimal ω(G) and the least possible number of boundary components dominate.

The graphs with no boundary component B(G) = 0 and zero degree ω(G) = 0,
which contribute to the free energy of the model, are called melonic [40]. The melonic
graphs are built recursively, starting with the “elementary melon” consisting in
two vertices connected by (D + 1) edges and iteratively inserting pairs of vertices
connected by D edges on any of the available edges, see Fig. 1 for some examples of
meloing graphs with 2 + 1 colors.

The melonic graphs are abstract triangulations of the topological sphere in
any dimension D. 3 Unfortunately for the quantum gravity program, if one simply
interprets these abstract triangulations as equilateral triangulations of the metric
sphere, one obtains in the continuum limit the somewhat trivial continuous random
tree [73] metric space, known as the branched polymer phase in the physics literature.
This geometric phase seems to survive in a double scaling limit [74,75].

If one aims to build smoother spaces, one needs to find a way past this singular
geometry phase. One way would be to try and smooth out the geometry by some sort
of Ricci flow on the triangulation. Alternatively, one can consider more complicated
tensor models which endow the topological triangulation with a different metric.

Kontsevich like models : renormalization group flow in the abstract space of indices. One pos-
sible future for the quantum gravity program in the discrete random geometry ap-
proach lies with considering more involved tensor models. One attempt is to impose
“causality constraints” [49] on the allowed higher dimensional dynamical triangu-
lations. This approach is very successful in providing a discretized version of the

2. For a graph with E0(G) edges of color 0,K(G0) subgraphs with colors 1, . . . D out of which B(G) are boundary

components of G we have a priori N−B(G)−(D−1)E0(G)+(D−1)[K(G0)−B(G)]+F (G)−F (G0) and simple manipulations
lead to the result.

3. We stress that this is just a subclass of the triangulations of the sphere.
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Hořava–Lifshitz anisotropic theory of gravity but fails to describe Einstein-Hilbert
gravity, which does not have any preferred slicing or foliation.

A mores systematic attempt to depart from the unitary invariant tensor models
is to consider non unitary invariant models. However, one would like to keep some of
the features of the invariant models, for instance the interpretation in terms of dual
vertex colored triangulations, so it is wise to not throw the invariance completely
out the window. A conservative modification is to keep an invariant interaction but
alter the quadratic part. For instance one could replace the GUE free part with a
non invariant covariance :

T̄ · T →
∑

a1,...aD

T̄a1a2...aD R
Λ
µ (a1, a2, . . . aD) Ta1a2...aD . (14)

One nice feature of this is that one is no longer constraint to consider tensors
of finite size. One can simply start with infinite size tensors and implement in the
RΛ
µ (a1, a2, . . . aD) function some sort of cutoff. One can then use well known renor-

malization group techniques, like perturbative computations, [55–57] constructive
field theory methods [58,59] or functional renormalization methods [60–62] to study
the behaviour of the partition function and correlations when varying the cutoffs.

We stress that in these models one deals with a new kind of renormalization
group flow. Contrary to the usual space time picture in which the renormalization
transformation decimates the high energy degrees of freedom and rescales the sys-
tem, this renormalization group flow decimates “the components of the tensor with
large indices”. As there is no notion of energy associated to such degrees of free-
dom, contrary to the usual case, both the cutoff and the operators (in the sense of
quantum field theory) are dimensionless. It follows that one can not naively clas-
sify the operators by power counting into marginal, relevant or irrelevant and one
might worry that the entire notion of renormalization of such models is nonsensical.
The situation is rescued by the 1/N expansion of the invariant models : it is this
expansion that allows one to perform a classification of the operators in terms of
“power counting” in a dimensionless cutoff N (or at least to guarantee it exists), a
prerequisite of any renormalization group analysis.

Also, and perhaps even more subtle, there is no notion of infrared behaviour in
such theories as they are ultimately cutoffed at the index 0. In particular this gives
rise to finite renormalization group flows 4 which do not connect renormalization
group fixed points. Indeed, an ultraviolet fixed point suffices to render all the trajec-
tories finite. The most promissing feature of this approach is that ultraviolet fixed
points with a small number of relevant directions are ubiquitous [55–57, 60–62] :
the Kontsevich like models tend to be asymptotically safe or free, hence ultraviolet
complete.

Other, more drastic, modifications of the invariant tensor models have been
studied [63–68] in the hope of identifying models with a better geometrical inter-
pretation, or closer to phenomenology. The challenge in this approach is to identify
some collective state, corresponding to an already formed space time, and study the
perturbations around it.

4. That is couplings which exhibit a non trivial change with the scale but are neither zero nor divergent along
the entire trajectory.
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3 Tensor field theories, from the SYK model to melonic fixed points

A second set of applications of random tensors comes under the guise of tensor
field theories. These are just quantum field theories in Rd space, of the garden variety,
but with tensor fields. Due to the melonic large N limit characteristic of random
tensors, tensor field theories have a very rich behaviour.

3.1 The SYK model and tensor quantum mechanics

Chaos in a quantum system should be captured by out of time order correlators.
For example one expects that for a quantum system in equilibrium at temperature
β−1 (that is in a thermal state), an out of time order four point correlator diverges
at late times with some Lyapunov exponent λL :

Tr[V (0)W (t)V (0)W (t)e−βH ] ∼ eλLt , W (t) = eıtHW (0)e−ıtH . (15)

In [81] Maldacena, Shenker and Stanford studied a four point correlator equally

spaced on the thermal circle F (t) = Tr[yV (0)yW (t)yV (0)yW (t)] with, y = Z−1/4e−
β
4
H

and found that under mild assumptions and for intermediate time scales 5 one gets :

F (t) ' a− b

N2
, eλLt , td < t < ts , (16)

where N denotes the number of degrees of freedom of the system and the Lyapunov
exponent λL obeys an upper bound λL ≤ 2π/β, hereafter called the MSS bound.
Furthermore, they argued that saturation of this bound is a strong indication of the
presence of a gravitational dual.

This result generated an impressive volume of follow up work. In particular
Kitaev [76,78] exhibited a one dimensional quantum mechanical model, reminiscent
of a model previously studied by Sachdev and Ye [79], which saturates the MSS
bound and has a two dimensional gravitational dual. The action of the SYK model
is :

S(ψ) =

∫
dt

(
ı

2

N∑
i=1

ψi
d

dt
ψi − ıq/2

∑
1≤i1<···<iq≤N

Ji1···iqψi1 · · ·ψiq
)
, (17)

with JI a quenched Gaussian random tensor coupling E(JIJI′) = δII′J
2(q−1)!N−(q−1)

and ψi an N -component Majorana Fermion. Somewhat surprisingly, this model is
not only maximally chaotic, but it is also solvable in the N →∞ limit, two features
which were previously considered incompatible. The SYK model becomes approxi-
mately reparametrization (i.e. conformally) invariant in the infrared, leading to a so
called “near AdS2 / near CFT1” correspondence. Any nearly-extremal black hole
should have a two dimensional “throat” in which the radial distance to the horizon
and the time should be the only relevant dimensions hence simple models of two
dimensional gravitational theories dual to one dimensional CFT s should shed light
on issues such as the information paradox.

The reason the SYK model can be solved is that, like for random tensors, its
large N limit is dominated by melonic graphs.

5. Comprised between the diffusion and scrambling times of the system. The diffusion time characterizes the
response to a local perturbation ; the scrambling time measures the spreading of quantum information across the
system.
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Two Point Function. The first step in solving the model consists in determining its
Euclidean two point function :

G(τ) =
1

N

∑
i

〈ψi(τ)ψi(0)〉 , G(ω) =

∫ ∞
−∞

dτ eiωτG(τ) , (18)

and at finite temperature the Matsubara frequencies are quantized ωn = 2π
β

(n + 1
2
)

and the Euclidean time is compact −β/2 ≤ τ ≤ β/2.
Denoting Σ(ω) the self-energy, that is the one particle irreducible amputated

two-point function, the Schwinger-Dyson equation (SDE) of the model in the large
N limit reads :

G−1(ω) = ıω − Σ(ω), Σ(τ) = J2G(τ)q−1 , (19)

The first equation is the usual SDE linking the dressed two-point function to the
bare free part of the action ıω and the self-energy. The second one encodes the
effect of taking the quenched average over the random couplings and states that at
leading order in the large N limit the self energy consists in a melon (i.e. two vertices
connected by q − 1 parallel edges) with dressed propagators, as depicted in Fig. 2.

Figure 2 – The self energy in the melonic limit.

Taking the infrared limit, the free term in the SDE is suppressed and we are
left with :

J2

∫
dτ ′ G(τ − τ ′)G(τ ′ − τ ′′)q−1 = −δ(τ − τ ′′) , (20)

which is solved at zero and finite temperature respectively by : 6

G(τ) ∼ |τ |−2∆ sign(τ) , G(s) ∼ | sin(πs/β)|−2∆ sign(s) , (21)

with ∆ = 1/q the infrared dimension of the field, for which the q-body interaction
is marginal.

Four Point Function. In order to check for chaotic behaviour, one needs to compute
the four point function of the model :

1

N2

∑
1≤i,j≤N

〈ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)〉 = G(τ12)G(τ34) +
1

N
F(τ1, τ2; τ3, τ4) ,

where τ12 = τ1 − τ2 and F(τ1, τ2; τ3, τ4) is the piece of the four point function which
is connected in the channel (12)− (34).

6. Eq. (20) is reparametrization invariant, that is if G(τ, τ ′) is a solution then [f ′(s)f ′(s′)]∆G(f(s), f(s′)) is a
also solution for any differentiable function f , and one maps the finite temperature equation to the zero temperature
one via fβ(s) = tan(πs/β).
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The irreducible four point kernel [95] in the channel (12)−(34) is the functional
derivative of the self energy with respect to the dressed propagator. It has the
interpretation of a direct two particle to two particle scattering (that is without
any intermediate two particle state) and is therefore two particle irreducible in the
channel (12) − (34). The four point kernel amputated to the right is obtained by
reestablishing two external dressed propagators :

K(τ1, τ2; τ3, τ4) =

∫
dτ ′1dτ

′
2 G(τ1, τ

′
1)G(τ2, τ

′
2)

δ

δG(τ ′1, τ
′
2)

Σ(τ3, τ4) . (22)

Similarly to the SDE, one can write a Dyson equation for the four point function
by making an analysis in two particle reducibility lines in the channel (12) − (34).
The four point function which transmits in the channel (12)− (34) consists in direct
propagation, one irreducible scattering K, two irreducible scatterings KK and so
on :

F =
∑
n≥0

KnF0 , F0 = −G(τ13)G(τ24) +G(τ14)G(τ23) ,

F(τ1, τ2, τ3, τ4) =

∫
dτdτ ′

(
1

1−K

)
(τ1, τ2; τ, τ ′)F0(τ, τ ′; τ3, τ4) .

(23)

At leading order in the large N limit we have Σ(τ3, τ4) = J2G(τ3, τ4)q−1 hence
the irreducible four point kernel reduces to one rung :

K(τ1, τ2; τ3, τ4) = −J2(q − 1)G(τ13)G(τ24)G(τ34)(q−2) , (24)

as depicted in Fig. 3.

Figure 3 – The kernel and the four point function at leading order.

In order to compute the four point function one needs to diagonalize the four
point kernel. A complete basis in the space of two particle to two particle operators
consists in the conformal blocks Ψh(τ1, τ2; τ3, τ4) corresponding to operators with
dimensions in the principal series h = 1

2
+ ıR supplemented by discrete modes with

h even integers :

−δ(τ13)δ(τ24) + δ(τ14)δ(τ23)

2

=

∫ 1
2

+ı∞

1
2
−ı∞

dh

2πı
ρ(h) Ψh(τ1, τ2; τ3, τ4) +

∞∑
n=1

lim
h→2n

[(h− 2n)ρ(h)Ψh(τ1, τ2; τ3, τ4)] ,

(25)

where the density ρ(h) has poles of order 1 at h = 2n and ρ(h)Ψh does not have any
other poles in h. The conformal blocks diagonalize the four point kernel :∫

dτdτ ′ K(τ1, τ2; τ, τ ′) Ψh(τ, τ
′; τ2; τ4) = k(h)Ψh(τ1, τ2; τ3; τ4) , (26)
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as well as the free term F0Ψh = F0(h)Ψh.
7 Going back to the four point function

in Eq. (23) and inserting the resolution of the identity, we get :

F ∼
∫
C

dh

2πı

1

1− k(h)
ρ(h)F0(h)Ψh , (27)

where the contour C consists in the principal series 1/2+ıR plus small circles around
the poles at h = 2n. The integral is then evaluated by pushing the principal series
to the right, cancelling the poles in h = 2n and picking up only the poles originating
from the 1

1−k(h)
term, that is those values of h such that k(h) = 1. This identifies

the physical primary operators of the model and the integral is a sum over residues
at the physical poles, giving the usual OPE expansion of the four point function.

There is however one caveat. It turns out that k(2) = 1, meaning that one of the
isolated contributions in the conformal blocks basis overlaps with a pole in the four
point function. This mode needs to be desingularized and a careful analysis shows
that it ends up being responsible for both the breaking of conformal invariance and
the chaotic behaviour of the model. The second fact can be inferred by diagonalizing
the ladder kernel in real time and solving its eigenvalue equation : only the mode
corresponding to h = 2 yields a solution, and its eigenfunction displays exponential
growth [80].

Tensor quantum mechanics. The slightly unpleasant feature of the SYK model is the
quenched disorder average. Due to this average, the model is not a genuine quantum
mechanical model, but a statistical ensemble. Witten [83] pointed out that one
can eliminate the disorder average but keep the melonic large N limit if one uses
colored [25,117] tensors :

S(ψ) =

∫
dt

(
ı

2

∑
i

ψi
d

dt
ψi − ıq/2jψ0ψ1 · · ·ψD

)
, (28)

where ψ’s are D+1 real Fermionic tensors of order D. The pattern of index contrac-
tions in the interaction term is the one of the colored tensor model [25], incidentally
the first tensor model for which a 1/N expansion has been established [27–29, 84].
Following this remark, several other tensor quantum mechanical models have been
proposed [86–89]. Such models can be studied along the lines of the SYK model,
and typically provide one dimensional conformal field theories in the infrared.

The main difference between tensor quantum mechanical models and the SYK
(or a matrix) model lies in the relation between the number of independent fields
and the symmetry group. In vector models, like the SYK, the number of field is N
and the dimension of the symmetry group is N2. The only invariant one can build is
the square of the field. For matrices one has N2 fields and the symmetry group has
dimension N2. One can already build more invariants, the traces of the powers of
the matrix. The situation is very different for tensors, for which one has Np fields,
while the dimension of the symmetry group goes like N2 : one can build a plethora
of invariants, namely all the trace invariants associated to p-colored graphs.

Although one needs to deal with the large number of invariants, tensor quantum
mechanics has a fundamentally positive feature : contrary to the SKY model it fits
into the paradigm of (one dimensional) local quantum field theory and one can study
its generalizations to genuine tensor field theories in higher dimension.

7. It turns out that F0(h) is in fact proportional to k(h), but this is secondary here.
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3.2 Tensor field theories

After tensor quantum mechanics [83], the next natural step is to consider tensor
field theories in higher dimensions. Introduced by Klebanov and collaborators [90],
such models have been actively studied over the past several years [90–101]. The
most common tensor field theory is built out of a (Bosonic) tensor field φa1a2a3

transforming in the three fundamental representation of the orthogonal group [90,
91]. Denoting triples of indices in bold aaa = (a1, a2, a3) its action writes (repeated
indices are summed) :

S(φ) =

∫
ddx

(
1

2
φaaa(−∂2 +m2)φaaa +

1

4

(
λ1P

1
aaabbb;cccddd + λ2P

2
aaabbb;cccddd + λδ̂taaabbbcccddd

)
φaaaφbbbφcccφddd , (29)

where −∂2 = −∂µ∂µ is the Laplacian operator in d dimensions. The three interaction
terms are written in terms of the three invariant contraction patterns, double trace,
pillow and tetrahedral :

δdaaabbb;cccddd =
3∏
i=1

δaibiδcidi , δpaaabbb;cccddd =
1

3

3∑
i=1

δaiciδbidi
∏
j 6=i

δajbjδcjdj ,

δtaaabbbcccddd = δa1b1δc1d2 δa2c2δb2d2 δa3d3δb3c3 ,

P 1
aaabbb;cccddd =

3

N2
δpaaabbb;cccddd −

3

N3
δdaaabbb;cccddd , P 2

aaabbb;cccddd =
1

N3
δdaaabbb;cccddd , δ̂taaabbbcccddd =

1

N3/2
δtaaabbbcccddd .

(30)

Introducing an infrared scale µ, the renormalization group flow of the model is
encoded in anomalous field dimension and the beta functions, which describe the
variation of the effective couplings with the infrared scale. Rescaling the couplings
as g̃ = g/(4π)2 etc. and correspondingly the beta functions β̃ = µ∂µg̃, we obtain at
two loops in 4− ε dimensions [90] :

β̃ = −εg̃+2g̃3 , β̃1 = −εg̃1 +2(g̃2
1 + g̃2)−2g̃2g̃1 , β̃2 = −εg̃2 +2(g̃2

2 +3g̃2)−5g̃2g̃2 ,
(31)

and the anomalous field dimension ηφ = g̃2/2. This system of beta functions admits a
fixed point g ∼

√
ε and g1,2 ∼ ı

√
ε corresponding to a conformal field theory, but the

latter is unstable due to the presence of an operator with dimensions 2 + ıα [90,118]

The long range O(N)3 model. A more interesting infrared behaviour is obtained in a
long range version of the model [102–104,107,110] :

S(φ) =

∫
ddx

(
1

2
φaaa
(
(−∂2)ζ +m2ζ

)
φaaa +

1

4

(
λ1P

1
aaabbb;cccddd + λ2P

2
aaabbb;cccddd + ıλδ̂taaabbbcccddd

)
φaaaφbbbφcccφddd ,

(32)
with ζ < 1 a non trivial scaling exponent. Note that we have explicitly factored an
ı imaginary unit in the tetrahedral coupling constant. The dimension of the field
respects 2∆φ + 2ζ = d and the quartic interaction is marginal for 4∆φ = d, that is
ζ = d/4. The ultraviolet divergences are regularized by setting ζ = (d + ε)/4, and
the infrared ones by some regulator at the infrared scale µ, for instance by shifting
(−∂2)ζ = (−∂2 +µ2)ζ . Due to the long range propagator, the model does not exhibit
a wave function renormalization and the dimension of the field is fixed along the
renormalization group flow.
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Denoting g̃(4π)d/2Γ(ζ)2 = g, the beta functions at one loop are :

β̃ = −εg̃ , β̃1 = −εg̃1+2
Γ(d/4)2

Γ(d/2)
(g̃2

1−g̃2) , β̃2 = −εg̃2+2
Γ(d/4)2

Γ(d/2)
(g̃2

2−3g̃2) . (33)

The model displays four lines of fixed points in the critical case ε = 0, and their
stability can be inferred from the eigenvalues of the stability matrix ∂g̃aβ̃b :

g̃ = g̃? , g̃?1 = ±g̃? , g̃?2 = ±
√

3g̃? , δh = 0 , δh1 = 4
Γ(d/4)2

Γ(d/2)
g̃?1 , δh2 = 4

Γ(d/4)2

Γ(d/2)
g̃?2 .

(34)

Scaling operators. In order to study the fixed point theory one needs first to identify
the scaling operators at the fixed point. Let us consider the long range free action
perturbed by a general perturbation S(φ) = S0(φ) + Sint(φ) with :

S0(φ) =

∫
ddx φ(x)((−∂2)ζ + µ2ζ)φ(x) , Sint(φ) =

∑
a

λa

∫
ddx Oa(x) , (35)

where we included an infrared regulator in the free action and the interaction is a sum
over integrated local operators which we denote schematically Oa(x) = (∂paφna)(x).

The fundamental field writes in terms of its dimensionless version 8 as φ(x) =
µ∆φφ′(µx), hence Oa(x) = µ∆aO′a(µx) where ∆a = na∆φ + pa is the canonical
dimension of Oa and O′a is the dimensionless version of Oa. The local operators Oa

are eigenoperators of the dilatation operator x · ∂x = xν∂xν :

0 = µ
d

dµ
Oa(x) = µ

d

dµ

(
µ∆aO′a(µx)

)
= (∆ + x · ∂x)Oa(x) . (36)

On dimensional grounds the connected correlations of the fundamental field
write as :

〈φ(x1) . . . φ(xn)〉c =

∫
c

[dφ] e−S0(φ)−
∑
a λa

∫
ddx Oa(x)φ(x1) . . . φ(xn)

= µn∆φB(µ−d+∆aλa;µxi) ,

(37)

where the subscript c signifies that one takes only the connected contribution to
the correlation and the bare expansion B exhibits poles in 1/ε. We substitute the
bare couplings in terms of dimensionless renormalized couplings g and counterterms

λa = µd−∆a [ga +
∑

p≥1 ε
−pC

(p)
a (g)], and fix the counterterms by requiring that the

poles in 1/ε cancel, that is :

〈φ(x1) . . . φ(xn)〉c =

∫
c

[dφ] e−S0(φ)−
∑
a[ga+

∑
p≥1 ε

−pC
(p)
a (g)]µd−∆a

∫
ddx Oa(x)φ(x1) . . . φ(xn)

= µn∆φR(ga;µxi) ,
(38)

where the renormalized expansion R has no poles in 1/ε. Note that here we use the
fact that, due to the long range propagator, there is no anomalous scaling of the
fundamental field φ.

8. This is the physicist way to account for the transformation of φ under dilatation, φ(Ωx) = Ω−∆φφ(x).
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The dimensionless renoramlized operators are 9
∫
ddx[Oa](x) = µ−(d−∆a) ∂Sint

∂ga
and can be written in terms of the bare operators and the dimensionless mixing
matrix :

[Oa](x) =
∑
b

µ∆aZa;bµ
−∆bOb(x) , Za;b = µ−(d−∆b)

∂λb
∂ga

. (39)

The renormalized operators are central in a renormalization group analysis, as the
insertion of such operators into correlation functions expressed in the renormalized
expansion does not generate poles in 1/ε :

−∂ga〈φ(x1) . . . φ(xn)〉c = µd−∆a

〈∫
ddx[Oa](x) φ(x1) . . . φ(xn)

〉
c

. (40)

The beta functions µ∂µg encode the change of the renormalized couplings with
the infrared scale at fixed bare couplings and also write in terms of the mixing
matrix. Using matrix notation and denoting ∆ = ∆aδab the diagonal matrix of
operator dimensions we have :

µ
d

dµ
λ = 0⇒ λ(d−∆) + βZµd−∆ = 0⇒ β = −λ(d−∆)µ∆−dZ−1 , (41)

where one needs to substitute λ and Z in terms of the renormalized couplings g :
the scale µ drops out and the β functions do not exhibit poles in 1/ε. 10

Like the bare couplings, which are such that µ d
dµ
λa = 0, the bare operators

are such that µ d
dµ
Oa = 0, hence µ d

dµ
Sint(φ) = 0. Expressing Sint(φ) in terms of

renormalized couplings and observing that, acting on the renormalized quantities,
µ d
dµ

= µ∂µ + βb∂gb we have :

∂ga

(
µ
d

dµ
Sint(φ)

)
= 0 = (µ∂µ∂ga + (∂gaβb)∂gb + βb∂ga∂gb)S

int(φ)

=

∫
ddx

{
(µ∂µδab + ∂gaβb)(−µd−∆b [Ob](x))

}
+ βb∂ga∂bbS

int(φ) .

(42)

At a fixed point β = 0 and the last term drops out. Denoting Yab = ∂gaβb the
stability matrix, we have :

(µ∂µ + d+ Y )µ−∆[O](x) = 0 . (43)

The µ∂µ term captures the behaviour of the renormalized operator [O] under dila-
tation :

µ∂µ

(
µ−∆[O](x)

)
= µ∂µ([O]′(µx)) = µ−∆(x · ∂x)[O](x) , (44)

hence, according to (43), the action of the dilatation on [O] is not diagonal. The
scaling operators which diagonalize the action of the dilatation at the fixed point 11

9. This definition of the renormalized operators would need to be revisited if the field had anomalous scaling.
10. Note that at a fixed point the beta functions are 0, that is Z−1 has a non trivial (left) kernel and the mixing

matrix is not invertible.

11. As the β functions are zero, at the fixed point µ d
dµ

= µ∂µ + βb∂gb = µ∂µ.
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µ d
dµ
{Oa} = µ∂µ{Oa} = 0 are the eigen operators of the stability matrix. Indeed,

diagonalizing Y = UνU−1. we have :

{O}(x) = µd+νU−1µ−∆[O](x) ,

µ
d

dµ
{O}(x) = (d+ ν){O}(x) + µd+νU−1µ∂µ

(
µ−∆[O](x)

)
= 0 ,

(45)

where we used Eq. (43). At the same time, Eq. (44) implies µ d
dµ
{O}(x) = (d+ν+x ·

∂x){O}(x), signifying that {O} is an eigen operator of the dilatation with eigenvalue
d+ ν. 12

One can analyze the scaling operators in perturbation theory. Besides the quar-
tic operators, one can for instance compute the anomalous scaling dimension of ope-
rators of the form φ(−∂2)nφ. Denoting g̃(n) the couplings of φ(−∂2)nφ and ∆?

φ = d/4
the dimension of the field in the critical case, we get at lowest orders in perturbation
theory :

β̃(1) = −(d− 2∆∗φ)g̃(1) + 2
Γ(d/4)2

Γ(d/2)
g̃(1)g̃2 ,

β̃(n) = −(d− 2∆∗φ − 2n)g̃(n) + 6
Γ(d/4)4

Γ(d/2)

Γ(n+ 1− d/2)

nΓ(n+ d/2)Γ(1− d/2)
g̃(n)g̃

2 ,

(46)

where at first order we only take into account the back reaction of adding an insertion
of the operator φ(−∂2)nφ in a two point function.

Conformal limit. Although the model does not have a local energy-momentum ten-
sor, the fixed point theories are conformally invariant [119]. One can then use non
perturbative conformal partial waves techniques [107,110] and identify the primaries
of the theory corresponding to the eigenvalue k(h, J) = 1 of the four point kernel :∫

dy dz K(x1, x2; y, z)〈φ(y)φ(z)Oh,J(x3)〉 = k(h, J) 〈φ(x1)φ(x2)Oh,J(x3)〉 ,

k(h, J) = 3g2Γ

(
d

4

)4 Γ
(
−d

4
+ h+J

2

)
Γ
(
d
4
− h−J

2

)
Γ
(

3d
4
− h−J

2

)
Γ
(
d
4

+ h+J
2

) ,

(47)

where the solutions take the from h = d
2

+ 2n + J + δh(n). The perturbative and
conformal partial waves computations agree and one concludes that only the bilinear
primaries contribute to the OPE of four fundamental fields in the large N limit.

One can push the conformal partial waves techniques much further, not only
to derive the OPE coefficients, but to use them in order to resum infinite series of
diagrams [107, 110]. One can thus check for instance that the sphere free energy of
the model decreases between ultraviolet and infrared renormalization group fixed
points, that is the model respects the F -theorem.

Asymptotic freedom in a Bosonic field theory. A tantalizing fact [111] is that the beta
functions in (31) in dimension d = 4 describe an asymptotically free theory for an

12. Deriving Eq. (41) we relate the stability matrix with the matrix of anomalous dimensions γ =
−µ( d

dµ
Z)Z−1 = −β(∂gZ)Z−1 as d+Y = Z∆Z−1 +γ. Note that, although β = 0 at a fixed point, γ = −β(∂gZ)Z−1

is not zero, as the mixing matrix is singular.
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imaginary tetrahedral coupling. Indeed, as the corresponding beta function is cubic,
one can flip its sign by going to a purely imaginary coupling. The renormalization
group flow is controlled by the tetrahedral coupling which goes to zero in the ul-
traviolet and diverges in the infrared. The other two couplings remain real along
the flow, and one identifies a trajectory along which they are always positive. This
ensures that, although the action acquires an imaginary part, the theory is well
behaved as the real part of the action is bounded from below. The study of the
resulting asymptotically free Bosonic theory in 4 dimensions is ongoing.

4 Conclusion and Perspective

We have briefly reviewed to current applications of random tensors to several
flavours of quantum field theory. However, random tensors are expected to play an
increasingly important role in many other areas of mathematics, physics, and even
computer science.

In this context, a very important question is to identify interesting invariant
quantities that characterize random tensors. For matrices one has eigenvalues, and
the large N distribution of the eigenvalues holds crucial information about the un-
derlying random matrix. What becomes of this for tensors ? Tensors also have eigen-
values, but they are much more complicated than the ones of matrices. For one, there
are several notions of eigenvalues for tensors : the most useful one is that the eigen-
values and eigenvectors are the critical points of the function

∑
a Ta1...aDv

a1
. . . va

D

subjected to the constraint
∑

a v
ava = 1. However, there are two problems to reckon

with : first, the number of eigenvalues is exponentially large in the size of the ten-
sor. Second, there is no restriction of the tensors (like real symmetric for instance)
which generates only real eigenvalues : one always finds both real and complex
eigenvalues and eigenvectors. One can perform various countings of the real eigen-
values [120–122], but what to do with the complex ones ? This question still awaits
a satisfactory answer.

An cheap alternative is, instead of focusing of the tensor eigenvalues, to focus
on the eigenvalues (or rather the spectrum) of a matrix built out of the tensor. One
such example is the tensor resolvent proposed in [123]. While the resolvent has the
advantage that, being an operator, it has a well defined spectrum, the exact relation
between its spectrum and the tensor eigenvalues is not trivial.
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