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Résumé. We review recent developments in the mathematical study of Liouville
quantum gravity and the Schramm-Loewner evolution and their application to
the study of scaling limits of random planar maps.

1 Introduction

The purpose of this note is to survey recent developments in the subject of
random planar geometry, focusing on the Schramm-Loewner evolution (SLE) and
Liouville quantum gravity (LQG) and their application to the study of scaling limits
of random planar maps (RPM). We note that there are a number of other excellent
longer surveys and books on these topics [14, 22, 41, 70, 82, 92, 123, 136] to which we
point the reader for a more in-depth overview. This note is structured as follows. We
will first review SLE and how it arises as a scaling limit of the interfaces of lattice
models in two-dimensional statistical mechanics in Section 2. We will then describe
how SLE is coupled with the Gaussian free field (GFF) as a level line or flow line in
Section 3. Next, we will give in Section 4 a brief review of RPM and their scaling
limits. The purpose of Section 5 is to review LQG and in Section 6 we will review
the construction of its metric. In Sections 5–6, we will also describe how LQG can
be understood as a scaling limit of RPM. Finally, in Section 7 we will describe some
recent developments which have combined the framework of SLE and LQG together
with Liouville conformal field theory (LCFT) in order to determine a number of
additional critical exponents and formulas for models which converge to SLE and
related processes.
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2 The Schramm-Loewner evolution

The Schramm-Loewner evolution (SLEκ) was invented by Schramm in 1999
as a candidate to describe the scaling limits of different types of random planar
curves which arise as interfaces in lattice models from statistical mechanics [116].
We will describe the complex analysis background necessary to define in SLE in
Section 2.1. We will next give the definition of SLE in Section 2.2 and review some
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Figure 1 – Shown is the straight line γ(t) = 2
√
ti in H from 0 to ∞ together with the unique

conformal map gt(z) : H \γ([0, t])→ H with gt(z)− z → 0 as z →∞. Note that we explicitly have
gt(z) =

√
z2 + 4t.

of the results which have been proved about the sample path properties of SLE.
Finally, in Section 2.3 we will describe how SLE arises as a scaling limit of the
interfaces in several lattice models.

2.1 Chordal Loewner equation

The starting point to define SLE is the chordal Loewner equation, which has its
roots in work of Loewner from the 1920s [87] in his efforts to prove the Bieberbach
conjecture concerning the growth of the coefficients in the power series expansion
of a univalent function. The Bieberbach conjecture was ultimately proved in 1985
by de Branges [26] and his proof makes use of Loewner evolutions ; see [130] for a
self-contained treatment.

Recall that K ⊆ H is called a compact H-hull if K is compact and H \ K is
simply connected. If K ⊆ H is a compact H-hull, then it is not difficult to show
that there exists a unique conformal map gK : H \K → H such that gK(z)− z → 0
as z → ∞. The chordal Loewner equation serves to encode a “continuously” and
“locally” growing family of compact H-hulls (Kt), which could correspond to a non-
crossing curve in H from 0 to ∞, in terms of the evolution of the conformal maps
(gt) = (gKt) which in turn are the solution of a simple ODE.

The simplest example is the vertical line Kt = [0, 2
√
ti] in H from 0 to ∞ (we

will momentarily explain the reason for this choice of time parameterization). It is
not difficult to see in this case that gt = gKt is given by z 7→

√
z2 + 4t. Observe that

∂tgt(z) =
4

2
√
z2 + 4t

=
2

gt(z)
, g0(z) = z. (1)

Since the ODE ∂tgt(z) = 2/gt(z), g0(z) = z from (1) has a unique solution for each
fixed z ∈ H up until the time τz = inf{t ≥ 0 : Im(gt(z)) = 0} it follows that the
ODE itself encodes the family of conformal maps (gt) hence the vertical line (Kt)
itself.

Let us now make a comment about the geometric interpretation of the choice of
time parameterization for (Kt). It is not difficult to see that for a compact H-hull K
the conformal map gK admits the Laurent expansion

gK(z) = z +
∞∑
k=1

bk
zk

as z →∞. (2)
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Figure 2 – Shown is the setup for Loewner’s theorem in the context of a non-self-crossing
curve γ in H from 0 to ∞. For each t ≥ 0, gt is the unique conformal map from the unbounded
component Ht of H\γ([0, t]) to H with gt(z)−z → 0 as z →∞. In this case, the driving function W
in the chordal Loewner equation satisfies Wt = gt(γ(t)) for each t ≥ 0.

The coefficient b1 from (2) is the called the half-plane capacity of K and is denoted
by hcap(K). Equivalently,

hcap(K) = lim
y→∞

yIm(iy − gK(iy)). (3)

Using (3), one can also see that

hcap(K) = lim
y→∞

yEiy[Im(Bτ )] (4)

where B is a standard Brownian motion in C, Eiy denotes the expectation under
the law with B0 = iy, and τ = inf{t ≥ 0 : Bt /∈ H \K}. From (3), one can see that
the time parameterization of the line Kt is such that

hcap(Kt) = 2t for all t ≥ 0. (5)

This is the so-called half-plane capacity parameterization and this choice makes the
form of the ODE (1) that (gt) solves particularly simple.

The idea of the Loewner evolution is to extend this encoding of the vertical line
in terms of an evolving family of conformal maps to the setting of any family (Kt)
of compact H-hulls which grow continuously (meaning that we can reparameterize
time so that (Kt) is parameterized by half-plane capacity (5)) and locally (meaning
that gt = gKt satisfies diam(gt(Kt+δ)) → 0 as δ → 0 uniformly in 0 ≤ t ≤ T for
each fixed T > 0). Suppose that (Kt) is a locally growing family of compact H-hulls
which are parameterized by half-plane capacity and gt = gKt for each t ≥ 0. Then
the result is that there exists a continuous function W : R+ → R so that the family
(gt) solves the chordal Loewner equation

∂tgt(z) =
2

gt(z)−Wt

, g0(z) = z. (6)

The function W is called the driving function for (Kt). Note that in the case of
the vertical line we have that W ≡ 0. Conversely, suppose that W : R+ → R is
continuous and (gt) denotes the solution to (6) which for each z ∈ H is defined up
to τz = inf{t ≥ 0 : Im(gt(z)) = 0}. Let Ht = {z ∈ H : τz > t} and Kt = H \Ht.
Then (Kt) is a locally growing family of compact H-hulls which are parameterized
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by half-plane capacity and for each t ≥ 0 we have that gt is the unique conformal
map Ht → H with gt(z)− z → 0 as z →∞.

Such a family (Kt) is said to be generated by a continuous curve if there exists
γ : R+ → H so that Kt is the complement in H of the unbounded component
of H \ γ([0, t]) for each t ≥ 0. In this case, we have that Wt = gt(γ(t)) for each
t ≥ 0. It has been shown that there exists a constant C > 0 so that if W is 1/2-
Hölder continuous with 1/2-Hölder norm at most C then the corresponding (Kt)
is generated by a continuous curve but there are examples of W which are 1/2-
Hölder continuous so that the corresponding (Kt) is not generated by a continuous
curve [89].

2.2 Schramm-Loewner evolution

We will now give the definition of the Schramm-Loewner evolution (Section 2.2.1)
and then review some of the results which have been established for its sample path
properties (Section 2.2.2).

2.2.1 Definition

Suppose that κ ≥ 0. The Schramm-Loewner evolution (SLEκ) is the random
family (Kt) of compact H-hulls arising by solving (6) with the particular choice
W =

√
κB where B is a standard Brownian motion. This form of W was derived

by Schramm [116] from the so-called conformal Markov property, which states that
if (Kt) is a random family of compact H-hulls which arise as the scaling limit of an
interface from a two-dimensional lattice model which is conformally invariant in the
scaling limit then :

(i) For each fixed s ≥ 0, t 7→ gs(Kt+s)−Ws
d
= (Kt) and

(ii) For each α ≥ 0, (α−1Kα2t)
d
= (Kt).

Indeed, (i) implies that W has stationary and independent increments hence must
be of the form

√
κBt+at where B is a standard Brownian motion, κ ≥ 0, and a ∈ R.

Moreover, (ii) implies that W satisfies Brownian scaling hence a = 0. Beyond its
simplicity, what is remarkable about the definition of SLEκ is that one can apply
the tools of stochastic calculus to (6) to establish many of its properties.

Figure 3 – Numerical simulations due to Tom Kennedy. Left : SLE2. Middle : SLE4. Right :
SLE6.
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2.2.2 Sample path properties

Since B is not 1/2-Hölder continuous, one cannot make use of the deterministic
theory mentioned above to show that SLEκ is generated by a continuous curve.
The existence of the SLEκ curve was proved by Rohde-Schramm for κ 6= 8 [114]
and by Lawler-Schramm-Werner for κ = 8 [76] as a consequence of the convergence
of the uniform spanning tree Peano curve to SLE8 (see also [4] for a proof of the
convergence which does not make use of discrete models). The phases of SLEκ were
also determined by Rohde-Schramm and the underlying calculation is often one of
the first that one sees when learning about SLEκ. It is based on the observation
that for each x ∈ R we have that gt(x) − Wt evolves as a multiple of a Bessel
process, so the phases can be determined using basic properties of Bessel processes.
In particular, SLEκ is a simple curve for κ ∈ (0, 4], self-intersecting but not space-
filling for κ ∈ (4, 8), and space-filling for κ ≥ 8. The Hausdorff dimension of the
range of an SLEκ curve was computed in [10,114] and is min(1 +κ/8, 2). In the case
that κ ∈ (0, 8) (resp. κ > 4), SLEκ curves have cut (resp. double) points and the
dimension of such points was determined in [105].

Many other works have explored the sample path properties of SLE. For example,
the optimal Hölder exponent for the SLE curve with the capacity parameterization
was determined in [56, 86]. The optimal Hölder exponent vanishes for κ = 8 and in
this case the modulus of continuity is given by (log δ−1)−1/4+o(1) as δ → 0 [60]. The
regularity of the SLEκ curve is closely related to the behavior of harmonic measure
near the tip of the curve and this was explored in detail in [57] in which the multi-
fractal spectrum near the tip was determined. The optimal Hölder exponent for the
uniformizing maps (gt) away from the tip was determined in [51] and this is closely
related to the behavior of harmonic measure of the SLE curve away from the tip.
The Hölder exponent for the uniformizing map vanishes for κ = 4 and the modulus
of continuity in this case is given by (log δ−1)−1/3+o(1) as δ → 0 [60]. Further papers
have explored many other regularity properties of the SLEκ curves, for example the
so-called integral means spectrum was computed in [11] (in expectation) and in [51]
(almost surely).

Implicit in the definition of SLEκ using the chordal Loewner equation (6) is a
direction of time : the curve naturally grows from 0 to ∞ in H. However, as SLEκ

arises or is conjectured to arise as the scaling limit of many different two-dimensional
lattice models for which the interfaces do not have a direction of time it is natural
to expect that it possesses the following time-reversal symmetry property : if η is
an SLEκ in H from 0 to∞, then up to a monotone reparameterization of time with

ψ(z) = z−1 (where z denotes the complex conjugate of z) we have that ψ(η)
d
= η. The

time-reversal symmetry of SLEκ is not obvious from its definition in terms of (6).
It was first proved by Zhan [138] for κ ∈ (0, 4] (see also [30, 94]) and for κ ∈ (4, 8]
in [95]. For κ > 8, the SLEκ curves do not satisfy time-reversal symmetry but it is
nevertheless possible to give an explicit description of their time-reversal and it is
an SLEκ-type curve [97].

The capacity time parameterization for SLEκ is natural from its definition in
terms of the chordal Loewner equation (6), but it is not natural from the perspective
of it as the scaling limit of discrete models. Indeed, in the case of a discrete lattice
model it is natural to parameterize a curve by the number of edges or vertices that
it traverses. The natural parameterization of SLEκ was first constructed in [78] and
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is a continuum time parameterization for SLEκ which conjecturally describes the
scaling limit of a discrete model with the edge parameterization. The construction
given in [78] is indirect but it was subsequently shown in [71] that the natural
parameterization corresponds to parameterizing SLEκ by Minkowski content.

Figure 4 – Numerical simulations of CLE. Left : CLE3. Right : CLE6.

As we will describe below, SLEκ serves to describe the scaling limit of a single
interface from a discrete model. The conformal loop ensembles (CLEκ) are the loop
version of SLEκ and serve to describe the scaling limit of all of the interfaces [120,
124].

Since the discovery of SLEκ, there are now several different constructions which
are useful in its study depending on the type of problem that one is considering :

(i) The chordal Loewner equation (6).

(ii) The outer boundary of Brownian motion or a cluster of Brownian loops from
the Brownian loop-soup (see Section 2.3).

(iii) The level or flow line of the GFF (see Section 3).

(iv) The conformal welding and mating of trees representations (see Section 5.3).

2.3 Convergence results on planar lattices

Many two-dimensional lattice models at criticality from statistical mechanics
have been conjectured to be conformally invariant in the scaling limit. This is in
fact natural to expect because the scaling limit of the infinite volume limit of such
a model should be :

— Translation invariant as translation invariance persists in the scaling limit.
— Scale invariant as it is a scaling limit.
— Rotationally invariant if the underlying lattice has sufficient symmetry.

Such models also often satisfy a natural Markov property which altogether turns
into the scaling limit satisfying the conformal Markov property which characterizes
SLEκ.

We will first explain how this works in the context of the critical percolation
model on the triangular lattice. Fix n ∈ N and suppose that Tn is an n×n “lozenge”
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Figure 5 – Critical percolation (p = 1/2) on part of the triangular lattice (with vertices repre-
sented by hexagons) with black (resp. red) boundary conditions on the left (resp. right) and top
(resp. bottom) boundary. The interface from the bottom left to top right with black (resp. red)
hexagons on its left (resp. right) is shown in green. Left : Simulation on a 20 × 20 part of the
triangular lattice. Right : Simulation on a 50× 50 part of the triangular lattice.

of the triangular lattice as illustrated in Figure 5, where each vertex in the triangular
lattice is represented by a hexagon. Each hexagon is then colored either black or
red based on the toss of an independent fair coin flip, where the hexagons on the
left (resp. right) and top (resp. bottom) part of the boundary are colored black
(resp. red). This forces the existence of a unique interface starting from the bottom
left part of the lozenge to the top right which has the property that the hexagons
to its left (resp. right) are black (resp. red). It was proved in [17, 125] that in the
scaling limit this interface converges to an SLE6 curve. As a consequence of this,
using computations in the continuum with SLE6 it has been possible to verify many
conjectures previously made about the scaling limit of critical percolation (e.g.,
[127]).

Similar scaling limit results have been proved for a number of other models, for
example the Ising and FK Ising model [13, 20, 63, 126], the contours of the discrete
Gaussian free field [117], and the uniform spanning tree Peano curve and loop-erased
random walk trajectory [76] (see Figure 6 for an illustration). A number of other
models have been conjectured to converge to SLEκ in the scaling limit, including
the FK model for general values of q [120], the self-avoiding walk model (SAW) [77],
and bipolar orientations [66].

Another famous application of the SLE curves was the computation of the
Brownian intersection exponents, which give the probability that k independent
Brownian motions starting from equally spaced points on ∂B(0, ε) reach ∂B(0, 1)
without intersecting each other [72–75]. This, in turn, was used to verify Mandel-
brot’s conjecture which states that the outer boundary of a planar Brownian motion
(see Figure 6) has dimension 4/3.
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Figure 6 – Left : Outer boundary of a planar Brownian motion. Right : Random walk (black)
together with its loop-erasure (red).
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Figure 7 – Left : The vector field eih(z) where h(z) = x2 + y2 together with the flow line with
angle zero starting from the origin. Middle : The same vector field as on the left with 12 flow lines
starting from the origin with equally spaced angles. Right : Numerically generated flow lines of
eih/χ where h is a discrete approximation of the GFF, χ = 2/

√
κ −
√
κ/2 and κ = 4/3, and with

equally spaced angles.

3 Level lines and flow lines of the GFF

In this section we will describe one of the other ways of constructing SLE curves
using the Gaussian free field (GFF). This perspective has been useful for proving
a number of results about SLE which seem to be difficult to establish based on its
definition in terms of the chordal Loewner equation (6). Let us begin by reviewing
the definition of the GFF. (For the reader who is interested in more details, there are
many excellent surveys on the GFF including [119, 137].) Suppose that D ⊆ C is a
domain. The GFF h on D with zero boundary conditions is the mean zero Gaussian
field with covariance function given by the Green’s function G for ∆ on D with
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Dirichlet boundary conditions. Since G(x, y) ∼ − log |x− y| as x→ y, the GFF has
infinite variance at points and as result takes values in the space of distributions in
the sense of Schwartz rather than in the space of functions. One way of constructing
the GFF is to view it as the standard Gaussian associated with the Hilbert space
H1

0 (D), which is the Hilbert space closure of C∞0 (D) with respect to the Dirichlet
inner product

(f, g)∇ =
1

2π

∫
∇f(x) · ∇g(x)dx. (7)

If (φn) is an orthornomal basis of H1
0 (D) and (αn) is a sequence of i.i.d. N(0, 1)

random variables, then h admits the series expansion

h =
∑
n

αnφn. (8)

This series does not converge in H1
0 (D) (it is immediate that the ‖ · ‖∇-norm of the

partial sums in (8) blows up), but it does converge in H−ε(D) for every ε > 0. That
is, the GFF is not a function valued random variable but it is arbitrarily close to
being in L2(D). This is a reflection of the fact that the covariance function only
blows up logarithmically (and not polynomially) on the diagonal. More generally,
the GFF with boundary conditions φ on ∂D is equal to the sum of a GFF with
zero boundary conditions on D and the function h which is harmonic on D with
h|∂D ≡ φ.

The GFF arises in many contexts in probability theory, for example describing
the fluctuations of random surfaces and height functions [64,65,112], its connection
to random walk and Brownian motion through isomorphism theorems [129], and as
a building block for various random geometries. We will describe how this works in
the context of SLE in this section and for the Liouville quantum gravity surfaces in
Section 5.

Since the Green’s function is conformally invariant (equivalently, (7) is confor-
mally invariant), the GFF is conformally invariant as well. Moreover, the GFF sa-
tisfies the following spatial Markov property : if U ⊆ D is open, then we can write
h = h1+h2 where h1 is a GFF on U with zero boundary conditions, h2 is distribution
on D which is harmonic in U , and h1, h2 are independent. This can be seen because
H1

0 (D) admits the orthogonal decomposition H1(U)⊕H2(U) where H1(U) = H1
0 (U)

(resp. H2(U)) consists of those functions in H1
0 (D) which are supported (resp. har-

monic) in U . Together, the conformal invariance and spatial Markov property of the
GFF are analogous to the conformal Markov property which characterizes SLE. As
a result, SLE and the GFF are deeply connected.

Since the GFF is not (but is very close to being) function valued, it exhibits
many properties that functions have but with an extra “twist” to reflect the fact
that it is not a function. One important example of this was discovered by Schramm
and Sheffield [117,118] in which they showed that it is possible to make sense of the
level sets of the GFF and they are SLE4-type curves. Since the GFF is a distribution,
this construction is non-trivial. So far, two approaches have been developed. The
first construction is the focus of [117] in which it is shown that the level sets for an
approximation of the GFF based on the GFF defined on a lattice approximation of D
converge in the scaling limit. There are many other natural approximations of the
GFF, for example by integrating it against a mollifying function, but to do date it has
not been proved that the corresponding level sets converge. The second construction
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is the focus of [118]. It is indirect and takes place purely in the continuum without
using an approximation procedure for the GFF. It is based on “reverse engineering”
what it would mean for a curve to be a level set of the GFF and then proving its
existence using the tools of stochastic calculus.

This construction was extended by Sheffield [121] (see also [31]) in which he
showed that it is possible to make sense of the formal solutions to the equation

d

dt
η(t) = eih(η(t))/χ where χ =

2√
κ
−
√
κ

2
for κ ∈ (0, 4) (9)

and the solutions are SLEκ curves. See Figure 7 for an illustration. In (9), the ex-
pression eih/χ should be thought of as a random vector field which is generated by
the GFF and η is a flow line of this vector field. Since the GFF is a distribution,
but not a function, this expression does not make literal sense. It is expected that
these flow lines arise by mollifying the GFF, solving the corresponding equation,
and then taking a limit. This approach, however, has not yet been proved to work.
The construction given in [121] is indirect, takes place in the continuum without
approximating the GFF, and uses the tools of stochastic calculus as in [118]. The
SLEκ′ curves with κ′ = 16/κ also naturally arise in this framework but their inter-
pretation is different as they do not correspond to a single flow line but rather a
“tree” of flow lines. This is closely related to the fact that with χ as in (9) we have
that χ(κ′) = −χ(κ).

The theory of how these flow lines interact with each other is developed in
[31, 93] (in the case that the flow lines start from boundary points) and in [97] (in
the case that the flow lines start from interior points). They exhibit many of the
same properties that flow lines of a smooth vector field have both in terms of their
behavior and their interaction with each other. For example, for each θ one can
define the flow line of angle θ to be the flow line of h+ θχ (so that when considering
ei(h+θχ)/χ = ei(h/χ+θ) all of the arrows are rotated by the angle θ). Suppose that
η1, η2 are flow lines with angles θ1, θ2 where η1 starts to the left of η2. When θ1 > θ2,
we have that η1 stays to the left of η2. When θ2 − π < θ1 < θ2, η1 crosses η2 and
cannot subsequently cross back. In contrast to the case of a smooth vector field, if
θ1 is sufficiently close to θ2, then η1 can in fact bounce off η2 upon intersecting for
the first time and the subsequent intersections form a fractal and uncountable set.
If θ1 = θ2, then η1 will merge with η2 so that flow lines with the same angle form a
tree structure. The theory of the GFF flow lines have many applications to solving
SLE problems [94, 95]. See also [135] in which the theory of how the level lines of
the GFF interact is developed.

4 Random planar maps

4.1 Overview and definitions

We now turn to describe the so-called random planar maps (RPM). Recall that
a planar map is a graph together with an embedding into the plane so that no
two edges cross. Two planar maps are considered to be equivalent if there exists an
orientation preserving homeomorphism of the plane which takes one to the other.
We note that this is a stronger condition than requiring the underlying graphs to
be isomorphic. The faces of a planar map are the connected components of the
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complement of its edges. The degree of a face is the number of adjacent edges. A
map is called a triangulation (resp. quadrangulation) if all of its faces have degree 3
(resp. 4). In general, one can study planar maps where all of the faces have a fixed
degree p (called a p-angulation) and also the case where the face degrees are mixed.
The study of planar maps has its roots in work of Tutte [131–134] and Mullin [106]
from the 1960s in their work on the question of enumerating planar maps.

RPM are random graphs on which one can consider the statistical mechanics
models that we mentioned in Section 2. It turns out that it is easier to study these
models on RPM in comparison to deterministic planar lattices like Z2 or the trian-
gular lattice provided the law of the RPM is chosen properly. The reason for this is
that one can imagine exploring an interface of e.g. the percolation model as illus-
trated in Figure 5. If the underlying graph is fixed, then the conditional law of the
remaining percolation configuration depends on the shape of the interface which has
been observed. On the other hand, for an appropriately chosen model of RPM the
underlying graph is random and the conditional law of what remains will depend
only on the boundary lengths of the complementary components of the interface
(number of edges on the boundary). If one focuses on the component that the inter-
face is traversing, this is a one-dimensional quantity which results in a Markov chain
which is tractable to study. In particular, if one considers certain setups it is often
possible to have that the boundary length evolution process has i.i.d. increments so
in the scaling limit is described by Lévy process or even a Brownian motion. From
the evolution of the boundary length process, one can extract many properties of the
statistical mechanics model on the planar map including its critical exponents. The
critical exponents associated with a given model (e.g., percolation) on a RPM are
different from the corresponding exponents on a deterministic planar lattice (e.g.,
the triangular lattice). However, they turn out to be related by the KPZ formula
which serves to take into account the comparison between the Euclidean metric and
the graph metric for a RPM when the latter is embedded into the plane in a confor-
mal manner. This is one of the methods that physicists used to (non-rigorously)
predict these exponents which mathematicians were later able to verify using SLE.
We will discuss the KPZ formula in more detail in Section 5.

4.2 Uniformly random planar maps

Let us first describe some of the work which has been done on RPM which are
chosen uniformly at random among the set of p-angulations with a fixed number of
faces. Let Q•n be the set of quadrangulations which are marked by a distinguished
vertex (called the root) and a distinguished oriented edge (called the dual root).
There is a remarkably simple formula for |Q•n| due to Tutte :

|Q•n| =
2 · 3n

n+ 1

(
2n
n

)
. (10)

A bijective proof of (10) was derived in the work of Cori-Vauquelin [21] and Schaeffer
[115] (now called the CVS bijection) which serves to encode such a quadrangulation
in terms of a so-called well-labeled tree. This is simply a rooted plane tree where each
vertex has a label in Z, the root has label 0, and the labels of adjacent vertices differ
by at most 1. From this perspective, the enumeration formula (10) immediately
follows since the number of rooted plane trees with n edges is given by the nth
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Catalan number and the number of well-labelings of such a tree is 3n. Since there
are only finitely many such possibilities, one can choose such a quadrangulation (or
equivalently a well-labeled tree) uniformly at random. We note that one can sample
from the law of a uniformly random well-labeled tree T by first sampling the tree
uniformly at random from the set of plane trees with n edges and then given T
sampling the labels uniformly at random. The former corresponds to an excursion
of a simple random walk in Z with 2n+ 1 steps starting from 0 and conditioned to
hit −1 for the first time at time 2n+ 1 and the latter corresponds to a collection of
random walks on the branches of T which start from 0 at the root, have increments
−1, 0, and 1 with equal probability, and are coupled together to be the same when
two branches agree but evolve independently after they first separate. In the CVS
bijection, the vertices of the rooted quadrangulation are equal to the vertices of the
tree together with an extra vertex v∗ which is the root of the quadrangulation. One
then assigns v∗ the label `∗ − 1 where `∗ is the minimum of all of the labels in the
tree. For another vertex v in the tree with label `, the distance between v and v∗
in the quadrangulation is given by ` − `∗ + 1. One can therefore extract from this
that the diameter of a typical random quadrangulation with n faces is of order n1/4

because the displacement of the encoding walk for the associated tree will be of
order n1/2 so the maximum label (in absolute value) will be of order n1/4.

Independently of the motivation described in the second paragraph of Sec-
tion 4.1, it is very interesting to study the large-scale behavior of these RPM as
in the scaling limit the resulting object can be thought of as a continuum sur-
face chosen uniformly at random in the same way that Brownian motion can be
thought of as a continuous curve chosen uniformly at random. It was proved by
Chassaing and Schaeffer [19] that the well-labeled tree structure converges in the
limit to a continuous object called the Brownian snake. The Brownian snake is a
continuous analog of a random well-labeled tree where the tree part is given by a
continuum random tree (CRT) [3] T and, given T , the labels are described by a
Brownian motion indexed by T . This means that the labels starting from the root
of T evolve as a standard Brownian motion as one goes up any fixed branch of the
tree and these Brownian motions become independent whenever branches separate.
The name Brownian map was coined by Marckert and Mokkadem in [88] and this is
the continuous object which describes the scaling limit of the metric space (rather
than encoding) structure of such a RPM.

There are many works which are aimed at establishing the convergence of the
metric measure space structure (Mn, dn, µn) of such a RPM towards the Brow-
nian map. The topology for taking this limit comes from the Gromov-Hausdorff-
Prokhorov distance, which is a metric on the space of compact metric spaces equip-
ped with a measure. As explained above, when the underlying map has n faces the
correct normalization factor for the distance on the map is n−1/4. The tightness of
the law of (Mn, n

−1/4dn, n
−1µn) was proved in [79]. It took a number of years before

the subsequential convergence was promoted to actual convergence and a number
of important results were proved in the intervening period. For example, in [84, 90]
it was shown that every subsequential limit is a topological sphere and in [79] that
every subsequential limit has Hausdorff dimension 4. A number of important pro-
perties of geodesics were studied in [80], in particular the so-called confluence of
geodesics phenomenon which states that any pair of geodesics towards a “typical”
point eventually agree. The convergence of the actual metric-measure space struc-
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ture was proved in independent works of Le Gall [81] and Miermont [91]. The latter
work focuses on the case of triangulations while the former proves in addition the
convergence in the case of p-angulations for p = 3 and p ≥ 4 even. The convergence
for p-angulations with p ≥ 3 odd was proved by [1]. Scaling limits have subsequently
been proved for a number of other topologies (see, e.g., [15, 16, 23, 43]). In order to
distinguish the different topologies, the Brownian map is now called the Brownian
sphere and the other possible topologies make up the family of Brownian surfaces.
We emphasize that all of these scaling limit results lead to an abstract metric mea-
sure space but do not concern a canonical way of drawing the limit in the plane.

4.3 Random planar maps with extra structure

For the reasons mentioned in the second paragraph of Section 4.1, it is inter-
esting to study RPM equipped with the extra structure of a statistical mechanics
model. In this case, one picks a pair (M,X) where M is a planar map and X is a
distinguished structure on the map. This leads to a so-called decorated RPM. It is
important to choose the law on RPM so that the resulting object has the correct
Markov properties. In particular, one would like to have a simple description of the
conditional law of the RPM when one explores the interfaces of X in a Markovian
way. The correct way to do this is to bias the uniform distribution on maps by the
partition function of the associated statistical mechanics model. For example, in the
case of a spanning tree decorated planar map this corresponds to choosing (M,X)
uniformly at random from the set of map-spanning tree pairs so that the marginal
law of M is biased by the number of spanning trees that it contains. This has the
effect of changing the macroscopic behavior of M quite significantly in comparison
to, say, the RPM described in Section 4.2 and the scaling limit is not described by
a Brownian surface.

One often studies decorated RPM using bijective techniques as in the case of
uniform RPM and these bijections typically encode the decorated RPM in terms
of trees as before. The key difference is that for uniform RPM the well-labeled
tree structure serves to naturally encode the metric structure of the map whereas
for decorated RPM the tree structure jointly encodes the map and the statistical
mechanics model but the graph metric is not easily accessible. In the case of tree-
decorated RPM, the bijection is due to Mullin [106] and it is remarkably simple.
The Mullin bijection was extended to the case of a decorated RPM with an instance
of the FK model in [122] and bijections in this spirit have been constructed for a
number of other models in the works [42,67,85]. In each of these works, scaling limit
results are proved for the encoding structure of the underlying map (in analogy
with [19]) and the scaling limit is described by a coupled pair of CRTs which in turn
can be described by a correlated Brownian motion.

It is expected that the convergence also holds in the Gromov-Hausdorff-Prokhorov
topology, but this has not yet been proved for these models except in one case. Na-
mely, one can consider so-called RPM with large faces. This refers to a RPM model
where the face degrees are random rather than fixed and the degree has a heavy tail.
This model was first considered in [83] as a toy model for the result of considering a
loop model on a RPM (e.g., the Ising model) and then looking at the resulting metric
after one removes the parts of the map which are surrounded by one of the loops.
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Figure 8 – Top left : A random quadrangulation of the disk sampled using the Mullin bijection
[106] (quadrilaterals on the boundary are divided into triangles). The map is bipartite and the
two classes are colored red and blue. Top right : A distinguished spanning tree (red) consisting of
diagonals of quadrilaterals with wired boundary conditions. Bottom left : The spanning tree (red)
together with its dual (blue) and the Peano curve which snakes between them (green). Bottom
right : The embedding was constructed by subdividing each quadrilateral into triangles (yellow
edges) and then computing the circle packing of the resulting triangulation using [128]. (Circle
packing is a discrete form of conformal mapping [113].)
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Figure 9 – Continuation of Figure 8. Circles are colored according to the order in which they
are visited by the Peano curve.

The tightness of the associated metric space was proved in [83] and forthcoming
work [24] will prove the full convergence to the so-called stable maps.

We note that it is possible to enumerate planar maps using various types of
random matrices (see [2, 36] and the references therein for an overview). For this
reason, these models are sometimes referred to as matrix models.

5 Liouville quantum gravity

5.1 Definition

The Liouville quantum gravity (LQG) surfaces are in a certain sense the canoni-
cal model for a random two-dimensional Riemannian manifold. LQG was introduced
by Polyakov in the 1980s in the context of string theory [108, 109]. It is defined in
terms of the metric tensor

eγh(z)(dx2 + dy2) (11)

where h is an instance of (some form of) the GFF on a planar domain D, γ ∈ (0, 2]
is a parameter, and dx2 + dy2 denotes the Euclidean metric on D. The parameter γ
determines the degree to which the resulting surface is perturbed from a Euclidean
geometry : when γ = 0 one simply has a Euclidean metric but as γ increases to 2
an LQG surface becomes increasingly fractal. Since the GFF is not a function,
the expression (11) does not make literal sense and requires interpretation. The
volume form associated with (11) was first constructed in [52] for γ ∈ (0,

√
2). This
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Figure 10 – Left : Simulation of the GFF on lattice, an approximation of the continuum GFF.
Right : Simulation of the LQG measure with γ = 1. Each square shown has approximately the
same size (as measured using LQG area) but very different Euclidean sizes.

parameter range is special because it corresponds to what is now called the L2-
regime since in this case the measure that the resulting volume form assigns to any
fixed compact set has a finite second moment. It can be constructed for the full
range γ ∈ (0, 2) using Kahane’s theory of Gaussian multiplicative chaos [59]. It was
also constructed in [35] by replacing h with the function hε(z) which for z ∈ D and
ε > 0 gives the average of h on ∂B(z, ε) and then showing that the limit

εγ
2/2eγhε(z)dxdy as ε→ 0 (12)

exists where dxdy denotes Lebesgue measure. The normalization factor εγ
2/2 in (12)

is necessary in order to get a non-trivial limit. The form of the normalization can
be derived because for a GFF h we have that var(hε(z)) = log ε−1 +O(1).

In the case that h has free boundary conditions and L is a linear segment of ∂D,
it is also possible to define a boundary length measure associated with h on L. For
z ∈ L, we set hε(z) to be the average of h on D ∩ ∂B(z, ε) and then the boundary
length measure is defined as the limit

εγ
2/4eγhε(z)/2dx as ε→ 0 (13)

where dx denotes Lebesgue measure on L. The form of the normalization can
be derived because in the case of free boundary conditions on L we have that
var(hε(x)) = 2 log ε−1 +O(1) for x ∈ L.

The construction in the critical case that γ = 2 has some extra subtleties since
if one normalizes by ε2 in (12) then the limiting measure vanishes (even though the
mean of the approximations does not). To get a non-trivial limit in this case, one
has to use instead the normalization ε2(log ε−1)1/2. One has to introduce a similar
correction to (13) in order to define the critical boundary length measure. The
critical measure was first constructed in [33, 34] and it was shown in [8] to be the
limit as γ ↑ 2 of the subcritical LQG area measures.

We will discuss later the construction of the metric space structure associated
with (11) (which is what allows one to think of an LQG surface as a metric space
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homeomorphic to a planar domain rather than just a random measure on a planar
domain).

One way that the fact that the GFF is a distribution and not a function is
reflected in the theory of LQG is that the dimensions of sets computed using LQG
are not the same as their dimension computed using the Euclidean metric. For
sets X which are deterministic or more generally independent of h, the famous
KPZ formula [68] relates the dimension of X computed using LQG to its Euclidean
dimension and is given by

x =
γ2

4
∆2 +

(
1− γ2

4

)
∆. (14)

In (14), x (resp. ∆) describes the Euclidean (resp. quantum) scaling exponent. It is
non-trivial to give a precise mathematical meaning to (14) as (11) requires interpre-
tation. In particular, one has to specify the notion of dimension that one is using.
The first rigorous versions of (14) were proved in [12, 35, 111]. For example, in [35]
(14) is interpreted as meaning that the Lebesgue measure of the ε-neighborhood of X
behaves like ε2x as ε→ 0 and the quantum measure of the quantum-δ-neighborhood
behaves like δ∆ as δ → 0. Here, the quantum-δ-neighborhood is the union of all
Euclidean balls which have quantum area δ and intersect X. Since [12, 35, 111],
a number of other works have established other rigorous versions of (14), some of
which we will describe below, and make use of other notions of dimension and scaling
exponents.

Soon after the introduction of LQG and the discovery of the KPZ formula, it
was conjectured that LQG describes the continuous limit of RPM. This was made
on the basis that critical exponents for models from statistical mechanics on RPM
transform to the corresponding exponent on a Euclidean lattice according to the
KPZ formula. In [110], Polyakov himself made the following comment about this
conjecture (recall that matrix models refer to RPMs) :

A few years before this work Kazakov and David suggested that the discrete
version of 2D gravity can be described by the various matrix models. It
was hard to be certain that these models really have a continuous limit
described by the Liouville theory, there were no proofs of this conjecture.
To our surprise we found that the anomalous dimensions coming from our
theory coincide with the ones computed from the matrix model. That left
no doubts that in the case of the minimal models the Liouville description
is equivalent to the matrix one. This relation received a lot of attention.

5.2 Relationship with SLE

There are many deep connections between SLE and LQG. The first rigorous
result relating SLE and LQG is the so-called quantum zipper theorem due to Sheffield
[121]. The aim of [121] is to use the ansatz that SLE and LQG jointly describe the
scaling limit of decorated RPM where the SLE curve gives the scaling limit of the
interfaces of the loop model on the RPM as a guide for how SLE and LQG should be
related in the continuum. The main result of [121] is concerned with making sense of
the operation of gluing together two independent LQG surfaces with boundary and
showing that the interface between the two surfaces is an SLE curve. This serves
as a continuous analog of the operation of gluing together independently sampled
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RPMs with boundary along their boundaries by identifying edges. This operation
is particularly natural because the interface between two (properly chosen) RPMs
glued together along their boundaries has the interpretation of being one of the
interfaces from a statistical mechanics model on a RPM (it is the reverse of starting
with a RPM with a statistical mechanics model and then dividing the map into
pieces by cutting along an interface). The results from [121] are the starting point
for a large number of works which serve to develop the relationship between SLE
and LQG, use it make connections between RPMs, and also to prove a number of
new results about SLE and related processes.

The way that the gluing of LQG surfaces is defined in [121] is using confor-
mal welding and this indeed leads to the fourth construction of SLE mentioned in
Section 2.3. Let us review the definition of a conformal welding in the context of
gluing together two copies of the unit disk D1, D2. Suppose that φ : ∂D1 → ∂D2 is a
homeomorphism. Then a conformal welding with welding homeomorphism φ consists
of a simple loop η on S2 together with a pair of conformal maps ψ1, ψ2 which take
D1,D2 to the left and right sides of S2\η with the property that ψ−1

2 ◦ψ1|∂D1 = φ ; η
is referred to as the welding interface. One can more generally consider the conformal
welding of D1, D2 where only an interval of each of their boundaries are identified
and the result will be a disk together with a simple curve on it connecting two boun-
dary points. It is not obvious that a conformal welding exists for a given welding
homeomorphism φ and if it exists it is not obvious that it is unique.

In the setting of [121], the main result is focused on welding together LQG
surfaces (so called quantum wedges) which are “half-plane like” meaning that they
have a distinguished origin and ∞ where compact neighborhoods of the origin have
a finite amount of LQG area and neighborhoods of ∞ all have an infinite amount
of LQG area. Moreover, the welding operation considered involves identifying the
positive boundary ray of one surface with the negative boundary ray of the other
surface using LQG length. The quantum wedge considered describes the local beha-
vior of an LQG surface with boundary near a typical point chosen from the quantum
boundary length measure. This particular setting is the one which is considered as
it is the one in which the welding interface is exactly a chordal SLEκ which is inde-
pendent of the resulting LQG surface ; variants of this setup yield other types of SLE
curves. In order for the welding operation to be defined, one needs that γ ∈ (0, 2)
and κ = γ2. This result also allows one to make sense of the quantum length of an
SLEκ curve. (We remark that other works have studied random conformal weldings,
for example [9], which considers the random conformal welding associated with an
LQG surface and a Euclidean disk.)

Once one shows that a conformal welding associated with a given welding ho-
meomorphism exists, establishing the uniqueness amounts to showing that the wel-
ding interface is conformally removable. Recall that K ⊆ C is said to be conformally
removable if whenever ϕ : C → C is a homeomorphism which is conformal off K
then it is conformal everywhere. One often establishes conformal removability by
invoking one of the conditions from [58]. In the case of SLEκ for κ ∈ (0, 4), one
can use that boundaries of Hölder domains are conformally removable [58] and that
the complementary components of an SLEκ curve for κ 6= 4 are always Hölder
domains [114].

The construction from [121] was extended to include the SLEκ′ processes for
κ′ > 4 in [32] (see also [53] for the existence of the critical welding and [61] for
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the uniqueness). In the case that κ′ ∈ (4, 8), the surfaces which are to the left and
right of an SLEκ′ process do not consist of a single component but rather an entire
trees of surfaces. For κ′ > 4, the SLEκ′ is space-filling and so we can represent it
as a mating of trees. Uniqueness results in these settings were proved in [32] ; see
also [62] for a removability result for κ′ ∈ (4, 8). See just below for more on tree
mating constructions.

5.3 Mating of trees representation

The mating of trees representation of LQG [32] is a continuous analog of the tree
bijections for planar maps mentioned in Section 4.3 where the LQG surface plays
the role of the underlying RPM and the role of the extra structure on the RPM
is played by an SLE curve which is independent of the LQG surface. It serves to
provide a framework for proving scaling limit results of RPM towards LQG surfaces
decorated with SLE curves and also provides another tool for proving results about
SLE itself.

Let us now describe in more detail one of the mating of trees theorems proved
in [32]. For what we will describe it is convenient to consider the case in which we
are working with the whole-plane topology. The underlying quantum surface in this
case is called a quantum cone, which is an infinite volume LQG surface with the
topology of C with marked points at the origin and at ∞. Compact neighborhoods
of the origin a.s. have finite LQG area and neighborhoods of ∞ have infinite LQG
area. One way to think about a quantum cone is that it describes the local behavior
of an LQG surface (i.e., after “zooming in”) at a point which is chosen from the
LQG measure.

Fix γ ∈ (0, 2), κ = γ2, and κ′ = 16/γ2. The SLE process η′ that one considers
is a so-called “space-filling SLEκ′ in C from ∞ to ∞”. The most direct way to
construct this space-filling SLEκ′ process is by using a whole-plane GFF hIG which is
independent of the quantum cone. The field hIG will serve to encode an independent
“imaginary geometry”, which is the reason for the notation. It is not possible for a
whole-plane GFF to have well-defined values, so it is in fact considered modulo a
global multiple of 2πχ where χ is as in (9). For each z ∈ C, we let ηLz be the flow
line of hIG starting from z with angle π/2. For z, w ∈ C distinct, as we explained
earlier, the flow lines ηLz , ηLz will a.s. merge into each other. Then we say that z
comes before w if ηLz merges into ηLw on its left side. Suppose that (zn) is a countable
dense set in C. Then we can use this procedure to define an ordering of the (zn). It is
proved in [97] that there exists a continuous curve η′ which visits the (zn) according
to this order and this is the space-filling SLEκ′ in C from∞ to∞. One should think
of the ηLz as branches in a space-filling tree and one can likewise define a space-filling
dual tree by considering the family of flow lines ηRz starting from each z ∈ C with
angle −π/2. Then η′ is the associated Peano curve which snakes between these two
trees. In the case that κ′ ≥ 8, this process is characterized by the property that
for each t ∈ R the conditional law of η′|[t,∞) given η′|(−∞,t] is that of an SLEκ′ in
C \ η′((−∞, t]) from η′(t) to ∞. In the case that κ′ ∈ (4, 8), there are a countable
number of components of C \ η′((−∞, t]) and the characterization is that in each
of these components the curve is an SLEκ′ curve starting from the last point on
the component boundary visited by η′|(−∞,t] and targeted at the first point on the
component boundary visited by η′|(−∞,t].
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Figure 11 – Discrete approximation of the mating of trees representation of LQG. Top left : A
correlated Brownian motion (X,Y ) starting from (0, 0) and conditioned to exit R2

+ at (0, 1) for
the first time at time 1. Top right : Shown are the graphs of C−X and Y with C > 0 large enough
so they are disjoint. Identifying the points which lie on horizontal chords either below the graph
of Y or above the graph of C − X yields a pair of trees which are glued together by identifying
points which lie on vertical chords between the two graphs. Bottom : The Tutte embedding of a
discrete approximation of this equivalence relation (green) together with the Peano curve snaking
between the two trees (blue).

In order to give the space-filling tree the structure of a (non-compact) R-tree
it is necessary for each of the branches to have an associated length measure. This
measure is given by the γ-LQG boundary length measure. In order to identify the
law of the resulting R-trees in terms of their contour functions, is also important for
the associated Peano curve η′ to have a time parameterization. The correct choice
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corresponds to the γ-LQG area measure. The first “mating of trees” theorem is that
with these choices of time parameterization, the associated contour functions (X, Y )
evolve as a two-dimensional two-sided Brownian motion with X0 = Y0 = 0 and (up
to a deterministic linear reparameterization of time)

var(Xt) = |t|, var(Yt) = |t|, and cov(Xt, Yt) = − cos

(
4π

κ′

)
|t| for t ∈ R.

(The covariance cov(Xt, Yt) was identified in [32] for κ′ ∈ (4, 8] and in [40] for κ′ > 8.)
Moreover, it is shown in [32] that it is possible to recover the SLE-decorated LQG
surface, up to rotation, as a measurable function of (X, Y ). Other types of LQG
surfaces can also be described in terms of mating of trees constructions. In particular,
for finite volume surfaces such as disks or spheres the process (X, Y ) is replaced with
a two-dimensional two-sided Brownian motion “conditioned” to be in the quadrant
R2

+ (see the top left of Figure 11 for a numerical simulation in the case of the disk
topology).

The aforementioned measurable function constructed in [32] is non-explicit.
An explicit embedding was later constructed in [49] by associating with (X, Y ) a
model of a RPM (the so-called “mated-CRT map”) and then showing that the Tutte
embedding of this map converges in the scaling limit to the embedding from [32]
using an invariance principle for random walks in scale-free environments [50]. See
Figure 11 for a numerical simulation.

The work [32] also establishes a number of other welding results for SLE pro-
cesses and it is explained in [32, Appendix B] how one can use these welding results
together with the KPZ formula (14) to derive many of the critical exponents which
are associated with SLE and models which converge towards it. See also [39], which
proves a version of the KPZ formula but formulated in terms of the encoding Brow-
nian motion using the mating of trees theorem. It is also possible to derive new
exponents for SLE and related processes using their encodings in terms of Brownian
motions or more generally Lévy processes [103,104].

6 Liouville quantum gravity metric

Recall from Section 5 that the expression (11) defining LQG requires interpre-
tation and this was previously accomplished for the volume form and the boundary
length measure. In order to think of an LQG surface as an actual surface, it is
necessary to associate with it a metric, i.e., a two-point distance function. This is
also desirable in order to relate LQG to RPM as the latter are graphs which can be
encoded in terms of their associated metric space structure. The construction of the
LQG metric was first accomplished in the case that γ =

√
8/3 in [99, 101, 102] and

building further on [100] the equivalence of
√

8/3-LQG with the Brownian sphere
is proved. The existence of the metric for γ ∈ (0, 2) was later shown in [27, 46]. We
will review the former in Section 6.1 and the latter in Section 6.2.

6.1 The case γ =
√

8/3

The value γ =
√

8/3 is special because the natural statistical mechanics models
to put on a uniform RPM are percolation and the SAW. This can be seen in the case
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Figure 12 – A metric ball in
√

8/3-LQG together with geodesics from the boundary back to the
center.

of the percolation model because in the case of, e.g., site percolation the partition
function only depends on the number of vertices on the map so biasing by the
associated partition function does not change the law of the map. On the other hand,
a SAW-decorated RPM can be constructed by sampling two independent uniform
RPM with the topology of the disk and the same boundary length and then gluing
them together along their boundary ; the resulting interface is the SAW. Since the
percolation model (resp. SAW) is related to SLE6 (resp. SLE8/3), the relationship

γ2 = κ for κ ∈ (0, 4] or γ2 = 16/κ′ for κ′ > 4 yields that γ =
√

8/3 arises in each of

these cases. This is one way of arriving at the conjecture that
√

8/3-LQG should be
equivalent to the scaling limit of uniform RPM, i.e., the Brownian surfaces. Since
a Brownian surface is a random metric measure space and

√
8/3-LQG (prior to

having associated with it a metric space structure) is a random measure on a planar
domain, one has to be careful in formulating a conjecture of the equivalence of
objects of these two types. One way of going about this is to associate

√
8/3-LQG

a metric space structure and then to conjecture that the resulting metric measure
space has the same law as that of a Brownian surface. In making such a conjecture,
one also has to specify the correct law on GFF-like distributions and it is different
depending on the topology of the Brownian surface in question. In the case of the
sphere, this corresponds to the

√
8/3-LQG sphere [32] (see also [25] for another

approach to defining LQG on the sphere and [7] for a proof of their equivalence).

The construction of the metric in [99, 101, 102] is indirect and is based on a
process called quantum Loewner evolution (QLE), which was previously introduced
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in [96]. The idea of the construction is to try to make sense of a version of first

passage percolation (FPP) on a
√

8/3-LQG surface. Recall that FPP on a graph
G = (V,E) (where every vertex has finite degree to avoid pathologies) starting from
x ∈ V is the growing family of clusters Cn with C0 = {x} which are recursively
constructed as follows. For each n, we let Cn+1 be given by Cn ∪ {y} where y ∈ V
is chosen uniformly at random from those z ∈ V \Cn for which there exists w ∈ Cn
with {z, w} ∈ E. That is, Cn+1 is formed from Cn by adding to it a uniformly
chosen element from the boundary of Cn. The FPP model is particularly convenient
to consider on uniform RPM because as one grows an FPP cluster the conditional
law of the unexplored regions of the map are given by independent uniform RPMs
given their boundary lengths. The continuum version of FPP corresponding to QLE
is constructed by replacing the RPM with a

√
8/3-LQG surface and the vertices

added at each stage with chunks of SLE6 curves and then taking a limit as the size
of the chunks tends to 0. The theory developed in [32] and extended in [98] allows
one to see that, just like in the case of uniform RPMs, the conditional law of the
unexplored surface at each stage is given by independent

√
8/3-LQG surfaces given

their boundary lengths.

The aim of [99] is to show that the growth process defined by QLE corresponds
to the balls in a metric space. This is a non-trivial statement because it is not
obvious that the time for the growth process starting from x to reach y is equal to
the time for the growth process starting from y to reach x. The main result of [99]
is that this symmetry holds and this leads to the construction of a metric which
is defined on a countable dense subset of the

√
8/3-LQG sphere. It is then shown

in [101] is that this metric extends continuously to the entire
√

8/3-LQG sphere,
is Hölder continuous with respect to the Euclidean metric, and the resulting metric
space satisfies the axiomatic characterization of the Brownian sphere given in [100]
hence has the same law as the Brownian sphere.

The construction of the metric for
√

8/3-LQG and the proof of its equivalence
with the Brownian sphere made it possible to show the joint convergence of statistical
mechanics models on uniform RPM to SLE curves on

√
8/3-LQG with respect to the

Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology, which is a generalization
of the Gromov-Hausdorff-Prokhorov topology where one keeps track of either a
distinguished curve or a finite family of curves. Such convergence was proved for the
SAW on RPM to SLE8/3 on

√
8/3-LQG in [45] and for the percolation model on

RPM to SLE6 on
√

8/3-LQG in [47].

Following [99, 101], we have that the
√

8/3-LQG sphere has the structure of
the Brownian sphere but it also contains the extra structure of an embedding in the
plane (a priori the Brownian sphere does not come with this because it is only a
metric measure space). It is then shown in [102] that given just the metric measure

space structure of the
√

8/3-LQG sphere (i.e., the Brownian sphere) it is possible
to recover in a measurable way its embedding into the plane, which implies that
the Brownian sphere comes with a measurably defined embedding into the plane.
This embedding, however, is proved to exist abstractly so is non-explicit. It is then
natural to ask whether this embedding can be described in an explicit way and this
question was addressed in the works [48,50]. These works show that if one starts off
with the Brownian sphere and then constructs a graph approximation by considering
the Poisson-Voronoi tessellation then the associated Tutte embedding converges in
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the limit to the embedding which is shown to exist abstractly in [102]. (Another
approach to the embedding problem for uniform RPM was developed in [54] based
on [47].)

6.2 The case γ ∈ (0, 2)

The LQG metric for general values of γ ∈ (0, 2) was constructed in [27,46] and
the construction is based on an explicit approximation procedure. Namely, one lets

ξ =
γ

d(γ)
for each γ ∈ (0, 2) (15)

where d(γ) denotes the “ball volume growth exponent” of γ-LQG. The value of d(γ)

is only known in the case γ =
√

8/3 due to the equivalence of
√

8/3-LQG with the

Brownian sphere and in this case we have that d(
√

8/3) = 4. One then considers
the so-called Liouville first passage percolation (LFPP) distance

dε(x, y) = inf
P

∫ 1

0

eξhε(P (t))|P ′(t)|dt (16)

where the infimum is over all paths P defined on [0, 1] which connect x and y
and hε denotes a certain regularization of the GFF. It is proved in [27] that if
we let mε denote the median length of a crossing defined using (16) then the law
of (x, y) 7→ m−1

ε dε(x, y) is tight and that the subsequential limits define a non-
trivial metric which is Hölder continuous with respect to the Euclidean metric.
The work [46] then shows that the subsequential limits exist and are characterized
by a certain list of axioms. The proof in [46] makes heavy use of the confluence
of geodesics phenomenon for the γ-LQG metric established in [44]. In particular,

since the
√

8/3-LQG metric previously constructed satisfies these axioms the two

constructions give the same object for γ =
√

8/3.
Let us now explain why one uses the exponent ξ in (16) in place of, say, γ.

Suppose that Bh(x, ε) denotes a ball of radius ε with respect to the γ-LQG metric
defined in terms of the field h. Then we have that µh(Bh(x, ε)) ≈ εd(γ). Fix C ∈ R.
Then replacing h with h+ C has the effect of multiplying γ-LQG areas by eγC and
γ-LQG distances by eξC . We thus have on the one hand that

µh+C(Bh+C(x, ε)) ≈ εd(γ) as ε→ 0

(since if h is a GFF then so is h+ C) and on the other hand that

µh+C(Bh+C(x, ε)) = eγCµh(Bh(x, e
−ξCε)) ≈ eγC(e−ξCε)d(γ)

= e(γ−ξd(γ))Cεd(γ) as ε→ 0.

Equating, we see that ξ = γ/d(γ). As we mentioned earlier, d(γ) hence ξ is only

known for γ =
√

8/3.
Tightness of approximations as in (16) the existence of the limit in the super-

critical regime (ξ > 2/d(2)) was established in [28, 29]. In this case, the resulting
metric space is not homeomorphic to Euclidean space.
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7 Liouville conformal field theory

Parallel to the development of the connections between SLE and LQG has
been the mathematically rigorous construction of Liouville conformal field theory
(LCFT). This started with the construction of Liouville quantum gravity on the
sphere [25] and later in the case of other topologies [38, 55]. (We note that there
is another approach to constructing LQG on the disk and sphere developed in [32]
and the two approaches were proved to be equivalent in [7,18].) The so-called DOZZ
formula describes the 3-point correlation function for LCFT on the sphere and was
rigorously proved in [69] and the conformal bootstrap gives an inductive procedure
for obtaining higher order correlation functions and was rigorously proved for LCFT
in [37].

Several recent works have combined the results proved for LCFT, in particular
the DOZZ formula, and for SLE on LQG in order to derive a number of new expo-
nents and formulas for SLE and related processes. Some notable examples include
the derivation of the moments the conformal derivative for the SLEκ(ρ) processes [5],
the electrical thickness formula for CLEκ loops [6], and the backbone exponent CLEκ

(in particular for critical percolation) [107].
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[27] J. Ding, J. Dubédat, A. Dunlap, and H. Falconet. Tightness of Liouville first

passage percolation for γ ∈ (0, 2). Publ. Math. Inst. Hautes Études Sci.,
132 :353–403, 2020.

[28] J. Ding and E. Gwynne. Tightness of supercritical Liouville first passage
percolation. J. Eur. Math. Soc. (JEMS), 25(10) :3833–3911, 2023.

[29] J. Ding and E. Gwynne. Uniqueness of the critical and supercritical Liouville
quantum gravity metrics. Proc. Lond. Math. Soc. (3), 126(1) :216–333, 2023.
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