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Université Paris-Saclay, Centre d’Orsay
91405 Orsay Cedex, France∗

Résumé.

We discuss the random metric spaces called Brownian surfaces, which arise
as scaling limits of large graphs embedded in the sphere or in a surface of higher
genus. In particular, we give a detailed construction of the Brownian sphere, and
we briefly present recent results of Bettinelli and Miermont concerning Brownian
surfaces with holes in higher genus. We also state a few open problems and
conjectures.
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1 Introduction

The study of the random surfaces that appear as scaling limits of various models
of random graphs embedded in surfaces has aroused much interest in the probabi-
listic community in the recent years. The purpose of the present article is to des-
cribe some of these contributions, focussing on the Gromov-Hausdorff convergence
of random graphs viewed as discrete metric spaces to the continuous models we call
Brownian surfaces, and on the relations existing between these continuous models.

The idea of constructing continuous random geometries as limits of random
graphs embedded in surfaces appeared in the physics literature in the years 1980
in the setting of two-dimensional quantum gravity [32, 44, 70]. However, it took a
few more years before mathematicians got interested in this question. A pioneering
work of Chassaing and Schaeffer [25] exploited the bijection between quadrangula-
tions and labeled trees now known as the CVS bijection to derive certain asymptotic
distributions for the metric properties of the vertex set of a uniformly distributed
random planar quadrangulation with n faces (equipped with the graph distance)
when n tends to∞. In particular, this paper showed that the diameter of a random
planar quadrangulation with n faces grows like n1/4. As already mentioned in the
introduction of [25], these results strongly suggest the existence of a “Continuum
Random Map that would describe the continuum limit of scaled random quadrangu-
lations” (by the previously mentioned result, the graph distance has to be rescaled
by n−1/4). For planar triangulations instead of quadrangulations, this problem was
stated in a more precise form by Schramm in his plenary paper [71] at the 2006
ICM, in terms of the Gromov-Haudorff convergence of compact metric spaces. At
about the same time, Marckert and Mokkadem [57] proposed a candidate for the
scaling limit of planar quadrangulations, which they called the Brownian map (this
is now more commonly called the Brownian sphere). However, Marckert and Mok-
kadem could only prove a weak form of the convergence of (rescaled) random planar
quadrangulations to the Brownian sphere, and the question of proving a strong form
of this convergence in the Gromov-Hausdorff sense remained open for several years.
This problem was solved independently by Miermont [64] and the author of the
present work [49] in 2011. The paper [49] also derived a universality property of
the Brownian sphere by showing that it appears as the scaling limit of other classes
of random planar maps, including triangulations (the case discussed by Schramm),
2p-angulations for any integer p ≥ 2, and bipartite planar maps under Boltzmann
distributions. Since then, the universality class of the Brownian sphere has been ex-
tended considerably by a number of different authors, see in particular [1–3,13,58,59].
Roughly speaking, large random planar maps where the degree of faces is “not too
large” converge to the Brownian sphere. On the other hand, considering random
planar maps where the degree of faces may be very large leads to different scaling
limits [54].

As the name suggests, the Brownian sphere has the topology of the two-dimen-
sional sphere [55,62], and an obvious question is to construct Brownian surfaces with
other topologies. Bettinelli [11] considered planar quadrangulations with a boundary
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(meaning that a distinguished face called the boundary face has an arbitrary even
degree, but all other faces are quadrangles) and was able to obtain the existence of
sequential Gromov-Hausdorff limits when the boundary size grows like the square
root of the number of faces. The uniqueness of the limit, which is called the Brownian
disk and is homeomorphic to the closed unit disk, was then established by Bettinelli
and Miermont [14]. Relations between the Brownian sphere and the Brownian disk
were discussed in [50], which proves in particular that connected components of the
complement of a ball in the Brownian sphere are Brownian disks.

Another question was to obtain analogs of the Brownian sphere in higher ge-
nus. Here also, the first step is due to Bettinelli [12], who proved the existence of
sequential limits (in the Gromov-Hausdorff sense) for uniformly distributed random
bipartite quadrangulations on a surface of genus g. The uniqueness of the limit was
solved only recently in the important paper of Bettinelli and Miermont [15], which
constructs more general Brownian surfaces in arbitrary genus g, with a finite number
of boundary components (holes in the surface). This includes of course the Brownian
sphere (genus 0, no hole) the Brownian disk (genus 0, one hole), but also the Brow-
nian annulus (genus 0, two holes) discussed recently in [6], and surfaces of genus g
without holes.

Finally, non-compact versions of Brownian surfaces have also been studied in
genus 0. The Brownian plane, which may be viewed as a tangent cone in distribution
to the Brownian sphere at its distinguished point and is homeomorphic to the plane,
was introduced in the paper [28]. The Brownian plane is interpreted as the scaling li-
mit of the infinite random lattices known as the uniform infinite planar triangulation
(UIPT) [9] and the uniform infinite planar quadrangulation (UIPQ) [26, 45], which
have both been studied extensively. The Brownian half-plane, which corresponds to
the tangent cone to the Brownian disk at a boundary point and is homeomorphic
to the half-plane, appeared in [41] and [10] (the latter paper also introduces the
infinite-volume Brownian disk). It is worth noting that both the Brownian plane
and the Brownian half-plane play an important role in the paper [15] discussing
general (compact) Brownian surfaces.

In the present article, we concentrate on the Gromov-Hausdorff convergence of
rescaled discrete random maps and on the construction and properties of the limi-
ting Brownian surfaces viewed as random metric spaces. We however mention that
other approaches to the same objects have been investigated. In particular, Miller
and Sheffield [66–69] have developed a completely different approach to the Brow-
nian sphere, using a growth model called Quantum Lowner Evolution to define a
random metric on the plane. The latter metric can also be obtained as a special
case of the Liouville Quantum Gravity (LQG) metrics defined as first-passage per-
colation distances associated with the exponential of the Gaussian free field in two
dimensions. The construction of these LQG metrics was achieved in the paper [35],
and their uniqueness was proved in [43]. Finally, we mention the important recent
works dealing with the mathematical approach to Liouville conformal field theory
(see in particular [33, 38, 46]). In these works, the integrability properties of planar
Gaussian multiplicative chaoses lead to exact distributions for quantities related to
the LQG metrics. In particular the recent work [6] has computed the law of the
conformal modulus of a Brownian annulus.

The paper is organized as follows. In Section 2, we present the CVS bijection
between quadrangulations and labeled trees, which has played a major role in the de-
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velopment of the subject. The CVS bijection also helps to understand the construc-
tion of the Brownian sphere which is presented in Section 3 together with the basic
limit theorem for rescaled random planar maps (Theorem 2). We emphasize the role
of the Brownian tree in the construction, and we state some basic properties of the
Brownian sphere. We also briefly present a conjecture of Chapuy about Voronöı cells
in the Brownian sphere, which is one of the most challenging open questions in this
area. Section 4 is devoted to geodesics in the Brownian sphere. The construction
from the Brownian tree yields detailed information about geodesics from a typical
point, but we also discuss geodesics from the exceptional points called geodesic stars,
and we state a couple of open problems. In Section 5, we introduce the Brownian
disks as scaling limits of quadrangulations with a boundary. We provide a detailed
construction of Brownian disks in terms of a Poisson collection of Brownian trees. In
Section 6, we present the two basic non-compact models, namely the Brownian plane
and the Brownian half-plane. Section 7 discusses several forms of the spatial Markov
property for these compact and non-compact models. Finally, Section 8 is a brief
presentation of the recent work of Bettinelli and Miermont dealing with Brownian
surfaces in higher genus.

2 Quadrangulations and the CVS bijection

2.1 Planar maps

Recall that a planar map is a proper embedding of a finite connected multi-
graph in the two-dimensional sphere S2, and that two planar maps are identified if
they correspond via an orientation-preserving homeomorphism of the sphere. The
word “proper” means that edges are not allowed to cross. Also note that we use
“multigraph” instead of graph, meaning that we allow self-loops and multiple edges.
The example in Fig. 1 has a self-loop and a double edge.

root
edge

root
vertex

root
face

Figure 1 – A rooted triangulation with 20 faces.

Faces are the connected components of the complement of edges, or equivalently
the regions bounded by the edges. The degree of a face is the number of edges in
its boundary, with the convention that, if both sides of an edge are incident to the
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same face, this edge is counted twice in the degree of the face (for instance the face
inside the self-loop in Fig. 1 has degree 3 though there are only two edges in its
boundary). If p ≥ 3 is an integer, a planar map is called a p-angulation if all its faces
have degree p. It is a triangulation when p = 3, a quadrangulation when p = 4. The
planar map in Fig. 1 is a triangulation with 20 faces.

As a last technical point, we will consider rooted planar maps, meaning that
we have distinguished an edge and that this edge is oriented. This oriented edge is
called the rooted edge, its origin is the root vertex, and the face to the left of the
root edge is the root face (see Fig. 1). Enumeration questions, or bijections with
simpler objects such as trees are much more tractable for rooted objects because
rooting avoids problems coming from the existence of symmetries.

For every integers p ≥ 3 and n ≥ 1, we write Mp
n for the set of all rooted

p-angulations with n faces. When p is odd, Mp
n is empty for all odd integers n, so

in that case we will implicitly assume that n is even. Thanks to the identification
modulo homeomorphisms of S2, the set Mp

n is finite (there are only finitely many
“shapes”) and it thus make sense to consider a random p-angulation with n faces
which is uniformly distributed over Mp

n. Let us write Mn for such a uniformly distri-
buted p-angulation with n faces. Our aim is to understand the metric and geometric
properties of Mn when n is large.

To this end, we will view planar maps as metric space. If M is a planar map,
we denote the vertex set of M by V (M), and we equip V (M) with the usual graph
distance dMgr . The starting point of the work on scaling limits of random planar maps
was the question of the convergence of the space V (Mn), equipped with the suitably
rescaled metric dMn

gr , when n → ∞. This convergence makes sense thanks to the
Gromov-Hausdorff distance between compact metric spaces that we will introduce
in Section 3.1 below.

2.2 The Cori-Vauquelin-Schaeffer bijection

The Cori-Vauquelin-Schaeffer bijection [25,27] (in short the CVS bijection) pro-
vides a way of coding rooted quadrangulations by discrete trees equipped with in-
teger labels. The reason why the CVS bijection and its generalizations have been
so successful in the study of scaling limits of random planar maps comes from the
fact that scaling limits of discrete random trees (possibly equipped with labels)
had been studied and well understood by the probabilistic community. Let us im-
mediately mention that the CVS bijection can be extended to much more general
planar maps than quadrangulations : See in particular the paper [16] by Bouttier,
Di Francesco and Guitter, which was used in [49] to deal with triangulations and
2p-angulations. Here however, we will concentrate on the case of quadrangulations,
because the bijection with trees is easier to describe in that case.

First recall that a plane tree τ is a rooted and ordered discrete tree. Each vertex
of a plane tree can be represented as a finite word made of positive integers, in such
a way that the empty word ∅ corresponds to the root, and, for instance, the word
21 corresponds to the first child of the second child of the root. This should be clear
from the left side of Fig. 2. In view of the connection with planar maps, we may and
will assume that plane trees are drawn in the plane (or rather on the sphere) in the
way illustrated in the left side of Fig. 2, so that in particular the edges connecting
a vertex to its parent, its first child, its second child, etc., appear in clockwise order
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around that vertex.
A labeled tree is a plane tree τ , with vertex set V (τ), whose vertices are assigned

integer labels (`v)v∈V (τ) in such a way that the following two properties hold :
(i) `∅ = 0 ;
(ii) |`v − `v′ | ≤ 1 whenever v, v′ ∈ V (τ) are adjacent.

The circled figures in the left side of Fig. 2 show a possible assignment of labels. For
every n ≥ 2, let Tn stand for the set of all labeled trees with n edges.

We also need to introduce rooted and pointed quadrangulations. A rooted and
pointed quadrangulation is a rooted quadrangulation given with a distinguished
vertex (which can be any vertex, including the root vertex). For every n ≥ 2, let
M4,•

n stand for the set of all rooted and pointed quadrangulations.
The CVS bijection is a one-to-one correspondence between the sets M4,•

n and
Tn × {−1, 1}. To explain this correspondence, let us start from a labeled tree
(τ, (`v)v∈V (τ)) in Tn and a sign ε ∈ {−1,+1}. We need to consider corners of the tree
τ : A corner incident to a vertex v of τ is an angular sector between two successive
edges incident to v. By convention, the root corner c0 is the corner “below” the
root vertex. The set of all corners is given a cyclic ordering by moving clockwise
around the tree : starting from the root corner c0, the 2n corners can be listed as
c0, c1, . . . , c2n−1 in cyclic ordering, as shown in the middle part of Fig. 2. We finally
agree that every corner inherits the label of the vertex to which it is incident.

0

1−1

10

0−1−1

−1

0

1−1

10

0−1−1

−1

−2v∗

∅

1 2

21

211 212

2121

22

221

0

1−1

10

0−1−1

−1

c0

c1
c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

Figure 2 – The CVS bijection. Left : a labeled tree with 8 edges. Middle : the sequence
c0, c1, . . . , c15 of corners enumerated in cyclic order. Right : the edges of the associated rooted
and pointed quadrangulation with 8 faces (case ε = −1).

From the labeled tree (τ, (`v)v∈V (τ)), we can construct a rooted and pointed
quadrangulation M as follows. First, the vertex set of M is the union of the vertex
set of τ and an extra vertex v∗, which by convention is assigned the label

`v∗ = min
v∈V (τ)

`v − 1.

Then, in order to obtain the edges of the quadrangulation M , we proceed in the
following way. For every corner c of τ , with label `c, we draw an edge starting from
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this corner and ending at the next corner of τ (next refers to the cyclic ordering)
with label `c − 1 — this corner will be called the successor of c. This makes sense
unless `c is equal to the minimal label on the tree τ , in which case we draw an edge
starting from c and ending at v∗. All these edges can be drawn, in a unique manner
(up to homeomorphisms of the sphere), in such a way that they do not cross and
do not cross the edges of τ , and the resulting planar map is a quadrangulation (see
Fig. 2 for an example).

We still have to define the root of the quadrangulation M and its distinguished
vertex. The root edge is the edge starting from c0 and ending at the successor of c0,
and its orientation is determined by the sign ε : The root vertex is ∅ if and only if
ε = +1. Finally the distinguished vertex of M is v∗, and we have indeed obtained a
rooted and pointed quadrangulation.

Proposition 1 The preceding construction yields a bijection from Tn × {−1, 1} onto
Mn,•

4 . Moreover, if the roooted and pointed quadrangulation M is the image of the pair
((τ, (`v)v∈V (τ)), ε) under this bijection, the vertex set V (M) is canonically identified
with V (τ)∪{v∗} where v∗ is the distinguished vertex of M , and with this identification
we have, for every v ∈ V (τ),

dMgr (v∗, v) = `v − min
u∈V (τ)

`u + 1. (1)

Let us explain why property (1) holds. Let v be a vertex of M distinct from
v∗, so that v is identified to a vertex of τ . Choose any corner c incident to v in the
tree τ . The construction of edges in the CVS bijection shows that there is an edge
connecting c to a corner c′ of a vertex v′ with label `v − 1. But similarly, there is an
edge of M connecting the corner c′ of v′ to a corner of a vertex with label `v − 2.
We can continue inductively, and we get a path in M of length `v − minu∈V (τ) `u
connecting v to a vertex with minimal label, which itself (by the rules of the CVS
bijection) is adjacent to v∗ in M . In this way we get the upper bound

dMgr (v∗, v) ≤ `v − min
u∈V (τ)

`u + 1.

The corresponding lower bound is also very easy, using the fact that |`v − `v′ | = 1
whenever v and v′ are adjacent in M , again by the construction of the CVS bijection.

Note that (1) only gives information about distances from the distinguished
vertex v∗, which is far from sufficient if one is interested in the Gromov-Hausdorff
convergence we will discuss. If v and v′ are two arbitrary vertices of M , there is
however a useful upper bound for the graph distance dMgr (v, v′). To state this bound,
recall that c0, c1, . . . , c2n−1 is the sequence of corners of the tree τ associated with
M listed in the cyclic ordering, which was already used in the definition of the CVS
bijection. For every i ∈ {0, 1, . . . , 2n− 1}, let vi be the vertex corresponding to the
corner vi. Then, if 0 ≤ i < j ≤ 2n− 1, we have

dMgr (vi, vj) ≤ `vi + `vj − 2 max
(

min
k∈[i,j]

`vk , min
k∈[j,2n−1]∪[0,i]

`vk

)
+ 2. (2)

The proof is easy. Consider the path γ from the corner ci to v∗ constructed as in the
proof of (1), and the similar path from the corner cj. A simple argument shows that
these two geodesic paths coalesce at a vertex whose label is the maximum appearing
in (2) minus 1. The concatenation of these two paths up to their coalescence time
thus gives a path from vi to vj whose length is the right-hand side of (2).
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3 The Brownian sphere as the limit of rescaled planar maps

3.1 The Gromov-Hausdorff distance

To make sense of the convergence of rescaled discrete planar maps to a conti-
nuous object, we will use the Gromov-Hausdorff distance between compact metric
spaces, which we now introduce (we refer to [21] for a more detailed presentation).
We first recall that, if K1, K2 are two compact subsets of a metric space (E, d), the
Hausdorff distance between K1 and K2 is defined by

dEHaus(K1, K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}

where Uε(K1) = {x ∈ E : d(x,K1) ≤ ε} is the ε-enlargement of K1.

Definition 1 (Gromov-Hausdorff distance) Let (E1, d1) and (E2, d2) be two compact
metric spaces. The Gromov-Hausdorff distance between E1 and E2 is

dGH(E1, E2) = inf{dEHaus(ψ1(E1), ψ2(E2))}

where the infimum is over all isometric embeddings ψ1 : E1 → E and ψ2 : E2 → E
of E1 and E2 into the same metric space (E, d).

Let K stand for the set of all compact metric spaces, where as usual two com-
pact metric spaces are identified if they are isometric. Then the Gromov-Hausdorff
distance dGH is a metric on K, and furthermore (K, dGH) is complete and separable.
In other words, (K, dGH) is a Polish space, which makes it especially suitable to
study the convergence in distribution of random variables with values in K.

One can prove that a sequence (En) of compact metric spaces converges to a
limiting space E∞ in K if and only if all spaces En and the limit E∞ can be embedded
isometrically in the same metric space E in such a way that the convergence holds
in the sense of the Hausdorff distance.

There are many variants of the Gromov-Hausdorff distance involving metric
spaces marked with one or several distinguished points (or more generally one or
several closed subsets) and equipped with one or several Borel measures. These
variants can be used to give stronger forms of the convergence theorems that will
be stated below, especially in Section 8. For the sake of simplicity, we will content
ourselves with the Gromov-Hausdorff distance defined as above.

3.2 Convergence to the Brownian sphere

Let p ≥ 3 be an integer, and let Mn be a uniformly distributed p-angulation
with n faces (recall that n is even when p is odd). We will now state the convergence
in distribution of (Mn, n

−1/4dMn
gr ) Note that we rescale the graph distance dMn

gr by

the factor n−1/4. The reason for this rescaling is easily understood (at least for the
case p = 4 of quadrangulations) using the CVS bijection. In this bijection, distances
from the distinguished point are of the same order as labels on the associated labeled
tree (cf. formula (1)), but since the height of a plane tree with n edges is of order√
n and since labels evolve like random walk along the tree, it is intuitively clear

that labels are typically of order
√√

n = n1/4.
The following theorem was obtained in the case p = 4 by Miermont [64] and

independently in [49] for the cases p = 3 and p even, and finally by Addario-Berry
and Albenque [3] in the case of odd p ≥ 5.
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Theorem 2 (The scaling limit of p-angulations) There exists a constant cp > 0 such
that we have the following convergence in distribution,

(V (Mn), cp n
−1/4 dMn

gr )
(d)−→
n→∞

(m∞, D)

in the Gromov-Hausdorff sense. The limit (m∞, D) is a random compact metric
space (that is, a random variable with values in K) that does not depend on p and
is called the Brownian sphere.

We note that the role of the scaling constants cp in the theorem is only to ensure
that the limit does not depend on p. With the normalization of m∞ that will be
given below, one has the explicit expressions :

c3 = 61/4 , cp =
( 9

p(p− 2)

)1/4

if p is even.

There is no such formula when p ≥ 5 is odd.

Figure 3 – A large planar triangulation represented in space (simulation : N. Curien).

To get a better understanding of the convergence in distribution stated in the
theorem, one may use a classical representation theorem of Skorokhod. According
to this theorem, one can couple all planar maps Mn in such a way that the conver-
gence (V (Mn), cp n

−1/4 dMn
gr ) −→ (m∞, D) now holds almost surely for the Gromov-

Hausdorff distance : By a preceding observation, this implies that we can embed
isometrically all spaces (V (Mn), cp n

−1/4 dMn
gr ), as well as the limit (m∞, D), into the

same metric space (E,∆), in such a way that V (Mn) converges to m∞ in the sense
of the Hausdorff distance between compact subsets of (E,∆).

In much of the previous work in this area, the Brownian sphere is called the
Brownian map after Marckert and Mokkadem [57] who obtained a weak form of
the theorem in the case of quadrangulations. The name “Brownian sphere” however
seems more appropriate in view of Theorem 4 below and of the related objects called
the Brownian disk and the Brownian plane that we shall discuss later.

The fact that the limit does not depend on p is of course an important feature of
Theorem 2. Roughly speaking, it means that at large scales the metric properties of
a typical (large) planar map are the same if this planar map is a triangulation, or a
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quadrangulation, or a p-angulation. This is the universality property of the Brownian
sphere, which has been confirmed in many subsequent works : In particular, analogs
of Theorem 2, always with the same limit (m∞, D) hold for general planar maps with
a fixed number of edges [13], for bipartite planar maps with a fixed number of edges
[1], for simple triangulations or quadrangulations (where self-loops and multiple
edges are not allowed) [2], for planar maps with a prescribed degree sequence [58],
etc. We also mention that results similar to Theorem 2 hold if the graph distance
is replaced by a “local modification” : The paper [29] considers the so-called first-
passage percolation distance on random triangulations (independent random weights
are assigned to the edges and the distance between two vertices is the minimal total
weight of a path between them). Perhaps surprisingly, this local modification does
not change the scaling limit, which is still the Brownian sphere up to a deterministic
scale factor for the distance.

It is implicit in Theorem 2 that the limit (m∞, D) is not the degenerate space
with a single point. We make this more explicit in the following two theorems that
give some useful information about the Brownian sphere.

Theorem 3 ( [47]) The Hausdorff dimension of (m∞, D) is almost surely equal to
4.

Theorem 4 ( [55,62]) The compact metric space (m∞, D) is almost surely homeo-
morphic to the 2-sphere S2.

Both these theorems can be deduced from the construction of the Brownian
sphere from Brownian motion indexed by the Brownian tree that will be given
below. The proof of Theorem 3 is in fact relatively easy, but that of Theorem 4 is
more intricate (in [55], the proof relies in part on an old theorem of Moore giving
conditions for a quotient space of the sphere to be homeomorphic to the sphere).

Since planar maps are defined as graphs embedded in the sphere, and since we
take a limit where the number of vertices tends to infinity, it is maybe not surprising
that the limiting metric space has the topology of the sphere. Still, Theorem 4 im-
plies a non-trivial combinatorial fact about the non-existence of small “bottlenecks”
in a large planar map : Informally, for a random triangulation with n faces, the
probability that there exists a cycle with length o(n1/4) such that both sides of the
cycle (meaning both components of its complement) have a diameter greater than
δn1/4, for some fixed δ > 0, will tend to 0 as n→∞. The question of the existence
of small separating cycles in random planar maps has been investigated recently in
connection with isoperimetric inequalities [53].

3.3 The construction of the Brownian sphere

We will now explain the construction of the Brownian sphere (m∞, D) appearing
in Theorem 2. The approach that we will describe, which is essentially due to Markert
and Mokkadem [57], was the first construction of the Brownian sphere, but we
emphasize that other approaches, which we do not discuss here, have been developed
since : see [67–69] for a construction via the Quantum Loewner Evolution, and [35]
and [43] for the construction and uniqueness of the Liouville quantum gravity metric
(a special case of which is related to the Brownian sphere metric).

Our construction of the Brownian sphere is a kind of continuous analog of the
CVS bijection described in Section 2.2. The role of the (discrete) labeled trees will



Gravité Quantique, Vol. XXIV, 2023 Geometry of Brownian surfaces 11

be played by a continuous random tree (called the Brownian tree) equipped with
real labels, which evolve according to Brownian motion along the line segments of
the tree — this is similar to the discrete setting where labels evolves like a random
walk along the tree. The distance on the Brownian sphere will satisfy properties
analogous to (1) and (2). In contrast with the discrete setting, the set m∞ will not
exactly coincide with the set of points on the (continuous) tree, because we will need
to make certain identifications.

3.3.1 The Brownian tree

Let us start by introducing the Brownian tree. Recall that an R-tree is a metric
space (T , d) such that, for every a, b ∈ T there is, up to reparameterization, a unique
continuous injective path γ from a to b, and the range of γ (called the line segment
between a and b) is isometric to the line segment [0, d(a, b)]. An R-tree T is rooted
if there is a distinguished point ρ ∈ T , which is called the root.

We will consider only compact R-trees, and we will use the fact that such trees
can be coded by continuous functions. Let σ > 0, and let h : [0, σ] → R+ be a
nonnegative continuous function on [0, σ] such that h(0) = h(σ) = 0. For every
s, t ∈ [0, σ], we set

dh(s, t) := h(s) + h(t)− 2 min
s∧t≤r≤s∨t

h(r).

We note that dh is a pseudo-metric on R+ (this means that dh satisfies all properties
of a distance, except that we may have dh(s, t) = 0 for some s 6= t). We then
introduce the associated equivalence relation on [0, σ], defined by setting s ∼h t if
and only if dh(s, t) = 0, or equivalently

h(s) = h(t) = min
s∧t≤r≤s∨t

h(r).

Then, dh induces a distance on the quotient space [0, σ]/ ∼h. Moreover, one can
verify [36] that the quotient space Th := [0, σ]/∼h equipped with the distance dh is
a compact R-tree.

The R-tree (Th, dh) is called the tree coded by h. The canonical projection from
R+ onto Th is denoted by ph. By definition, Th is rooted at ρh = ph(0). In addition,
we equip Th with a volume measure, which is defined as the pushforward of Lebesgue
measure on [0, σ] under ph.

Remark. It is not hard to verify that any compact R-tree can be represented as Th
for some (not unique) function h.

The coding by a function makes it possible to define “lexicographical” intervals
on the tree. Let us explain this. If s, t ∈ [0, σ] and s > t, we make the convention
that [s, t] = [s, σ] ∪ [0, t] (of course, if s ≤ t, [s, t] is the usual interval). If a, b ∈ Th,
there is a smallest “interval” [s, t] with s, t ∈ [0, σ] (but not necessarily s ≤ t) such
that ph(s) = a and ph(b) = t, and we then set [a, b] = ph([s, t]). Note that [a, b] is
typically different from [b, a]. Intuitively, [a, b] is the set of all points of Th that are
visited when going from a to b around the tree in “clockwise order”.

Let us now randomize h. We let e = (et)0≤t≤1 be a normalized Brownian ex-
cursion. Informally, this means that e is distributed as a linear Brownian motion
started at 0 at time 0, conditioned to be back at 0 at time 1 and to stay positive
over the interval (0, 1).
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Definition 2 The (standard) Brownian tree is the tree Te coded by e = (et)0≤t≤1.

Up to an unimportant scaling factor 2 for the distance, the Brownian tree
coincides with the Continuum Random Tree introduced by Aldous [4,5], which has
been shown to be the scaling limit of many different classes of discrete random trees,
and in particular of the uniformly distributed plane trees considered in Section 2.2.

3.3.2 Brownian labels on the Brownian tree

In a way analogous to the labeled trees of Section 2.2, we now need to assign
(real) labels to the points of the Brownian tree Te. Recall our notation ρe = pe(0)
for the root of Te. Informally, if we condition on the tree Te, or equivalently on e, we
can introduce a collection (Za)a∈Te , which is a centered Gaussian process vanishing
at the root (Zρe = 0), whose (conditional) covariance structure is determined by

E[(Za − Zb)2 | e] = de(a, b), a, b ∈ Te.
In a mathematically more precise way, we start from a random process (Yt)t∈[0,1]

which, conditionally given e, is centered Gaussian with (conditional) covariance

E[YsYt | e] = min
s∧t≤r≤s∨t

er, s, t ∈ [0, 1].

Then a.s. de(s, t) = 0 implies Ys = Yt, and thus, for every a ∈ Te, we can define
Za = Ys whenever a is the equivalence class of s in the quotient space Te = [0, 1]/∼e.
We view Za as a label assigned to the point a of Te. Labels evolve like linear Brownian
motion when moving along a line segment of the tree Te — this is of course similar
to the assignment of labels in discrete labeled trees.

3.3.3 Defining the Brownian sphere

Recall the Brownian tree Te and the collection of labels (Za)a∈Te . Also recall
that, for every a, b ∈ Te, we can define an “interval” [a, b], which we interpret as the
set of all points of Te that are visited when going from a to b around the tree in
“clockwise order”.

We then set, for every a, b ∈ Te,

D◦(a, b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)
. (3)

The right-hand side of (3) is a continuous analog of the right-hand side of the bound
(2).

We note that D◦(a, b) = 0 if and only if

Za = Zb = max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)
, (4)

which informally means that a and b have the same label and that we can go from
a to b around the tree (clockwise or counterclockwise) visiting only points whose
label is at least as large as the label of a and b. We then let D(a, b) be the largest
symmetric function of the pair (a, b) that is bounded above by D◦(a, b) and satisfies
the triangle inequality : For every a, b ∈ Tζ ,

D(a, b) = inf
{ k∑

i=1

D◦(ai−1, ai)
}
, (5)
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where the infimum is over all choices of the integer k ≥ 1 and of the elements
a0, a1, . . . , ak of Tζ such that a0 = a and ak = b. Then, D is a pseudo-metric on Te,
and therefore we can consider the associated equivalence relation : for a, b ∈ Te,

a ≈ b if and only if D(a, b) = 0.

One can also prove [47] that D(a, b) = 0 holds if and only if D◦(a, b) = 0 (the “if”
part is trivial), and thus a ≈ b is equivalent to the property (4).

Definition 3 The (standard) Brownian sphere is the quotient space m∞ := Te/ ≈
equipped with the distance induced by D, for which we keep the same notation D.

In contrast with the discrete CVS bijection, we need to make certain identifi-
cations in the tree Te to get the Brownian sphere. However, in a sense, we do not
make many identifications : it is not hard to check that the equivalence class of a
typical point of Te is a singleton, and moreover equivalence classes can contain at
most 3 points. Still these identifications drastically change the topology, since m∞
has the topology of the sphere (Theorem 4).

We will write Π for the canonical projection from Te onto m∞. The Brownian
sphere comes with two distinguished points. The first one is x∗ = Π(a∗), where a∗
is the (unique) element of Te with minimal label,

Za∗ = min
a∈Te

Za.

The second one is x0 = Π(ρe), where we recall the notation ρe for the root of Te.
Let us briefly explain why the CVS bijection makes this definition of the Brow-

nian sphere as the scaling limit of random quadrangulations at least plausible. Since
vertices of quadrangulations correspond to vertices of the associated tree in the
CVS bijection, and it is well known that the scaling limit of discrete plane trees
is the Brownian tree, it is not surprising that points of the Brownian sphere can
be represented by points of the Brownian tree. However, we need to make certain
identifications in the Brownian tree, which can be explained as follows. A simple
argument shows that, in a large quadrangulation, there exist pairs of vertices of the
associated tree which are at a macroscopic distance in the tree and still linked by
an edge of the quadrangulation. Since distances are rescaled by a factor tending to
0, such a pair of vertices has to be identified in the scaling limit.

We can also provide a heuristic explanation of the formula for the distance D.
We first note that

D(a, b) ≥ |Za − Zb| (6)

as an immediate consequence of the similar bound for D◦. Then, it follows from our
definitions and the choice of a∗, that

D(a∗, a) ≤ D◦(a∗, a) = Za − Za∗ .

Comparing with (6), we get that, for every a ∈ Te

D(a∗, a) = Za − Za∗ . (7)

This is clearly the analog of formula (1) in the discrete setting of the CVS bijection.
Then, let x, y ∈m∞ and a, b ∈ Te such that x = Π(a) and y = Π(b). In the same

way as we intepreted the right-hand side of (2) as the length of the concatenation of
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two geodesic paths to v∗, we can interpret the quantity D◦(a, b) as the length of the
path from x to y in m∞ obtained by concatenating two geodesics, respectively from
x to x∗ and from y to x∗, up to the time when they coalesce (a complete description
of geodesics to x∗ and their coalescing properties is given in Section 4 below). This
justifies the fact that the Brownian sphere distance is bounded above by D◦(a, b),
hence by D(a, b) since it has to satisfy the triangle inequality. Of course, proving
that the Brownian sphere distance is indeed equal to D∞(a, b) requires much more
work : Roughly speaking, one needs to verify that a geodesic from x to y can be
approximated by the concatenation of paths that are portions of geodesics to x∗
(see [64] or [49]).

The volume measure on m∞ is the pushforward of the volume measure on Te
under the canonical projection. One can prove that the two distinguished points x∗
and x0 are independently uniformly distributed according to the volume measure.
In a precise form, this means that the law of the two-pointed compact metric space
(m∞, D, x∗, x0) remains the same if one replaces x∗ and x0 by two independent
points distributed according to the volume measure.

3.4 k-point functions and Voronöı cells

Following ideas of Gromov, a convenient way to characterize the distribution
of the Brownian sphere as a random metric space equipped with a volume measure
would be to compute explicitly the k-point functions. Here, for every integer k ≥ 2,
the k-point function is the distribution of the collection

(D(yi, yj))1≤i<j≤k

where the points y1, . . . , yk are chosen independently according to the volume mea-
sure on m∞.

Let us first consider the case k = 2. Then, as was mentioned above, we can take
y1 = x∗ and y2 = x0, and we have

D(y1, y2) = D(x∗, x0) = −Za∗

where the last equality follows from (7). So the two-point function is just the distri-
bution of

|Za∗ | = | inf{Za : a ∈ Te}|.

Using connections between Brownian labels on the Brownian tree and certain se-
milinear partial differential equations, Delmas [34] found the explicit formula : for
every β > 0 and λ > 0,∫ ∞

0

dr

r3/2
e−λr P(D(x∗, x0) > β r−1/4) =

6
√
π
√
λ

(sinh((2λ)1/4β))2
,

and this formula characterizes the two-point function.
In a remarkable paper [17], Bouttier and Guitter were able to analyse the three-

point function of large random quadrangulations, thus characterizing in the conti-
nuous limit the three-point function of the Brownian sphere (see also [37] for the
analogous result for general planar maps). Unfortunately, it seems hopeless to extend
these calculations to other values of k.
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Voronöı cells in the Brownian sphere. We conclude this section with the presenta-
tion of an intriguing open problem concerning Voronöı tesselations in the Brownian
sphere. Let k ≥ 2, and suppose again that y1, . . . , yk are chosen independently ac-
cording to the volume measure on m∞. Then, the i-th Voronöı cell is defined by

Ci := {y ∈m∞ : D(y, yi) < D(y, yj) for every j 6= i}.

Conjecture (Chapuy [24]). The distribution of the k-tuple

(Vol(C1), . . . ,Vol(Ck))

is uniform over the simplex {(r1, . . . , rk) ∈ [0, 1]k : r1 + · · ·+ rk = 1}.
This conjecture was motivated by certain moment calculations [24] which are

consistent with the conjectured distribution. It is also worth noting that the analo-
gous result for the Brownian tree has been proved.

At the cost of heavy calculations, the special case k = 2 of Chapuy’s conjecture
has been proved by Guitter [39]. Still it seems that we are very far from the solution
for general k. The main reason why a direct approach in the continuous setting is
difficult is the fact that our construction of the Brownian sphere gives insight in
distances from one typical point (cf. formula (7)) but cannot handle simultaneously
distances from several typical points. In relation with this remark, it might be pos-
sible to use Miermont’s work [63], which gives analogs of the CVS bijection involving
distances from several points of the quadrangulation.

3.5 The free Brownian sphere

By construction, the Brownian sphere has a total volume equal to 1. It turns
out that it is also useful to consider a variant of the Brownian sphere where the total
volume is random. To this end, it suffices to imitate the preceding construction, just
replacing the normalized Brownian excursion e (with duration 1) by an excursion
distributed according to the so-called Itô excursion measure (with random duration).

To define the Itô excursion measure, first introduce the Brownian scaling ope-
rator. For every λ > 0 and every continuous function g : [0, σ] −→ R, the function
ϕλ(g) : [0, λσ] −→ R is defined by

ϕλ(g)(t) =
√
λ g(

t

λ
).

Also, let E stand for the set of all excursions, that is, of all continuous functions
e : [0, σ] −→ R+ such that e(0) = e(σ) = 0 and e(t) > 0 for every t ∈ (0, σ). Then,
the (infinite) Itô measure n(de) is the measure on E defined by∫

F (e)n(de) =

∫ ∞
0

E[F (ϕ`(e))]
d`

2
√

2π`3
.

We can then construct the free Brownian sphere (mfree
∞ , Dfree) from an excursion

e distributed according to n(de), by exactly the same method, starting from the tree
Te coded by e, assigning Brownian labels to the points of this tree, and defining the
analogs of the functions D◦ and D, and then the quotient space mfree

∞ := Te/≈. It
turns out that the free Brownian sphere has nicer spatial Markov properties than
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the standard Brownian sphere, but the price to pay is to work under un infinite
measure instead of the usual probability space setting.

As a final remark, one can state an analog of Theorem 2 with convergence to
the free Brownian sphere. For instance in the case of quadrangulations, the idea
is to consider quadrangulations with a random number of faces (instead of a fixed
number n in Theorem 2) such that the probability of a given quadrangulation with
k faces is proportional to 12−k (here 12 is the critical value for which we can define
such a probability measure).

4 Geodesics in the Brownian sphere

As a limit of (rescaled) planar maps equipped with the graph distance, the
Brownian sphere is a geodesic space, meaning that any two points are connected by
a geodesic path. Geodesics in the Brownian sphere exhibit a number of remarkable
properties. We start by describing geodesics to the special point x∗, noting that
similar properties will hold if x∗ is replaced by a point chosen at random according
to the volume measure. Recall our notation Π for the canonical projection from the
tree Te onto the Brownian sphere m∞.

Let x ∈ m∞, and write x = Π(a) for a ∈ Te. The basic idea to construct a
geodesic from x to x∗ is to explore the tree Te from the point a in counterclockwise
order, and to record, for every r ∈ [Za∗ , Za], the first visited point with label r. The
collection of (the images under Π of) these points forms a geodesic from x to x∗ —
recall from formula (7) that D(x∗, x) = Za − Za∗ . To make this more precise, let
s ∈ [0, 1) such that pe(s) = a, and recall the process (Yt)t∈[0,1] introduced in Section
3.3.2 to define labels on Te (in particular Ys = Za). For every r ∈ [0, Za − Za∗ ], set

ψs(r) =

{
sup{t ∈ [0, s] : Yt = Za∗ + r} if {t ∈ [0, s] : Yt = Za∗ + r} 6= ∅,
sup{t ∈ [s, 1] : Yt = Za∗ + r} otherwise.

Then, it is not hard to verify that the curve

[0, Za − Za∗ ] 3 r 7→ Γs(r) := Π ◦ pe(ψs(r))

is a geodesic from x∗ to x. This is indeed a continuous analog of the construction of
geodesics of quadrangulations via the CVS bijection that was outline after Proposi-
tion 1. We call such a geodesic a simple geodesic. In fact, we obtain in this way all
geodesics to the distinguished point x∗.

Theorem 5 [48] All geodesics that end at x∗ are simple geodesics.

This result was a key ingredient of the proof of the uniqueness of the Brownian
sphere in [49]. We observe that, if x and a such that Π(a) = x are given, there may
be several choices for s ∈ [0, 1) such that pe(s) = a (the choice of s is unique only if
a is a leaf of Te). When a is not a leaf, there are typically two possible choices for s
(three when a is a branching point of Te) and these choices lead to different simple
geodesics. On the other hand, the choice of a such that Π(a) = x may also not be
unique, but the identifications in the Brownian sphere show that changing a does
not lead to a different geodesic.

To summarize the preceding discussion, let the skeleton of Te be the set of all
points of Te that are not leaves. Then the cut-locus of the Brownian sphere relative
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to the distinguished point x∗ (that is, the set of all points that are connected to x∗
by at least two different geodesics) is exactly the image under Π of the skeleton of Te.
There is a striking analogy between this result and classical results in the geometry
of Riemannian surfaces, where one proves that the cut-locus is always a tree. We
also observe that the dimension of the skeleton of Te is 1 (whereas the dimension of
Te is 2) and one can infer that the dimension of the cut-locus is 2, in contrast with
the dimension 4 of the Brownian sphere.

Furthermore, it is easy to verify from the preceding considerations that the cut-
locus (relative to x∗) has zero volume, which means that if x is a typical point of m∞,
there is a unique geodesic from x to x∗, and more generally there is a unique geodesic
between two typical points of m∞ (here “typical” means chosen according to the
volume measure). The latter result had been obtained earlier by Miermont [63], in
fact in a more general setting.

Theorem 5 has another important consequence, namely the so-called “confluence
property of geodesics”.

Corollary 6 [48] Two geodesic paths to x∗ coalesce before hitting x∗.

In other words, if γ and γ′ are two (non-trivial) geodesic paths starting from x∗,
there exists ε > 0 such that γ(t) = γ′(t) for every t ∈ [0, ε]. The proof of the corollary
is easy from Theorem 5. With the previous notation, we can assume that γ = Γs and
γ′ = Γs′ for some s, s′ ∈ [0, 1]. Recall our special convention for the “intervals” [s, s′]
and [s′, s] that was explained in Section 3.3.1 to define lexicographical intervals on
Te. The construction of simple geodesics then ensures that Γs(t) = Γs′(t) whenever

t ≤ max
(

min
u∈[s,s′]

Yu, min
u∈[s′,s]

Yu

)
− Za∗

and the max in the right-hand side is greater than Za∗ because one of the two
“intervals” [s, s′] and [s′, s] does not contain the (unique) minimizing time t∗ such
that Yt∗ = Za∗ .

Corollary 6 remains valid if x∗ is replaced by a typical point of the Brownian
sphere. There are however exceptional points where the property of Corollary 6
fails — it obviously fails if x∗ is replaced by an interior point of a geodesic. These
exceptional points are called geodesic stars.

Definition 4 Let n ≥ 2 be an integer. A point x of the Brownian sphere is called a
geodesic star if there exist ε > 0 and n geodesic paths γ1, . . . , γn parametrized by the
interval [0, ε] such that γ1(0) = · · · = γn(0) = x, but the sets {γj(t) : t ∈ (0, ε]},
j = 1, . . . , n, are disjoint.

Geodesic stars were introduced in [64] where they play an important role in the
proof of the uniqueness of the Brownian sphere.

Theorem 7 Let n ∈ {2, 3, 4}. The dimension of the set of all geodesic stars with n
arms is equal to 5− n.

The upper bound for the dimension was obtained in [65], and the lower bound
was proved in [52]. The paper [65] also proves that geodesic stars with n arms do
not exist when n ≥ 6. This leaves the following open problem.
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Open problem. Is the set of geodesic stars with 5 arms nonempty ? According to [65],
if this set is nonempty, its Hausdorff dimension is 0.

Thanks in particular to the papers [8] and [65], we now know a lot about geo-
desics in the Brownian sphere (see also Bouttier and Guitter [18,19] for a discussion
of geodesics in large quadrangulations). However, there remain some intriguing pro-
blems, and in particular the following one, which was communicated to the author
by Omer Angel.

Open problem. Can one find ε > 0 and two geodesic paths γ and γ′ parameterized
by the interval [0, ε] such that the following holds : there exists r ∈ (0, ε) such that
γ(r) = γ′(r) and the two sets {γ(t) : t ∈ [0, ε]} and {γ′(t) : t ∈ [0, ε]} intersect only
at the point γ(r) ?

In other words, can two geodesic paths in the Brownian sphere have a “proper”
crossing ? If they do, the crossing point will be a geodesic star with 4 arms, but of
a very special type so that it is very likely that such points do not exist. A precise
argument is however still missing.

5 Planar maps with a boundary and Brownian disks

5.1 Quadrangulations with a boundary

For simplicity, we restrict our attention to quadrangulations in this section,
although similar results hold for more general planar maps, in particular for trian-
gulations.

A quadrangulation with a (general) boundary is a rooted planar map Q such
that all faces but the root face (lying to the left of the root edge) have degree 4. The
root face is also called the outer face and the other faces are the inner faces. The
degree of the outer face, which is an even integer, is then called the boundary size
or the perimeter of Q.

Figure 4 – A quadrangulation with a boundary of size 16.

For every integer k ≥ 1, we denote the set of all quadrangulations with boundary
size 2k by Q∂,k. For every integer n ≥ 0, the subset of Q∂,k consisting of those
quadrangulations q that have n inner faces is denoted by Q∂,k

n . Then, for every
k ≥ 1, there is a constant bk > 0 such that

#Q∂,k
n ∼

n→∞
bk 12n n−3/2.
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See formula (4) in [31].
A random variable B(k) with values in Q∂,k is called a Boltzmann quadrangu-

lation with a boundary of size 2k if, for every integer n ≥ 0 and every Q ∈ Q∂,k
n ,

P(B(k) = Q) = b̃k 12−n,

where b̃k > 0 is the appropriate normalizing constant so that the sum of the quan-

tities b̃k 12−n over all choices of n and Q is equal to 1.
The following theorem is proved in [14].

Theorem 8 Let B(k) be a Boltzmann quadrangulation with a boundary of size 2k, for

every k ≥ 1. Let d
B(k)
gr denote the graph distance on the vertex set V (B(k)). Then(

V (B(k)),

√
3

2
k−1/2 d

B(k)
gr

)
(d)−→
k→∞

(D1, D
∂)

where the convergence holds in distribution in the Gromov-Hausdorff space (K, dGH).
The limit (D1, D

∂) is a random compact metric space called the free Brownian disk
with perimeter 1.

For every r > 0, the free Brownian disk with perimeter r, denoted by (Dr, D
∂)

can then be defined by scaling :

(Dr, D
∂)

(d)
= (D1,

√
r D∂).

One proves [11] that the (free) Brownian disk is homeomorphic to the closed
unit disk of the plane, which makes it possible to define the boundary ∂D1.

5.2 The construction of the Brownian disk

In this section, we recall the construction of (free) Brownian disks. Our presen-
tation is slightly different from the one in [14].

The general idea is the same as for the construction of the Brownian sphere,
but instead of considering a single Brownian tree Te, we need to introduce a Poisson
collection of such trees, which will be rooted on a “floor” represented by the interval
[0, 1] ([0, r] for the Brownian disk with perimeter r). This floor will indeed correspond
to the boundary of the Brownian disk.

To make this precise, we consider a Poisson point measure N =
∑

i∈I δ(ti,ei) on
[0, 1]× E with intensity

21[0,1](t) dtn(de),

where we recall the notation n(de) for the Itô measure of Brownian excursions.
Recall the notation (Tei , dei) for the tree coded by ei, and also write σ(ei) for the
duration of the excursion ei. We introduce the compact metric space H, which is
obtained from the disjoint union

[0, 1] ∪
(⋃
i∈I

Tei
)

(8)

by identifying the root ρei of Tei with the point ti of [0, 1], for every i ∈ I. The
metric dH on H is defined in the obvious manner. In particular, the restriction of dH
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to each tree Tei is the metric dei , the restriction of dH to [0, 1] is the usual metric
and, if u ∈ Tei and v ∈ Tej , with j 6= i,

dH(u, v) = dei(u, ρei) + |ρei − ρej |+ dej(ρej , v).

The volume measure on H is just the sum of the volume measures on the trees Tei ,
i ∈ I.

If Σ :=
∑

i∈I σ(ei) is the total mass of the volume measure, we can define a clock-
wise exploration (Et)0≤t≤Σ of H by concatenating the mappings pei : [0, σ(ei)] −→ Tei
in the order prescribed by the ti’s.

The clockwise exploration allows us to define “intervals” in H. Similarly as in
the construction of the Brownian sphere, we make the convention that, if s, t ∈ [0,Σ]
and s > t, the interval [s, t] is defined by [s, t] := [s,Σ] ∪ [0, t] (of course, if s ≤ t,
[s, t] is the usual interval). Then, for every u, v ∈ H, such that u 6= v, there is a
smallest interval [s, t], with s, t ∈ [0,Σ], such that Es = u and Et = v, and we define

[[u, v]] := {Er : r ∈ [s, t]}.

Note that we use the notation [[u, v]] rather than [u, v] to avoid confusion with
intervals of the real line.

We next assign real labels to the points of H. We first assign (independently)
Brownian labels (Zi

a)a∈Tei to each tree Tei , in the way explained in Section 3.3.2.
Then, we let (et)0≤t≤1 be a normalized Brownian excursion, which is independent of

N and the labels (Zi
a)a∈Tei . For t ∈ [0, 1], we set Λt :=

√
3 et, and for u ∈ Tei , i ∈ I,

Λu :=
√

3 eti + Zi
u.

By [11, Lemma 11], min{Λu : u ∈ H} is attained at a unique point v∗ of H.
Just as in the construction of the Brownian sphere, labels allow us to define the

pseudo-metric D∂ on H. For every u, v ∈ H, we first set

D◦(u, v) := Λu + Λv − 2 max
(

inf
w∈[[u,v]]

Λw, inf
w∈[[v,u]]

Λw

)
, (9)

and then

D∂(u, v) := inf
u0=u,u1,...,up=v

p∑
i=1

D◦(ui−1, ui), (10)

where the infimum is over all choices of the integer p ≥ 1 and of the finite sequence
u0, u1, . . . , up in H such that u0 = u and up = v. One immediately verifies that
D∂(u, v) ≥ |Λu − Λv| for every u, v ∈ H. It easily follows that, for every u ∈ H,
D∂(u, v∗) = D◦(u, v∗) = Λu − Λ∗.

We abuse notation by writing H/{D∂ = 0} for the quotient space of H with
respect to the equivalence relation defined by setting u ≈ v if and only if D∂(u, v) =
0.

Definition 5 The free pointed Brownian disk with perimeter 1 is the quotient space
D•1 := H/{D∂ = 0}, which is equipped with the distance induced by D∂ and with a
distinguished point x∗ which is the equivalence class of v∗.

The space D•1 is homeomorphic to the closed unit disk, and the boundary ∂D•1
is identified with the image of [0, 1] under the canonical projection. The volume
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measure Vol on D•1 is obtained as the pushforward of the volume measure on H
under the canonical projection. From the preceding construction, one verifies that
the variable Vol(D•1) has a density equal to

1√
2πt3

exp(− 1

2t
).

One can also define a boundary measure, which is in a sense uniformly distributed
over ∂D•1. This boundary measure µ∂ may be defined by the approximation

〈µ∂, ϕ〉 = lim
ε→0

1

ε2

∫
ϕ(x)1{D∂(x,∂D•1)<ε}Vol(dx), (11)

for any continuous function ϕ on D•1.
The free (unpointed) Brownian disk with perimeter 1 is obtained from the free

pointed Brownian disk by “forgetting” the distinguished point and putting a weight
proportional to the inverse of the volume : If F is a function defined on the Gromov-
Hausdorff space, the formula

E[F (D1)] = E
[ 1

Vol(D•1)
F (D•1)

]
defines the distribution of the space D1 in Theorem 8. Of course the approximation
(11) still makes sense to define the boundary measure µ∂ on ∂D1.

As a final remark, one can also define the Brownian disk with fixed perimeter
(say, equal to 1) and volume v by conditioning D1 on Vol(D1) = v.

6 Non-compact models

In this section, we briefly describe the two basic non-compact models called the
Brownian plane and the Brownian half-plane.

6.1 The Brownian plane

Recall that, in Theorem 2, the graph distances were rescaled by the factor n−1/4,
which was the proper factor to get a (non-trivial) compact limit (as we explained in
the case of quadrangulations, the typical diameter of a planar map with n faces is
of order n1/4). The Brownian plane will arise in a similar scaling limit for random
planar maps if we rescale the graph distance by a factor tending to 0 at a slower
rate than n1/4. In order to explain this convergence, we need to introduce the local
Gromov-Hausdorff convergence. Let (En, dn, xn) be a sequence of pointed metric
spaces, where the word pointed means that there is a distinguished point xn ∈ En,
for every n. Assume that, for every n, En is a geodesic space (the distance between
two points is the length of a shortest path between these points) and closed balls
of En are compact. Then, we say that (En, dn, xn) converges to a limiting pointed
metric space (E, d, x) for the local Gromov-Hausdorff topology if, for every r > 0,
the closed ball of radius r centered at xn in En converges to the same ball centered
at x in E, for the Gromov-Hausdorff distance — implicitly we assume that closed
balls in E are also compact.

Recall our notation M4
n for the set of all rooted planar quadrangulations with n

faces. For Q ∈M4
n, we view the metric space (V (Q), dQgr) as a pointed metric space,

whose distinguished point is the root vertex of Q.
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Theorem 9 [28] Suppose that, for every n ≥ 1, Qn is uniformly distributed over M4
n,

and let (an) be a sequence of positive reals such that an −→ 0 and n1/4an −→∞ as
n→∞. Then

(V (Qn), andQngr )
(d)−→
n→∞

(P , D∞),

where the convergence holds in the local Gromov-Hausdorff sense. The limiting ran-
dom pointed metric space (P , D∞) is called the Brownian plane.

One expects that a similar result holds for more general random planar maps.
The Brownian plane is homeomorphic to the usual plane R2 and has Hausdorff

dimension 4 like the Brownian sphere. The Brownian plane shares many properties
of the Brownian sphere, and can be viewed as a tangent cone in distribution to the
Brownian sphere (m∞, D), meaning that

(m∞, λD)
(d)−→
λ→∞

(P , D∞)

again in the local Gromov-Hausdorff sense. In the latter convergence, we view the
Brownian sphere m∞ as pointed at the distinguished point x∗(but x∗ could be
replaced by a point uniformly distributed on m∞). In fact, a much stronger result
holds : For every δ > 0, one can find ε > 0 and couple the Brownian sphere (m∞, D)
with the Brownian plane (P , D∞) so that, with probability at least 1−δ, the balls of
radius ε centered at the distinguished point in m∞ and in P are isometric. In other
words, one can construct simultaneously m∞ and P so that, with high probability,
the small balls centered at the distinguished point are the same in P and in m∞. As
a final remark, the Brownian plane is scale invariant in distribution, meaning that,
for every λ > 0, (P , λD∞) has the same distribution as (P , D∞).

6.2 The Brownian plane as the scaling limit of the UIPQ

Both in Theorem 2 and in Theorem 9, the graph distance is rescaled by a factor
tending to 0. If we do not rescaled the distance, we can still obtain a limiting object,
in the sense of local convergence of maps. To make this precise, consider a sequence
mn of random rooted planar maps. For every n and for every integer k ≥ 0, write
Bk(mn) for the (random) rooted planar map obtained by keeping only those faces of
mn that contain at least one vertex at distance less than or equal to k from the root
vertex of mn. We say that mn converges locally to a (possibly infinite but locally
finite) rooted planar map m if, for every k ≥ 0, for every finite rooted planar map
m0,

P(Bk(mn) = m0) −→
n→∞

P(Bk(m) = m0).

For every (even) integer n, let Tn denote a uniformly distributed rooted planar
triangulation with n faces. In a pioneering paper, Angel and Schramm [9] proved
that Tn converges locally to a random infinite planar map T∞ called the UIPT
(for Uniform Infinite Planar Triangulation). The proofs of [9] rely much on exact
enumeration formulas for triangulations. Using similar formulas, Krikun [45] proved
the analogous result for quadrangulations : If Mn denotes a uniformly distributed
rooted planar quadrangulation with n faces, the sequence Mn converges locally to
the random infinite planar map Q∞ called the UIPQ. Both the UIPT T∞ and the
UIPQ Q∞ have been studied extensively, see in particular [26,30,40,60].
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Figure 5 – An artistic view of the UIPQ (artist : N. Curien)

The Brownian plane appears as the scaling limit of both the UIPQ and the
UIPT. Write V (T∞) and V (Q∞) for the respective vertex sets of T∞ and Q∞.

Theorem 10 We have
(V (T∞), λdT∞gr ) −→

λ→0
(P , D∞)

and
(V (Q∞), λdQ∞gr ) −→

λ→0
(P , D∞)

where in both cases convergence holds in the local Gromov-Hausdorff sense.

We refer to [28] for the case of quadrangulations and to [20] for the case of
triangulations.

6.3 The Brownian half-plane

The Brownian half-plane is another important non-compact model, which was
introduced via two different constructions by Caraceni and Curien [23] and Gwynne
and Miller [41] (the equivalence between these two constructions was later obtained
in [51]). Roughly speaking, the Brownian half-plane appears as the scaling limit of
random planar maps with a boundary of size 2k, provided that the scaling factor
tends to 0 but is large in comparison with 1/

√
k (recall Theorem 8 where the scaling

factor was
√

3/2k).
To state this in a more precise form, let B(k) be a Boltzmann quadrangulation

with a boundary of size 2k (see Section 5.1). We view (V (B(k)), d
B(k)
gr ) as a pointed

metric space, where the distinguished point is the root vertex of B(k) (note that this
root vertex lies on the boundary of B(k)).

Theorem 11 Let (ak) be a sequence such that ak −→ 0 but ak
√
k −→∞ as k →∞.

We have

(V (B(k)), akd
B(k)
gr )

(d)−→
k→∞

(H, DH),
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in the local Gromov-Hausdorff sense. The limiting space (H, DH) is a random non-
compact pointed metric space called the Brownian half-plane.

This theorem is proved in [10], which contains a thorough discussion of all
possible scaling limits of quadrangulations with a boundary. The Brownian half-
plane is homeomorphic to the usual half-plane, and so one can define its boundary
∂H, which is homeomorphic to the line, and the distinguished point of H lies on
∂H.

In the same way as the Brownian plane appears as the scaling limit of both the
UIPT and the UIPQ, the Brownian half-plane was proved to be the scaling limit
of the infinite planar map called the uniform infinite half-planar triangulation or
UIHPQ, see Gwynne and Miller [41].

7 Spatial Markov property in Brownian surfaces

The Brownian surfaces that we have introduced satisfy certain remarkable spa-
tial Markov properties which we now describe. Roughly speaking, for certain special
subsets H of the Brownian sphere (or the Brownian disk, or the Brownian half-
plane), the complement of H viewed as a metric space for an intrinsic metric is
independent of H (also viewed as a metric space for its intrinsic metric) conditio-
nally on the “boundary size” of H.

Consider first the free Brownian sphere (mfree
∞ , Dfree) of Section 3.5. This metric

space comes with two distinguished points that we denoted by x∗ and x0, which
should be viewed as uniformly distributed. Let us fix r > 0, and consider the clo-
sed ball of radius r centered at x∗ in mfree

∞ , which we denote by Br(x∗). We will
condition on the event that x0 /∈ Br(x∗), or equivalently Dfree(x∗, x0) > r. Although
the free Brownian sphere is defined under an infinite measure, the latter event has
finite measure, and so the conditioning takes us back to a probability measure. The
complement of Br(x∗) has infinitely many connected components, but we define the
“hull” B•r (x∗) by saying that mfree

∞ \B•r (x∗) is the connected component that contains
x0 (informally, we obtain the hull by adding to the ball of radius r all connected
components of its complement but the one containing x0). One can then define the
boundary size of B•r (x∗) by the formula

Zr := lim
ε→0

1

ε2
Vol({x ∈mfree

∞ \B•r (x∗) : Dfree(x,B•r (x∗)) < ε}), (12)

which is analogous to (11). Write B◦r (x∗) for the interior of the hull B•r (x∗). We
then consider the intrinsic distance on B◦r (x∗), which is defined by declaring that
the distance between two points is the infimum of the lengths of paths staying in
B◦r (x∗) that connect these two points. It turns out that this intrinsic distance can
be extended continuously to B•r (x∗). Similarly, we can define an intrinsic distance
on the open set mfree

∞ \B•r (x∗) and verify that it can be extended continuously to its
closure mfree

∞ \B◦r (x∗).

Theorem 12 [52] Conditionally on the boundary size Zr, the hull B•r (x∗) and the hull
complement mfree

∞ \B◦r (x∗), both equipped with their respective (extended) intrinsic
distances, are independent random metric spaces. Moreover, the hull complement
mfree
∞ \B◦r (x∗) is a free Brownian disk with perimeter Zr.
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A version of this theorem for the standard Brownian sphere can be found in [50],
where it is proved that the connected components of the complement of a closed
ball centered at x∗ in m∞ are independent Brownian disks, conditionally on their
boundary sizes and volumes (in contrast with Theorem 12, it is here necessary to
condition also on the volumes, and as a result one does not get free Brownian disks
but Brownian disks with given perimeter and volume).

Let us turn to an analog of Theorem 12 for the free Brownian disk (D1, D
∂).

Here, we consider two points y0 and y1 which are independently distributed accor-
ding to the boundary measure µ∂. Fix r > 0 and argue conditionally on the event
D∂(y0, y1) > r. We can then define the hull B•r (y0) by saying that D1\B•r(y0) is the
connected component containing y1 of the complement of the ball of radius r cente-

red at y0. To simplify notation, also write B̂•r (y0) for the closure of D1\B•r(y0). The
boundary size Yr is then defined by the analog of formula (12) above, replacing x∗
by y0, mfree

∞ \B•r (x∗) by B̂•r (y0), and Dfree by D∂. Furthermore, we also define Xr as

the size (measured with respect to the boundary measure µ∂) of ∂D1 ∩ B̂•r (y0). See
Fig. 6.

y0

y1

B•r (y0)

B̂•r (y0)

Yr

Xr

Figure 6 – Spatial Markov property in a Brownian disk.

Theorem 13 [56] The random metric spaces B•r (y0) and B̂•r (y0) both equipped with
their (extended) intrinsic measures are independent conditionally on the pair (Xr,Yr).

Furthermore, B̂•r (y0) is a free Brownian disk with perimeter Xr + Yr.

Instead of hulls centered at a boundary point of the Brownian disk, we could
also consider hulls centered at an interior point. To this end, it is convenient to
deal with the free pointed Brownian disk D•1 constructed in Section 5.2, which has a
distinguished (interior) point x∗. For every 0 < r < D∂(x∗, ∂D•1), we define the hull
B•r (x∗) by declaring that D•1\B•r (x∗) is the connected component containing ∂D•1 of
the complement of the ball of radius r centered at x∗. For a given α > 0, let rα be
the smallest r such that the boundary size of B•r (x∗) (defined via an approximation
similar to (12)) is equal to α — we need here to condition on the event of positive
probability where there exists such a value of r. Then [61] D•1\B•rα(x∗) (equipped
with its intrinsic metric) is a free Brownian annulus with boundary sizes 1 and α,
which moreover is independent of the hull B•rα(x∗). The Brownian annulus appears
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as the scaling limit of planar quadrangulations with two boundaries : this is a very
special case of the convergence results proved in [15] and briefly discussed in Section
8 below.

We finally give a version of the spatial Markov property in the Brownian half-
plane. In a sense, this result is nicer as it does not involve any conditioning (compare
with Theorems 12 and 13. Recall that the Brownian half-plane (H, DH) is homeo-
morphic to the usual half-plane, and that it has a distinguished point, which lies
on the boundary ∂H and which we denote here by y∗. In a sense that can be made
precise, the point y∗ is a “typical point” of the boundary ∂H.

For every r > 0, we define the hull B•,Hr by saying that H\B•,Hr is the (unique)
unbounded connected component of the complement of the closed ball of radius r
centered at y∗ (informally, the hull B•,Hr is obtained by filling in the bounded holes
in the ball of radius r centered at y∗).

We then let Hr be the closure of H\B•,Hr . Again, the intrinsic metric on H\B•,Hr
has a continuous extension to Hr. The following theorem is proved in a joint work
in preparation with Armand Riera.

Theorem 14 The space Hr equipped with the extended intrinsic metric is again a
Brownian half-plane, and is independent of the hull B•,Hr also equipped with its in-
trinsic metric.

The formulation of Theorem 14 is slightly imprecise as we should specify the
distinguished point of Hr (recall that the Brownian half-plane is a random pointed
metric space). This distinguished point may be chosen on the boundary of the hull
B•,Hr in a way that is measurable with respect to the hull, but we omit the details.

y∗

B•,Hr

Hr

Figure 7 – Illustration of Theorem 14 : The complement of the hull B•,Hr is again a Brownian
half-plane

Roughly speaking, Theorem 14 states that, if we remove a hull centered at a
typical point of the boundary of the Brownian half-plane H, what remains is again
a Brownian half-plane (provided of course that we use the intrinsic metric). We can
iterate this operation and find many subsets of H such that the space obtained after
their removal has the same distribution as H. An intriguing question is whether
the distribution of the Brownian half-plane could be characterized via such spatial
Markov properties (and some other properties to specify).

8 Brownian surfaces in higher genus

In this section, we briefly present recent results of Bettinelli and Miermont [15]
concerning the construction of Brownian surfaces in arbitrary genus, with a finite
number of “boundaries”. This construction relies on an approximation by random
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quadrangulations, but it is expected that quadrangulations can be replaced by more
general planar maps.

Let g ∈ Z+. A map in genus g is a proper cellular embedding of a finite multi-
graph in a compact orientable surface of genus g. Here the word cellular means that
the connected components of the complement of edges (the faces of the map) are
homeomorphic to the open unit disk of the plane. As previously, maps in genus g
are considered up to orientation-preserving homeomorphisms of the surface in which
they are embedded. Rooted maps are defined as in the planar case. We say that the
map is bipartite if the vertex set can be partitioned in two subsets such that no edge
links two vertices of the same subset.

h1

h2

h3

Figure 8 – A quadrangulation with three holes marked h1, h2, h3 in genus 1 (figure from [15]).

We consider special cases of maps which we call quadrangulations with holes.
For every integer k ≥ 0, a quadrangulation with k holes (in genus g) is a bipartite
rooted map in genus g having k distinguished faces f1, . . . , fk (called the holes) with
arbitrary (even) degree, and such that all the other faces, which are called internal
faces, have degree 4. The degree of each hole is called the perimeter of this hole.

If ` = (`1, . . . , `k) is a k-tuple of positive integers, and n ≥ 1, we write Q
[g]
n,` for

the set of all rooted quadrangulations in genus g with n internal faces and k holes

of respective perimeters 2`1, . . . , 2`k. Then, if Q ∈ Q
[g]
n,`, we can equip the vertex set

V (Q) with the graph distance dQgr.

Theorem 15 [15] Let g, k ≥ 0, and let L = (L1, . . . , Lk) be a k-tuple of positive
real numbers. For every integer n ≥ 1, let `n = (`1

n, . . . , `
k
n) ∈ Nk, and assume that

`in/
√

2n −→ Li as n → ∞, for every i ∈ {1, . . . , k}. Finally, let Qn be uniformly

distributed over Q
[g]
n,`n

. Then,(
V (Qn),

( 9

8n

)1/4

dQngr

)
(d)−→
n→∞

(S
[g]
L , D

[g]
L ),

where the limit is a random compact metric space, and the convergence holds in
distribution in the Gromov-Hausdorff sense.

Bettinelli and Miermont [15, Theorem 1] give in fact a much more precise result,
involving also the convergence of the uniform measure on V (Qn) and of the uniform
measure on the boundary of each hole — the statement of such a result requires a
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generalization of the Gromov-Hausdorff convergence which we chose not to present
here.

The random metric space (S
[g]
L , D

[g]
L ) may be interpreted as the (standard) Brow-

nian surface in genus g with k holes of respective perimeters L1, . . . , Lk. The proof
of (a strong form of) Theorem 15 relies on a decomposition into elementary pieces
called slices and quadrilaterals (with geodesic sides), which holds both for the dis-
crete quadrangulations and for the limiting continuous objects. A key point is then
to obtain the convergence of the (properly rescaled) discrete slices and quadrilate-
rals towards their continuous analogs. To get this convergence, it turns out to be
convenient to view the discrete quadrilaterals, resp. the discrete slices, as subsets
of the UIPQ, resp. of the UIHPQ, and similarly to view the continuous analogs as
subsets of the Brownian plane and the Brownian half-plane. Although Theorem 15
deals with compact Brownian surfaces, the proof thus makes a heavy use of the
non-compact models discussed in Section 6.

As a final remark, the standard Brownian surface (S
[g]
L , D

[g]
L ) is normalized in

the sense that its volume is equal to 1 (we start from quadrangulations with a fixed
number of faces). Bettinelli and Miermont [15, Theorem 5] also discuss free Brownian
surfaces in genus g that are scaling limits of quadrangulations distributed according
to Boltzmann weights (in the same way as the free Brownian disk is obtained in
Theorem 8). Interestingly, these free Brownian surfaces are defined under probability
measures only in two special cases in genus 0, namely the Brownian disk studied
in Section 5 and the Brownian annulus. Note in particular that the free Brownian
sphere of Section 3.5 is defined under an infinite measure.

Acknowledgements. I thank Nicolas Curien for providing Figures 3 and 5, and
Jérémie Bettinelli and Grégory Miermont for allowing me to use Figure 8 from [15].
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